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1 Introduction

In this paper, we will show an example of using a Bayesian estimation method
for a simultaneous demand and supply model for market-level data which was
proposed by Yonetani et al. (2010). To show the example, we also use data from
the U.S. automobile market.

The method quantitatively investigates consumers’ preference in a differen-
tiated product market. The method also has the following three features as
the past research had (Berry, 1994; Berry, Levinsohn and Pakes, 1995 (hence-
forth, BLP, 1995); Sudhir, 2001; Petrin, 2002; Berry, Levinsohn and Pakes, 2004
(henceforth, BLP, 2004); Myojo, 2007; Romeo, 2007; Jiang et al., 2008; Musalem
et al., 2009; Myojo and Kanazawa, 2010). First, the method does not require
consumer-level purchase incidence data but market-level sales volume data. In
some markets, researchers can access to the latter much easier than the for-

lYutaka YONETANI is a doctoral candicate in Doctoral Program in Quantitative Finance
and Management, Graduate School of Systems and Information Engineering, University of
Tsukuba, 1-1-1 Ten-noh-dai, Tsukuba, Ibaraki 305-8573, Japan. His e-mail address is yyone-
tan@sk.tsukuba.ac.jp.
Yuichiro KANAZAWA is Professor of Statistics in Department of Social Systems and Man-
agement, Graduate School of Systems and Information Engineering, University of Tsukuba.
His e-mail address is kanazawa@sk.tsukuba.ac.jp.
Satoshi MYOJO is a research fellow at the lst Theory-Oriented Research Group, National
Institute of Science and Technology Policy (NISTEP), Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Chuo Godochosya 7 East 16th Floor, 3-2-2 Kasumigaseki,
Chiyoda-ku, Tokyo 100-0013, Japan. His e-mail address is smyojo@nistep.go.jp.
Stephen John Turnbull is Associate Professor of Economics in Department of Social Systems
and Management, Graduate School of Systems and Information Engineering, University of
Tsukuba. His e-mail address is turnbull@sk.tsukuba.ac.jp.

This research is supported in part by the Grant-in-Aid for Scientific Research (C) 16510103,
(C) 18530227, (C) 21530207 and $(B)20310081$ from the Japan Society for the Promotion of
Science.

数理解析研究所講究録
第 1703巻 2010年 91-111 91



mer. Second, the method takes account for price endogeneity which reflects the
fact that consumers’ purchasing behavior is affected by prices set by suppliers
based on expected consumers’ responses. Note that sales volumes are obtained
by aggregating the consumers’ purchasing behaviors. Third, the method also
takes account for consumer heterogeneity which indicates that individuals have
different preferences. Additionally, the estimation for the proposed method is
implemented in Bayesian framework. We can thus resort to the same Bayesian
advantages as those similar Bayesian methods has (Yang et al., 2003; Romeo,
2007; Jiang et al., 2008; Musalem et al., 2009): We can conceptually construct
a joint posterior distribution of parameters for a complex model given their
prior distribution and data distribution; we can facilitate finite-sample infer-
ences about not only the parameters but also their functions of interest without
relying on asymptotics; and we can incorporate pre-existing information about
the parameters in their prior.

The remaining of this paper is organized as follows. In Section 2, we will
briefly review the method. In Section 3, we will show the example of using the
method with data from the U.S. automobile market. Conclusions and discus-
sions will be presented in Section 4.

2 Review of the method

2.1 Model specification

Demand Model

The simultaneous demand and supply model has two endogenous variables of
sales volume and price. The demand model explains the former.

Suppose that there are $J$ products in a differentiated product market where a
consumer purchases one unit of a product with the highest utility in the course of
observation; and that we observe a $J\cross 1$ sales volume vector $v^{o}=(v_{1}^{o}, \ldots, v_{J}^{o})’$

and the overall market size $M= \sum_{j=0}^{J}v_{j}^{o}$ with $v_{0}^{o}$ being the number of consumers
choosing the outside good $j=0$ .

