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1 Introduction

This paper is a further study of our previous work [10], which provides a discrete game interpre-
tation for the Neumann boundary problem of motion by curvature. The deterministic optimal
control approach is proposed by Kohn and Serfaty ([16, 17]) to connect two-person games and
second order PDEs. It turns out that by the convergence argument, a time-optimal problem is
related to the Dirichlet problem of an elliptic equation and a time-dependent game corresponds
to the Cauchy problem of a parabolic equation; see [9, 15] for generalizations in distinct direc-
tions. Our goal rests on the Neumann boundary problems of evolutionary equations. In [10],
discrete deterministic games are constructed so that their value functions converge to the unique
solution of the Neumann boundary problem of curve shortening flow equation. The introduction
of a billiard semiflow is of most importance for the game setting. We here aim to present more
applications of billiards and the optimal control or game representations.

The billiard semiflow stems from a very simple law: the angle of incidence equals to the
angle of reflection. All of our optimal control or games are then established on this dynamics. It
is worth mentioning that there is another more classical way of generating Neumann boundary
condition called the Skorokhod problem, which is first used by Lions [18] to pioneer the study
of the boundary conditions in the viscosity sense; consult [5, 6, 19, 23] for details about the
Skorokhod problem. Although the definition of the billiard semiflow is different from that of
the Skorokhod type reflection, they are essentially not that different in the sense that billiard
and Skorokhod reflections are still analogous in form (Lemma 2.2 or [10, Lemma 2.3]), which
meanwhile makes our arguments more reasonable and easier to understand.

There is a problem left in [10] about the continuity of the billiard semiflow. The stable
nature of a state equation is usually indispensable to show that the value function is continuous
[1]. The comparison principle certainly guarantees the continuity, but its derivation from games
was missing there. We will complement it in this paper by putting the billiards into a simpler
background. More precisely, our concentration is focused on the following first order linear
equation

(1.1) $\{\begin{array}{ll}u_{t}(x, t)-v\cdot\nabla u=0 in \Omega\cross[0, \infty),\nabla u(x, t)\cdot\nu(x)=0 on \partial\Omega\cross[0, \infty),u(x, 0)=u_{0}(x) in \overline{\Omega},\end{array}$

where $\Omega$ is a smooth domain in $\mathbb{R}^{2}$ with the unit outward $\nu$ , and $v\in S^{1}$ and $u_{0}\in C(\overline{\Omega})$ are
given. Then the solution could be expressed as a composite of the billiard dynamics and $u_{0}$ ,
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and thus the sufficient information concerning (1.1) allows us to get the regularity of billiards
desired.

Another application of billiards is to explain the fattening of level sets for the mean curvature
flow equation with boundary condition. The method is as follows: We compare the game and its
inverse, which are both provided in [10]; namely, we study not only the “$inf\sup$” games but also
replace all “inf sup’ by $\sup$ inf.” These changes formally make little difference to the original
arguments and thus still yield the same equation. However, we here must emphasize that the
optimal trajectories in the original and inverse games can be entirely different. An example
in the present work will be given to show such features clearly. It is worth remarking that we
employ only the game interpretation without using any parabolic PDE theory, which is usually
resorted to when one tries to prove the existence of fattening rigorously. Our computation for
the example is quite geometric and elementary. All of the PDE theory we are supposed to use
is actually implied by the convergence argument in [10]. Such kind of explanation is not new
if we recall the optimal control interpretation of first order fattening due to Barles, Soner and
Souganidis [3]. Refer to the forthcoming work [20] for a more general idea and more applications.

We will not discuss much about the existence, uniqueness and stability for solutions of the
equations appearing in the following, especially those with Neuamnn type boundary. Their well-
posedness in the viscosity sense is investigated thoroughly in [18] for first order cases and [8, 11,
21, 22] for second order ones. Also, we hereafter consider everything only in two dimensions.
The generalization to higher dimensions is possible.

2 Planar Billiard Dynamics

We begin with a review of the results about the billiard semiflow. All of the proofs, omitted in
this paper, are given in [10]. The domain $\Omega\subset \mathbb{R}^{2}$ , said to be a billiard table in the new context,
satisfies the following assumption:

(Al) $\Omega$ is a bounded and convex domain in $\mathbb{R}^{2}$ with $C^{2}$ boundary.

