お茶の水女子大学・情報基盤センター 佐藤祐子(Yuko Sato) Information, Media and Education Square, Ochanomizu University お茶の水女子大学・大学院人間文化創成科学研究科 河村哲也(Tetuya Kawamura) Graduate School of Humanities and Sciences, Ochanomizu University

1. 緒言

近年,風力エネルギーは再生可能なエネルギー源として注目され,世界的にその設備容量, 発電量が大幅に増加してきている.その一方で,国内では住宅地から比較的近いところに設 置された風車による騒音や低周波音が問題となってきている.風車による騒音に関してはそ の原因の解明,対策が進んでいるものの,低周波音については未だに明らかでないことが多 く,有効な対策が見つかっていない.

音の予測の手段として、数値シミュレーションを用いることは一般的に行われているが、 その手法は様々である.大別すると、音の発生と伝播を同時に直接解く方法と、音の発生と 伝播を分離して解く方法があり、代表的な伝播を解く方法としては、積分方程式を用いる方 法や線形オイラー方程式を用いる方法などがある.本研究では、波動方程式を差分法を用い て解くことにより数値シミュレーションを行い、回転する音源周辺の音波の伝播に関する基 礎的な知見を得ることを目的とする.

2. 数值計算法

2.1 基礎方程式

音源とともに回転する回転座標系を考える.まず,波動方程式を固定座標系 (t, x, y, z) から回転座標系(T, X, Y, Z)に変換し,さらに直交座標系 (X, Y, Z) から円柱座標系(r, θ, Z)に 変換を行う.

固定座標系と回転座標系には次の関係がある.

 $\frac{\partial Y}{\partial T} = x \cos \omega t - y \sin \omega t = \omega X$

$$\begin{cases} t = T \\ x = X \cos \omega T + Y \sin \omega T \\ y = -X \sin \omega T + Y \cos \omega T \\ z = Z \end{cases} \begin{cases} T = t \\ X = x \cos \omega t - y \sin \omega t \\ Y = x \sin \omega t + y \cos \omega t \\ Z = z \end{cases}$$

(1)

180

ここで,ωは回転角速度である.

Fig. 1 Rotating coordinate system

3次元波動方程式は、以下の通りである.

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$
(2)

ここで, c は波の伝播速度である.式(2)の右辺は,式(1)を用いて回転座標系で表すと,以下の通りとなり,座標変換を行っても変化しない.

$$c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}}\right) = c^{2}\left(\frac{\partial^{2} u}{\partial X^{2}} + \frac{\partial^{2} u}{\partial Y^{2}} + \frac{\partial^{2} u}{\partial Z^{2}}\right)$$
(3)

また,式(2)の左辺を式(1)を用いて回転座標変換を行うと,以下の通りとなる.

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial T^2} + \omega^2 Y^2 \frac{\partial^2 u}{\partial X^2} + \omega^2 X^2 \frac{\partial^2 u}{\partial Y^2} - \omega^2 Y \frac{\partial u}{\partial Y} - \omega^2 X \frac{\partial u}{\partial X} - 2\omega^2 X Y \frac{\partial^2 u}{\partial X \partial Y} + 2\omega X \frac{\partial^2 u}{\partial T \partial Y} - 2\omega Y \frac{\partial^2 u}{\partial T \partial X}$$
(4)

式(3),(4)より、回転座標系の波動方程式として、以下の式が得られる.

$$\frac{\partial^{2} u}{\partial T^{2}} = c^{2} \left(\frac{\partial^{2} u}{\partial X^{2}} + \frac{\partial^{2} u}{\partial Y^{2}} + \frac{\partial^{2} u}{\partial Z^{2}} \right) - \omega^{2} Y^{2} \frac{\partial^{2} u}{\partial X^{2}} - \omega^{2} X^{2} \frac{\partial^{2} u}{\partial Y^{2}} + \omega^{2} Y \frac{\partial u}{\partial Y} + \omega^{2} X \frac{\partial u}{\partial X} + 2\omega^{2} X Y \frac{\partial^{2} u}{\partial X \partial Y} - 2\omega X \frac{\partial^{2} u}{\partial T \partial Y} + 2\omega Y \frac{\partial^{2} u}{\partial T \partial X}$$
(5)