The consumer $i$ ’s utility for product $j$ is

$u_{ij}=u_{ij}(p_{j}, x_{j},\xi_{j,y_{i}}, \theta_{i}, \epsilon_{ij})=\alpha;\log(y_{i}-p_{j})+x_{j}\beta_{i}+\xi_{j}+\epsilon;j$ ,

where $y_{i}$ and $\theta;=(\alpha_{i}, \beta_{i}’)’$ are $his/her$ income and $Q\cross 1$ coefficient vector
respectively, $p_{j},$ $x_{j}$ and $\xi_{j}$ are product $j$ ’s unit price, 1 $\cross(Q-1)$ observed
characteristic vector and unobserved (by researchers) characteristic respectively,
and $\epsilon_{ij}$ is a consumer-level sampling error term. Notice that different values for
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$\theta_{i}$ among consumers reflect consumer heterogeneity. For $j=0$ , we assume
$p_{0}=0,$ $x_{0}=0$ and $\xi_{0}=0$ .

Suppose that $\epsilon_{ij}$ is independent of the other terms and independently and
identically Gumbel distributed across consumers and products in addition to
that a consumer purchases one unit of a product with the highest utility. Then
the consumer $i$ ’s logit choice probability for product $j$ ,

$s_{ij}=s_{ij}(p, X, \xi, y_{i}, \theta_{i})=\frac{\exp\{\alpha_{i}\log(y_{i}-p_{j})+x_{j}\beta_{i}+\xi_{j}\}}{\sum_{k=0}^{J}\exp\{\alpha_{i}\log(y_{i}-p_{k})+x_{k}\beta_{i}+\xi_{k}\}}$ , (1)

is derived with $p=(p_{1}, \ldots,p_{J})’,$ $X=(x_{1}’, \ldots, x_{J}’)’$ and $\xi=(\xi_{1}, \ldots,\xi_{J})’$ .
To explain the sales volume, we obtain the market share for product $j$ as

$s_{j}=s_{j}(p)=s_{j}(p, X, \xi, y, \theta)=\frac{1}{I}\sum_{i=1}^{I}s_{ij}$ (2)

with a sample of $I$ consumers instead of averaging $s_{ij}$ over the population,
where $y=(y_{1}, \ldots, y_{I})’$ and $\theta=(\theta_{1}, \ldots, \theta_{I})$ . Let $s=(s_{1}, \ldots, s_{J})’$ denote
a $J\cross 1$ market share vector. Let $v=(v_{1}, \ldots, v_{J})’$ also denote a $J\cross 1$ sales
volume vector in the $I$ consumers, for which we define $v_{j}=$ int $(Iv_{j^{O}}/M+0.5)$

for $j=1,$ $\ldots,$
$J$ . Note int $($ . $)$ is the integral part in the expression $(\cdot)$ and

$v_{0}=M- \sum_{j=1}^{J}v_{j}$ .

Supply Model

The supply model explains the other endogenous variable of price. Suppose that
there are $F$ firms in an oligopolistic market for the $J$ products with Bertrand
competition; and that each firm $f$ produces an exclusive subset of the $J$ products
and sets prices for its products to maximize its total profit

$\Pi_{f}=\sum_{j\in j}Ms_{j}(p)(p_{j}-c_{j})$
,

where $c_{j}$ is a unit cost. Then we obtain the first order condition according to
the Bertrand competition for $j=1,$ $\ldots,$

$J$ as

$p=- \{(\frac{\partial G}{\partial p})’\}^{-1}s+c$ , (3)

assuming the inverse above exists, where $c=(c_{1}, \ldots, c_{J})’$ and $(\partial G/\partial p)=$