The billiard flow in $\Omega$ , denoted by $T^{t}$ : $\overline{\Omega}\cross S^{1}arrow\overline{\Omega}(t\in \mathbb{R})$ , describes the billiard motion in
the table. By billiard motion, we mean that a mass point is moving along straight-lines in the
interior of the domain and following the optic law on the boundary, $nam6ly$, the angle of incidence
equals the angle of reflection. For a fixed pair $(x, v),$ $T^{t}(x, v)$ represents the ball’s position at
time $t$ . The set $\{T^{t}(x, v)\in\overline{\Omega} : t\geq 0\}$ is called a billiard trajectory starting from $(x, v)$ and
the hitting points on the boundary are called vertices of the trajectory. It is obvious that $T^{t}$

satisfies the group property restricted in $\Omega\cross S^{1}$ with the identity $T^{0}$ and $T^{-t}(x, v)=T^{t}(x, -v)$

for any $x\in\Omega$ and $v\in S^{1}$ .
We stress here that such a billiard motion is not always proper. Indeed, a so-called terminat-

ing phenomenon may occur even in this $C^{2}$ domain, or in other words, the sequence of vertices
$\{p_{n}\}_{n\geq 1}$ may converge to a point on $\partial\Omega$ . An important property is drawn from [13] to be stated
in Lemma 2.1 below.

We hereafter utilize the arc-length parametrization $\Gamma(\cdot)$ : $\mathbb{R}arrow \mathbb{R}^{2}$ , a function of class $C^{2}$ , to
represent $\partial\Omega$ . Its derivative with respect to $s$ is denoted by $\Gamma_{s}$ .

Lemma 2.1. Suppose that $\Omega$ satisfies (Al). If a trajectory terminates at a poin$t\Gamma(s_{\infty})\in\partial\Omega$ ,
$wi$th a sequence of vertices $\{\Gamma(s_{n})\}_{n\geq 1}$ arranged in order, then there exists $N>0$ such that for
$n\geq N,$ $s_{n}$ monotonically converges to $s_{\infty}$ and $(\Gamma(s_{\infty})-\Gamma(s_{n}))/|s_{\infty}-s_{n}|$ converges to a unit
tangent, denoted by $v_{\infty}$ , to the boundary at $\Gamma(s_{\infty})$ .
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We refer readers to [12] for a similar result in higher dimensions and to [4], where the
termination is rephrased as accumulation of collision times, for general discussions.

A modified billiard dynamics is therefore necessary and can be presented as follows.

Definition 2.1. Let $\Omega$ satisfy (Al).

(i) If $x\in\partial\Omega$ , and $v$ equals to the tangent of $\partial\Omega$ , then

$S^{t}(x, v)$ $:=\Gamma(t)$ , for any $t\geq 0$ ,

where $\Gamma(\cdot)$ is the arc-length parametrization of $\partial\Omega$ such that $\Gamma(0)=x$ and $\Gamma_{s}(0)=v$ ;

(ii) If $x\in\Omega$ and $v$ is such that $T^{t}(x, v)$ terminates on $\partial\Omega$ at time $t_{0}$ , then

$S^{t}(x, v):=\{\begin{array}{ll}T^{t}(x, v) if 0\leq t<t_{0},S^{t-t_{0}}(T^{t_{0}}(x, v), v_{\infty}) if t\geq t_{0},\end{array}$

where $v_{\infty}$ is obtained from Lemma 2.1;

(iii) If $x\in\partial\Omega$ and $v$ points inside $\Omega$ , then

$S^{t}(x, v):=\{\begin{array}{ll}x if t=0,S^{t-\epsilon}(x+\epsilon v, v) if t>0,\end{array}$

where $\epsilon>0$ is such that $x+\delta v\in\Omega$ for all $\delta\in(0, \epsilon)$ .

It is easily seen that $S^{t}$ is a semiflow. For $t\geq 0,$ $x\in\overline{\Omega}$ and $v\in S^{1}$ , we set

(2.1) $\alpha^{t}(x, v)=x+tv-S^{t}(x, v)$

and call it the boundary adjustor. A property of our semiflow is given in the next lemma.