次に,上記の直交座標系(**X**,**Y**,**Z**)で表された式(5)を円柱座標系(**r**, θ,**Z**)に変換する. 直交座 標系と円柱座標系には次の関係がある.

$$\begin{cases} X = r \cos\theta \\ Y = r \sin\theta \\ Z = Z \end{cases} \begin{cases} r = \sqrt{X^2 + Y^2} \\ \theta = \tan^{-1}\frac{Y}{X} \\ Z = Z \end{cases}$$
$$\vdots \\ \frac{\partial r}{\partial X} = \cos\theta, \frac{\partial \theta}{\partial X} = -\frac{\sin\theta}{r} \\ \frac{\partial r}{\partial Y} = \sin\theta, \frac{\partial \theta}{\partial Y} = \frac{\cos\theta}{r} \end{cases}$$

(6)

式(6)を用いると,式(5)は以下のように表される.非回転の円柱座標系で表された波動方 程式に,回転による効果が第5,6項として入っていることがわかる.

$$\frac{\partial^2 u}{\partial T^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 U}{\partial Z^2} \right) - \omega^2 \frac{\partial^2 u}{\partial \theta^2} - 2\omega \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial T} \right)$$
(7)

この基礎方程式を,差分法により解く.時間・空間とも2次精度中心差分を用いた.ただし, 時間の1階微分に関しては一次精度の後退差分を用いた.

2.2 境界条件

外周(遠方境界)は、B.Engquist らの完全吸収条件[3]を用いた.以下がその1次近似式である.

$$\left(\frac{\partial}{\partial x} - \frac{\partial}{\partial t}\right) u \bigg|_{x=0} = 0$$
⁽⁷⁾

3. 計算結果

音源は回転軸に対称に2つの線状のものを設定した.図2は、初期状態である.

計算条件は、次の通りである.格子数 91×82×41 ,角速度ω=0.03,音速 c=1.0,時間間隔 dt=0.0008. 以下に1回転中の音波の伝播の様子を示す.

time : 23 561 94

(c) 30000 step

(g) 70000 step

Fig. 3 Pressure contours around rotating sound source

図3は,左に水平断面,右に垂直断面における圧力の等高線を示す.垂直断面においては, 非回転時の音の伝播の様子と変わらないが,水平断面においては,回転による音波の屈折が 見られる.

回転角速度を大きくしたり、半径方向に計算領域を大きくすると、遠方境界から計算が発 散してしまうという問題点が見られた.基礎方程式の中の回転に寄与する項の差分の高精度 化や差分方法の改善が求められる.

4. まとめ

本研究では、回転座標を用いて回転する音源から発生する音波の伝播の3次元数値シミュ レーションを波動方程式を数値的に解くことにより行った.波動方程式を回転座標系に変換 し、極座標変換することにより、簡潔な基礎方程式の導出を行った.数値シミュレーション の結果、回転による音の屈折の様子を捉えることができた.今後は、差分の高精度化や、よ り現実の風車の状況に近い計算等を行う予定である.

参考文献

- [1] 三木,河村"音波伝播のシミュレーションと風車騒音への応用をめざして",お茶の水女 子大学大学院人間文化創成科学研究科,平成 20 年度修士論文,(2009)
- [2] 割田, 北村, 河村 "波動方程式を用いた閉空間内における音波の伝播の 3 次元数値シミュレーション", 日本機械学会 2004 年度年次大会講演論文集(1), (2004), pp5-6
- [3] B.Engquist and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves ", Math. Comp., 31, (1977), pp629-651