$(\partial s/\partial p)*\delta$ with the sign $*$ indicating the element-by-element multiplication of
the matrices it connects and with the $(j, k)$ element of $\delta$ being 1 if the products
$j$ and $k$ are produced by the same firm and $0$ otherwise. In the first order
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condition, we model $\log c_{j}=z_{j}\gamma+\eta_{j}$ , where $z_{j}$ and $\eta_{j}$ are product $j’ s1\cross S$

cost characteristic vector and unobserved cost characteristic respectively and $\gamma$

is a $S\cross 1$ coefficient vector. Note $Z=(z_{1}^{f}, \ldots, z_{J}’)’$ and $\eta=(\eta_{1}, \ldots, \eta_{J})’$ .
We obtain the pricing equation by substituting $\exp\{Z\gamma+\eta\}$ for $c$ in (3) and
obtain

$\log[p+\{(\frac{\partial G}{\partial p})’\}^{-1}s]=Z\gamma+\eta$ (4)

with $p=p(s, X, \xi, \delta, y, \theta, Z, \eta,\gamma)$ .

Simultaneous demand and supply model

From (2) and (4), the simultaneous demand and supply model is written as

$s|p,$ $X,\xi,$ $y,$
$\theta$ , (2)

$p|s,$ $X,$ $\xi,$ $\delta,$ $y,$ $\theta,$ $Z,$ $\eta,\gamma$ . (4)

Given the market size $M$ , we can say that product $j$ has its market share $s_{j}$

is equivalent in saying its sales volume is $v_{j}$ for $j=1,$ $\ldots,$
$J$ in a sample of $I$

consumers. Hence we rewrite the simultaneous demand and supply model as

$v|p,$ $\xi,$ $\theta$ , (2)’
$p|v,$ $\xi,$ $\theta,$

$\eta,$ $\gamma$ . (4)

Note that we also removed exogenous observed $X,$ $Z$ and $\delta$ for notational sim-
plicity; and removed $y$ because we will obtain them from an income distribution
and thus we can regard them as exogenous observed data.

2.2 Bayesian estimation

Priors and distributions of the endogenous variables

For unobserved product and cost characteristics, we assume $\xi_{j}\sim N(0, \sigma_{d}^{2})$ and
$\eta_{j}\sim N(0, \sigma_{s}^{2})$ for $j=1,$ $\ldots,$

$J$ . We also assume $\theta_{i}\sim MVN(\overline{\theta}, \Sigma\theta)$ for $i=$

$1,$
$\ldots,$

$I$ with $\overline{\theta}$ and $\Sigma\theta$ to be estimated in the Bayesian hierarchical model.
To obtain ajoint posterior of the parameters $\theta,\overline{\theta},$

$\Sigma\theta,$ $\gamma,$
$\sigma_{d}^{2}$ and $\sigma_{s}^{2}$ , we first

hypothesize conjugate priors as

$\overline{\theta}\sim MVN(\mu_{\overline{\theta}}, V_{\overline{\theta}}),$ $\Sigma\theta\sim IW_{g_{\theta}}(G_{\theta})$ ,

$\gamma\sim MVN(\overline{\gamma}, V_{\gamma}),$ $\sigma_{d}^{2}\sim IG_{g_{d}/2}(G_{d}/2),$ $\sigma_{s}^{2}\sim IG_{g./2}(G_{s}/2)$ .
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We also use a multinomial distribution for the endogenous $v$ with $s$ as

$f(v|p, \xi, \theta)=\frac{I!}{v_{0}!\cdots v_{J}!}s_{0}^{v_{0}}\cdots s_{J}^{v_{J}}$ .

Since there is no explicit solution for $p$ in (4), we apply the variable transfor-
mation method with $\eta_{j}\sim N(0, \sigma_{s}^{2})$ for $j=1,$ $\ldots,$

$J$ and derive a distribution
for the other endogenous $p$ as

$f(p|\xi, \theta,\gamma, \sigma_{s}^{2})$

$=(2 \pi\sigma_{s}^{2})^{-\frac{J}{2}}\Vert(\frac{\partial\eta}{\partial p})\Vert\exp[-\frac{1}{2\sigma_{s}^{2}}\sum_{j=1}^{J}[\log[p_{j}+\{(\frac{\partial G}{\partial p})’\}_{j}^{-1}s]-z_{j}\gamma]^{2}]$

where $\{(\partial G/\partial p)’\}_{j}^{-.1}$ is the jth row of $\{(\partial G/\partial p)’\}^{-1}$ .