Lemma 2.2 ([10, Lemma 2.3]). Assume that $\Omega$ satisfies (Al). For any fixed $t\geq 0,$ $x\in\overline{\Omega}$

and $v\in S^{1}$ , let $\alpha^{t}(x, v)$ be the boundary adjustor of $S^{t}(x, v)$ . Then there exist $d_{l}\geq 0$ and
$y_{l}\in\partial\Omega\cap B_{t}(x),$ $l=1,2,$ $\ldots$ such that

(2.2) $\alpha^{t}(x, v)=\sum_{l=0}^{\infty}d_{l}\nu(y_{l})$ ,

where th$e$ convergence on the right hand side is in $\mathbb{R}^{2}$ . In addition, the following estimates hold:

(2.3) $|\alpha^{t}(x, v)|\leq 2t$ .

(2.4) $| \sum_{l=k}^{\infty}d_{l}\nu(y_{l})|\leq 4t$ , for all $k=1,2,$ $\ldots$

(2.5) $\sum_{l=1}^{\infty}|y_{l+1}-y_{l}|\leq 2t$ .
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This lemma tells us that the effect of billiard reflection is nothing but a series of inward
normal impacts. Such an observation, resembling the Skorokhod problem, turns out to play a
significant role in our game setting.

We conclude this section with another property, which is a direct consequence of the sepa-
ration theorem for convex sets in $\mathbb{R}^{2}$ .

Lemma 2.3 ([10, Lemma 2.4]). Assume that $\Omega$ satisfes (Al). Then

(2.6) $|x_{0}-S^{t}(x, v)|\leq|x_{0}-(x+tv)|$ for any $x,$
$x_{0}\in\overline{\Omega},$ $v\in S^{1}$ and $t\geq 0$ .

This lemma is used in second order games to construct barriers for initial data. We discuss in
this paper only a convex domain. For more general domains, we need a few additional techniques
since the above lemma no longer holds. See [10] for further study.

Another question is about the continuity of this semiflow. It turns out that the the function
$\overline{\Omega}\cross S^{1}\ni(x, v)arrow S^{(}x,$ $v)$ is not continuous in general, especially when termination occurs in
the trajectory. However, in the next section, we can get separately the continuity of $S^{(}x,$ $v$ ) in
$(x, t)\in\overline{\Omega}\cross[0, \infty)$ and in $v\in S^{1}$ by characterizing the billiard dynamics in the setting of a linear
partial differential equation with the homogeneous Neumann boundary condition.

3 Linear Neumann Problem

We start with a most simple case to see how billiards can help us realize a Neumann type
boundary. Our equation is simply (1.1), whose well-posedness is of no problem and covered in
[18]. Letting $u(x, t)=u_{0}(S^{t}(x, v))$ , we intend to show

Theorem 3.1. $u$ is the unique viscosity solution of (1.1).

The dynamic programming principle in this case becomes degenerate and obvious.

Proposition 3.2 (Dynamic programming). For all $(x, t)\in$ St $\cross[0, \infty),$ $u(x, t)=u(S^{\tau}(x, v), t-\tau)$

whene$i^{\gamma}er0\leq\tau\leq t$ .

We use this proposition to prove Theorem 3.1.

Proof of Theorem 3.1. It is clear by definition that $u$ is bounded and $u(x, 0)=u_{0}(x)$ . We next
prove $u$ is a subsolution of the equation with Neumann boundary condition. Assume that there
exist $(x_{0}, t_{0})\in\overline{\Omega}\cross(0, \infty)$ and $\phi\in C^{1}(\overline{\Omega})$ such that

$(u- \phi)(x_{0}, t_{0})=\max(u-\phi)\overline{\Omega}x(0,\infty)$ ’

which means

$u(x0, t_{0})-\phi(x0, t_{0})\geq u(x, t)-\phi(x, t)$ for all $x,$ $t\in\overline{\Omega}\cross(0, \infty)$ .

For each $0<\tau\leq t_{0}$ , take $x=S^{\tau}(x_{0}, v)$ and $t=t_{0}-\tau$ . We then use the dynamic programming
to obtain

$\phi(x_{0}, t_{0})-\phi(S^{\tau}(x_{0}, v), t_{0}-\tau)\leq 0$ .
It follows from Taylor expansion and the representation of adjustor (2.2) that

(3.1) $\tau\phi_{t}(x_{0}, t_{0})-\nabla\phi(x_{0}, t_{0})\cdot(v\tau-\alpha^{\tau}(x_{0}, v))\leq o(\tau)$.
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We discuss all subsequences of $\alpha^{\tau}$ . Due to (2.3), we only need to discuss two cases. If $\alpha^{\tau}/\tauarrow 0$

as $\tauarrow 0$ , then dividing by $\tau$ in (3.1) and sending $\tauarrow 0$ , we get

$\phi_{t}(x_{0}, t_{0})-\nabla\phi(x_{0}, t_{0})\cdot v\leq 0$.