Posterior estimation

We derive the following joint posterior from the distributions so far.

$f(\xi, \theta,\overline{\theta}, \Sigma\theta,\gamma, \sigma_{d}^{2}, \sigma_{s}^{2}|v,p)\propto f(v|p, \xi, \theta)f(p|\xi, \theta, \gamma, \sigma_{s}^{2})$

$\cross[\prod_{j=1}^{J}f(\xi_{j}|\sigma_{d}^{2})][\prod_{i=1}^{I}f(\theta_{i}|\overline{\theta}, \Sigma\theta)]$

$\cross f(\overline{\theta})f(\Sigma\theta)f(\gamma)f(\sigma_{d}^{2})f(\sigma_{s}^{2})$ (5)

To obtain the joint posterior of the parameters, we require to average (5) over
$\xi$ as

$f( \theta,\overline{\theta}, \Sigma\theta, \gamma, \sigma_{d}^{2}, \sigma_{s}^{2}|v,p)=\int f(\xi, \theta,\overline{\theta}, \Sigma\theta, \gamma, \sigma_{d}^{2}, \sigma_{s}^{2}|v,p)d\xi$. (6)

However, since it is difficult to solve the integral in (6) analytically, we numeri-
cally obtain thejoint posterior of the parameters by using the data augmentation
(Tanner and Wong, 1987) in which we further apply the Gibbs sampler (Geman
and Geman, 1984). Specifically, we form the MCMC algorithm in Appendix A.
In the MCMC algorithm, we generate random draws of $\xi,$ $\theta,\overline{\theta},$

$\Sigma\theta,$ $\gamma,$
$\sigma_{d}^{2}$ and

$\sigma_{s}^{2}$ from their conditional posteriors of

$f( \xi|\theta,\gamma, \sigma_{d}^{2}, \sigma_{s}^{2}, v,p)\propto f(v,p|\xi, \theta, \gamma, \sigma_{s}^{2})[\prod_{j=1}^{J}f(\xi_{j}|\sigma_{d}^{2})]$

$\propto s_{0}^{v_{O}}\cdots s_{J}^{v_{J}}$
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$\cross(\sigma_{s}^{2})^{-\frac{J}{2}}\Vert(\frac{\partial\eta}{\partial p})\Vert\exp[-\frac{1}{2\sigma_{s}^{2}}\sum_{j=1}^{J}[\log[p_{j}+\{(\frac{\partial G}{\partial p})^{f}\}_{j}^{-.1}s]-z_{j}\gamma]^{2}]$

$\cross(\sigma_{d}^{2})^{-\frac{J}{2}}\exp(-\frac{1}{2}\sum_{j=1}^{J}\xi_{j}^{2})$ , (7)

$f(\theta|\overline{\theta}, \Sigma\theta,\gamma)\sigma_{s}^{2},$ $\xi,$ $v,p)\propto f(v,p|\xi, \theta,\gamma, \sigma_{s}^{2})[\theta$

$\propto s_{0}^{v_{0}}\cdots s_{J^{J}}^{v}$

$\cross(\sigma_{S}^{2})^{-\frac{J}{2}}\Vert(\frac{\partial\eta}{\partial p})\Vert\exp[-\frac{1}{2\sigma_{s}^{2}}\sum_{j=1}^{J}[\log[p_{j}+\{(\frac{\partial G}{\partial p})^{f}\}_{j}^{-.1}s]-z_{j}\gamma]^{2}]$

$\cross|\Sigma\theta|^{-L}2\exp\{\theta$

$\overline{\theta}|\theta,$

$\Sigma\theta\sim MVN((I\Sigma^{-1}\theta+V_{\overline{\theta}}^{-1})^{-1}(I\Sigma^{-1}\nu\theta+V_{\overline{\theta}}^{-1}\mu_{\overline{\theta}}), (I \Sigma^{-1}\theta+V_{\overline{\theta}}^{-1})^{-1})$ ,

$\Sigma\theta|\theta,\overline{\theta}\sim IW_{ge+I}(\sum_{1=1}^{I}(\theta_{i}-\overline{\theta})(\theta_{i}-\overline{\theta})’+G_{\theta})$ ,

$\gamma|\theta,$ $\sigma_{s}^{2},$ $\xi,p\sim MVN((\Sigma_{s*}^{-1}+V_{\overline{\gamma}}^{1})^{-1}(\mu_{\gamma*}+V_{\overline{\gamma}}^{1}\overline{\gamma}), (\Sigma_{s*}^{-1}+V_{\overline{\gamma}}^{1})^{-1})$ ,

$\sigma_{d}^{2}|\xi\sim IG_{\frac{9+J}{2}}(\frac{1}{2}(\sum_{j=1}^{J}\xi_{j}^{2}+G_{d}))$ ,

$\sigma_{s}^{2}|\sim\underline{J}(\frac{1}{2}(\sum_{j=1}^{J}[\log[p_{j}+\{(\frac{\partial G}{\partial p})^{f}\}_{j}^{-1}s]-z_{j}\gamma]^{2}+G_{s}))$

respectively, where

$\nu=\frac{1}{I}\sum_{i=1}^{I}\theta;,$ $\mu_{\gamma*}=\frac{1}{\sigma_{s}^{2}}\sum_{j=1}^{J}z_{j}^{f}[\log[p_{j}+\{(\frac{\partial G}{\partial p})’\}_{j}^{-1}s]],$ $\Sigma_{s*}^{-1}=\frac{1}{\sigma_{s}^{2}}\sum_{j=1}^{J}z_{j}’z_{j}$ .

Notice that the conditional posteriors of $\xi$ and $\theta$ have nonstandard parametric
forms. In the MCMC algorithm, we thus apply tbe Metropolis-Hastings algo-
rithm of the third method in Chib and Greenberg (1995) to them: To generate
$\xi$ , we first generate proposal draws from $\prod_{j=1}^{J}f(\xi_{j}|\sigma_{d}^{2})$ in (7) which is a mix-

$\neg..$ .

ture of $J$ identical normal distributions. Then we accept the proposal draws by
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an acceptance probability of the ratio of $f(v,p|\xi, \theta, \gamma, \sigma_{s}^{2})$ with proposal and
current $\xi$ . To generate $\theta$ , we follow the similar way.

2.3 Implementation issues and their remedies
Before our example of using Yonetani et al.’s (2010) method, we summarize im-
plementation issues and remedies for the issues proposed in their paper. Their
method can run into problems of nonpositive cost and computational zero like-
lihood. It can also encounter a problem of overestimations of $\Sigma\theta,$

$\sigma_{d}^{2}$ and $\sigma_{s}^{2}$

while it can correctly estimate $\overline{\theta}$ and $\gamma$ when we use so-called diffuse priors for
these parameters.

The nonpositive cost problem is induced by inappropriate values for the
hyperparameters

$\mu_{\overline{\theta}},$
$V_{\overline{\theta}},$ $g_{\theta},$ $G_{\theta},$ $g_{d}$ and $G_{d}$ and for $\xi^{(0)},$ $\theta^{(0)},\overline{\theta}^{(0)},$

$\Sigma^{(0)}\theta$ and
$\sigma_{d}^{2(0)}$ in MCMCO in the MCMC algorithm in Appendix A. The computational
zero likelihood problem is induced by inappropriate values for $\xi^{(0)},$ $\theta^{(0)},$ $\gamma^{(0)}$

and $\sigma_{s}^{2(0)}$ . The overestimation problem is induced by inappropriate priors for
$\Sigma\theta,$