The other case is for the existence of a constant $C>0$ such that $|\alpha^{\tau}(x_{0}, v)|\tauarrow C$ as $\tauarrow 0$ .
Of course $x_{0}$ must appear on $\partial\Omega$ . We claim in this case that either

$\phi(x_{0}, t_{0})-\nabla\phi(x_{0}, t_{0})\cdot v\leq 0$

or
$\nabla\phi(x_{0}, t_{0})\cdot n(x_{0})\leq 0$.

Indeed, suppose neither of the above holds, and then by using the regularity of $\phi$ we can take
$\gamma_{0}>0$ satisfying $\nabla\phi(x_{0}, t_{0})\cdot n(y)>\gamma_{0}$ for all $y$ on the piece of boundary adjacent to $x_{0}$ , which,
together with (2.2), yields

$\nabla\phi(x0, t_{0})\cdot\frac{\alpha^{\tau}(x_{0},v)}{\tau}=\frac{\sum_{l=0}^{\infty}d_{l}\gamma_{0}}{\tau}\geq C\gamma_{0}$ ,

as $\tauarrow 0$ . This will lead us, if we look back at (3.1), to

$\phi(x_{0}, t_{0})-\nabla\phi(x_{0}, t_{0})\cdot v\geq C\gamma_{0}>0$ ,

which is a contradiction.
Both cases combine to say that $u$ is a subsolution of (1.1) in the viscosity sense. We do not

present the verification of supersolution since it is similar. $\square$

The proof of Theorem 3.1 is simple and we next show some of its immediate consequences.
Let us first see the regularity of billiard semiflow as we mentioned.

Corollary 3.3. Assume (Al). Fix $v\in S^{1}$ . Then the mapping $(x, t)arrow S^{t}(x, v)$ is $con$tinuous.

Proof. We recall the classical result that the solution $u$ is continuous as long as $u_{0}$ is continuous.
Then $S^{t}(x, v)$ must be continuous otherwise we can construct $u_{0}$ to make $u$ discontinuous. $\square$

Corollary 3.4. Assume (Al). Fix $(x, t)\in$ St $\cross[0, \infty)$ . Then the mapping $varrow S^{t}(x, v)$ is
continuous.

Proof. Owing to Theorem 3.1, our straightforward proof is based on the stability theory. $\square$

We remark that the difficulty of the original question OIl continuity of $S^{t}(x, v)$ in $(x, v)$ is
natural because from a PDE viewpoint we are actually seeking for the continuity of solution
with the equation perturbed at the same time. It requires more regularity on the domain than
(Al), which is reflected by the counterexample below.

Suppose there is a terminating billiard trajectory in fi with a sequence of vertices $\{y_{n}\}_{n=1}^{\infty}$

and a terminating point $y_{\infty}$ on $\partial\Omega$ . From the results we have got before, we know as $karrow\infty$ ,
$a_{k}=|y_{k+1}-y_{k}|arrow 0$ and $v_{k}=(y_{k+1}-y_{k})/a_{k}arrow v_{\infty}$ , where $v_{\infty}$ is a unit tangent of $\partial\Omega$ at $y_{\infty}$ . Take
a point $x$ on the straight line segment $\overline{y_{1}y_{2}}$ such that the distance dist $(x, \partial\Omega)>0$ . Moreover, it
is possible to pick an open interval $(x_{1}, x_{2})$ on the segment $\overline{y_{1}y_{2}}$ , satisfying $x\in(x_{1}, x_{2})$ and

(3.2) inf dist $(z, \partial\Omega)>0$ .
$z\in(x_{1},x_{2})$
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We assume the total length of the billiard trajectory from $x$ to $y_{\infty}$ is $\tau_{0}$ . Then it is not hard to
see that $S^{\tau 0}(\cdot,$ $\cdot)$ is not continuous at $(y_{\infty}, -v_{\infty})$ . Indeed, since $y_{\infty}\in\partial\Omega$ and $-v_{\infty}$ is a tangent,
we have by our definition $S^{\tau_{0}}(y_{\infty}, -v_{\infty})\in\partial\Omega$ . On the other hand, $S^{\tau_{0}}(y_{k}, -v_{k})\in(x_{1}, x_{2})$ when
$k$ is large. So discontinuity is obtained immediately due to (3.2).