$\sigma_{d}^{2}$ and $\sigma_{s}^{2}$ .
To avoid the three problems, we have to set appropriate values for the hy-

perparameters
$\mu_{\overline{\theta}},$

$V_{\overline{\theta}},$ $g_{\theta},$ $G_{\theta},$ $g_{d},$ $G_{d},$ $g_{s}$ and $G_{s}$ and for $\xi^{(0)},$ $\theta^{(0)},\overline{\theta}^{(0)},$
$\Sigma^{(0)}\theta$

’

$\gamma^{(0)},$ $\sigma_{d}^{2(0)}$ and $\sigma_{s}^{2(0)}$ . We can easily find the inappropriate values generating the
nonpositive cost and computational zero likelihood problems by re-setting their
values and re-running the MCMC algorithm several times.

On the other hand, it is difficult to avoid inappropriate priors of $\Sigma\theta,$ $\sigma_{d}^{2}$ and
$\sigma_{s}^{2}$ . If we have little information enough to set appropriate priors for them, the
following three remedies were proposed by Yonetani et al. (2010). First, we can
obtain informative priors of $\sigma_{d}^{2}$ and $\sigma_{s}^{2}$ based on $R_{\xi}$ . and obtain those of $\Sigma\theta$ and
$\sigma_{s}^{2}$ based on $R_{\theta}$ . in the MCMC algorithm. Priors with extremely large or small
$R_{\xi}$ . or $R_{\theta}$ . should be avoided because the MCMC algorithm with them could be
inefficient. Second, we can also obtain an appropriate prior of $\Sigma\theta$ based on sign
conditions for components of $\theta_{i}$ for $i=1,$ $\ldots$

$I$
) with correctly estimated $\overline{\theta}$ : We

set values for components of $G_{\theta}$ so that the corresponding components of $\theta_{i}$

for $i=1,$ $\ldots,$
$I$ have expected signs. Third, we can also obtain appropriate

priors of $\cdot$ $\sigma_{d}^{2}$ and $\sigma_{s}^{2}$ so that the orders of their theoretical prior means are
smaller than the smallest orders of variances of observed product characteristics
$p_{j},$ $x_{j1)}\ldots,$ $x_{j,Q-1}$ and of observed cost characteristics $z_{j1},$ $\ldots,$ $z_{jS}$ respectively.
To obtain such priors, we use an assumption that we observe all of the product
and cost characteristics that are largely influential on consumers’ utilities and
products’ prices respectively.
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3 Empirical study

As an example of using Yonetani et al.’s (2010) method, we bring the method to
data from the U.S. automobile market. Specifically, we will first estimate model
parameters, using the 1995 market data. Then we will compare predicted and
observed market shares for the 1996 market, using the estimated posteriors.
Since vehicle is a differenciated product, it is appropriate to use the assumption
that a consumer chooses one unit of product with the highest utility to derive
the logistic choice probability (1). We choose the years of1995 and 1996 because
of our use of an estimated 8-year total cost of ownership (TCO) used by Myojo
(2007) and of consumer preference stability. We think it more reasonable to
use the TCO instead of the manufacturer suggested retail price as a consumer $s$

expense of the endogenous price for owing his$/her$ vehicle. In the years of 1995
and 1996, consumer preferences would be stable between the introductions of
minivan in the mid $1980s$ and of hybrid electronic vehicles in the late $1990s$ .

3.1 Data

Our observed data for $M,$ $v^{o},$ $p,$ $X,$ $\delta$ and $Z$ are obtained from several public
sources. In what follows, we particularly explain how to obtain the 1995 data.
The 1996 data are obtained in the similar way.