Not only can we obtain the regularity of billiards through the above connection, but we may
also look to the reverse, making use of billiards’ regularity to study the local regularity of PDE
solutions.

Theorem 3.5 ([4, Lemma 2.24]). Assume $\Omega$ is of class $C^{k}$ an$du_{0}\in C^{k-1}(k\geq 3)$ . Then th$e$

flow $T^{t}$ is $C^{k-1}$ smooth at points that experience only regular collisions.

An immediate consequence follows.

Corollary 3.6. Assume $\Omega$ is of class $C^{k}$ and $u_{0}\in C^{k-1}(k\geq 3)$ . Let $u$ be the $solu$ tion of (1.1).
Let $x_{0}\in\overline{\Omega}$ an$dt_{0}\in(0, \infty)$ . Then th$e$ following statements hold:

(a) If $x_{0}\in\Omega$ , then there exists $0<\delta<t_{0}$ such that $u\in C^{k-1}(B_{\delta}(x_{0})\cross[t_{0}-\delta, t_{0}+\delta])$ .

(b) If $x_{0}\in\partial\Omega$ and $v\cdot n(x_{0})\neq 0$ , then there exists $0<\delta<t_{0}$ such that

$u\in C([t_{0}-\delta, t_{0}+\delta], C^{k-1}(B_{\delta}(x_{0})))$ .

4 Fattening of Neumann boundary problem

A mere representation theorem is far from satisfactory. We attempt to employ billiards to
explain the fattening behavior of level set equations with Neumann type boundary. To this end,
we turn to second order equations and see that our billiards can also be applied to Neumann
boundary problem of curve shortening equation, whose level-set equation is written as follows.

(4.1) $\{\begin{array}{ll}\partial_{t}u-|\nabla u|div(\frac{\nabla u}{|\nabla u|})=0 in \Omega\cross(O, T),\nabla u(x, t)\cdot\nu(x)=0 on \partial\Omega\cross(0, T),u(x, T)=u_{0}(x) in \overline{\Omega}.\end{array}$

Here $\Omega$ denotes a smooth domain in $\mathbb{R}^{2},$ $\nu(x)$ is the unit outward normal to $\partial\Omega$ at $x$ . For
simplicity, we also require $\Omega$ to be convex.

The well-posedness of the problem (4.1) is first studied by Giga and Sato [11]; refer also to
[14] for its recent development. But the level set of $u$ is known to be fat, or more precisely,
develop interior sometimes even where $u_{0}$ is correctly chosen; see more analysis in [2, 8].

We reveal that fattening can be studied through a game-theoretic method, with billiards
described previously. Reviewing the associated game interpretation proposed in [10], we observe
and compare, for a simple example, the distinction between the optimal decisions of players for

$\min$ max’ and $\max$ min’ games, which clarify the formation of fat level sets. Our idea here is
extended from a recent work [20] on more detailed game explanation for the fattening of mean
curvature flow equation.

Our game starts from an initial position $x\in$ St and the time $0$ . The maturity time given
is denoted by $t$ . Let the step size be $\epsilon>0$ . At each step, a movement of length $\sqrt{2}\epsilon$ along a
billiard trajectory is conducted but time $\epsilon^{2}$ is consumed. Then the total number of game steps
$N$ can be regarded as $[_{\overline{\epsilon}^{F}}t]$ , where $[a]$ stands for the largest integer less or equal to each real
number $a$ . Two players, Paul and Carol participate the game. Paul intends to minimize the
value $u_{0}(y(N))$ while the other, Carol, is to maximize it. To be more precise, in the k-th round,
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(1) Paul chooses a direction $v_{k}$ , i.e., $|v_{k}|=1$ ;
(2) Carol has the right to reverse Paul’s choice, which determines $b_{k}=\pm 1$ ;
(3) The marker is moved from $y(k-1)$ to $y(k)=S^{\sqrt{2}\epsilon}(y(k-1), b_{k}v_{k})$ .

Then the value functions of the game and its inverse are respectively

(4.2)
$u_{1}^{\epsilon}(x, t)= \min_{|v_{1}|=1b1}\max_{=N}\ldots\min_{\pm 1|v|=1b_{N}=\pm 1}$$\max u_{0}(y(N))$

and

(4.3) $u_{2}^{\epsilon}(x, t)=$ max min $\ldots$ max min $u_{0}(y(N))$ .
$|v_{1}|=1b_{1}=\pm 1$ $|v_{N}|=1b_{N}=\pm 1$

With the associated dynamic programming equations,

$u_{1}^{\epsilon}(x, t)=$ min max $u_{1}^{\epsilon}(S^{\sqrt{2}\epsilon}(x, bv), t-\epsilon^{2})$

$|v|=1b=\pm 1$

and
$u_{2}^{\epsilon}(x, t)= \max_{|v|=1}\min_{b=\pm 1}u_{2}^{\epsilon}(S^{\sqrt{2}\epsilon}(x, bv), t-\epsilon^{2})$ ,

we show that both $u_{1}^{\epsilon}$ and $u_{2}^{\epsilon}$ converge to the unique solution of (4.1).

Theorem 4.1 ([10]). Assume that $\Omega$ satisfes (Al). Let $u_{0}$ be a continuous function in $\overline{\Omega}$ . Let
$u_{1}^{\epsilon}$ and $u_{2}^{\epsilon}$ be the $value$ functions defined as (4.2) and (4.3) respectively. Then both $u_{1}^{\epsilon}$ and $u_{2}^{\epsilon}$

converge, .as $\epsilonarrow 0$ , to the unique viscosity solution of (4.1) uniformly on compact subsets of
$\Omega\cross(0, \infty)$ .

In [10], only the statement about $u_{1}^{\epsilon}$ is proved, but one can actually show the other part
by following a symmetric argument. Theorem 4.1 therefore enables us to study the level-set
fattening of the Neumman problem. Let us see one example, which is a variant of the one in [2].

Let $\Omega=\{x\in \mathbb{R}^{2}:|x|<2\}$ and then take $u_{0}$ as follows.

(4.4) $u_{0}(x)= \min${dist $(x,$ $\overline{\Omega})-$ dist $(x,$ $\Omega^{c}),$ $3$ }, for all $x\in \mathbb{R}^{2}$ .

It is clear that in this situation $u_{1}^{\epsilon}(x, t)\leq 0$ for all $x\in\Omega$ and $t>0$ . On the other hand, the
estimate for $u_{2}^{\epsilon}$ can be given as follows.

Lemma 4.2. $u_{2}^{\epsilon}(x, t)\geq-\sqrt{2}\epsilon$ , for all $(x, t)\in\Omega\cross(O, \infty)$ such that $|x|^{2}+2t\geq 4$ .

Proof. Paul’s only job in this inverse game is to choose his direction each time on the tangent

$theboundary\partial\Omega bythetime\frac{(1}{2}(4-oftheconcentriccirclearound0,0)$
.

$|x|^{2}).Noticethatafterthereachingmoment,itwillkeepThenadirectcalculationyieldsthatthemarkercanreach$

colliding the boundary $\partial\Omega$ and hence its distance to the boundary will not exceed $\sqrt{2}\epsilon$ , which
deduces our conclusion. $\square$

Applying Theorem 4.1, we thus can understand the development of fattening with ease.

Theorem 4.3. Let $\Omega=\{x\in \mathbb{R}^{2} : |x|<2\}$ and $u_{0}$ be as in (4.4). Then the zero level set of the
solution $u$ of (4.1), has interior for every $t>0$ .
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In fact, the fat zero level-set contains $A_{t}=\{x\in\Omega. |x|^{2}+2t\geq 4\}$ (Figure 4).
The original example in [2] is for a nonconvex domain $\Omega=\{x\in \mathbb{R}^{2} : 1 <|x|<2\}$ , to which

Theorem 4.1 cannot be applied directly. However, since the concave piece of boundary does
not result in any additional terminating of billiard trajectories, or in the terminology of [10],
there are no exits on the boundary, we still can get an approximate theorem like Theorem 4.1
and consequently our interpretation of fattening follows as above. There is another example in
[7] for Neumann problem, whose game interpretation will not involve anything other than our
preceding study.

Figure 1: Gray region $A_{t}$
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