We assume the market size $M$ to be

$M=$ (the number of vehicles per household) $\cross$ ( $the$ number of households)

/(median age of vehicles on the road),

where the first two on the right hand side are from Consumer Expenditure $Su$ rvey
1995 (henceforth $CEX$ 1995) and the last one from Ward’s Motor Vehicle Facts
8; Figures 1999. We obtain $v^{o}$ from Ward’s A utomotive Yearbook 1996. We use
the top 50 models in sales (40 are from U.S. manufacturers and 10 are from
Japanese manufacturers). The 50 models occupy 70.48% and 37.27% of $M$

and the whole sales for the 160 models for which data for all of the remaining
observed variables are available.

For $p$ , we use the TCO during 1995 and 2002, of which the maintenance
and repair cost calculation was proposed by Puripunyavanich et al. (2004). For
$X$ , we use a measure of acceleration (horsepower/weight), size $(length\cross$ width $)$ ,
Japan and U.S. dummies indicating the country of origin of manufacturers,
minivan, pickup truck and SUV dummies and a measure of safety (a dummy
indicating whether dual air bags are available standard or optional). Data for $X$

and $\delta$ are from Ward’s Automotive Yearbook 1995. For $Z$ , we use an intercept,
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mileage, reliability and a scale variable of the logarithm of $v^{o}$ in addition to $X$

except for U.S. dummy.2 The measure of reliability is the predicted reliability
with five-point scale from Consumer Reports April Annual Auto Issue 1996.
Note that we exclude mileage and reliability from $X$ because they are included
to calculate TCO (See Puripunyavanich et al., 2004). Notice that $Q=9$ and
$S=11$ , of which $Q$ will be changed to 8.

For $y$ , we use data on the website of Integrated Public Use Microdata Series-
Current Population $Su$ rvey 1995. Corresponding our estimated eight-year TCO,
we multiply the “Total Household Incomes“ by eight years. Then we randomly
draw $I=$ 1,000 households in 1995 with their eight-year “Total Household
Incomes” greater than the largest TCO.

3.2 MCMC estimation with the 1995 data
Hyperparameter values we set are

$\mu_{\overline{\theta}}=(\mu_{\overline{\alpha}}, \mu_{\overline{\beta}_{\epsilon iz\epsilon}}, \mu_{\overline{\beta}_{\epsilon af\epsilon\ell y}}, \mu_{\overline{\beta}_{\min i\nu an}}, \mu_{\overline{\beta}_{pickup}}, \mu_{\overline{\beta}sUV}, \mu_{\overline{\beta}_{Japan}}, \mu_{\overline{\beta}_{U.S}}.)’$

$=$ $($ 54.48, 2.88, 0.27, 0.57, 0.093, 1.39, $-4.57,$ $-4.67)’$ ,

$V_{\overline{\theta}}=diag(V_{\overline{\alpha}}, V_{\overline{\beta}_{*iz\epsilon}}, V_{\overline{\beta}_{\epsilon af\epsilon ty}}, V_{\overline{\beta}_{m\iota nivan}}, V_{\overline{\beta}_{p\iota ckup}}, V_{\overline{\beta}_{SUV}}, V_{\overline{\beta}_{Japan}}, V_{\overline{\beta}_{U}.s}.)$

$=$ diag(4.26, 0.13, 0.022, 0.038, 0.037, 0.039, 0.20, 0.25),

$g_{\theta}=12$ ,

$G_{\theta}=diag(G_{\alpha}, G_{\beta_{\epsilon iz\epsilon}}, G_{\beta_{*af\epsilon ty}}, G_{\beta_{\min ivan}}, G_{\beta_{pickup}}, G_{\beta sUV}, G_{\beta_{Japan}}, G_{\beta_{U.S}}.)$

$=$ diag(15, 0.99, 0.0091, 2.51, 2.62, 0.040, 0.11, 0.23),
$\overline{\gamma}=(0, \ldots, 0)’,$ $V\gamma=10^{2}E_{11},$ $g_{d}=5,$ $G_{d}=0.0003,$ $g_{s}=5,$ $G_{s}=0.03$ .

We set
$\mu_{\overline{\theta}}$ and the diagonal components of $V_{\overline{\theta}}$ based on a pre-analytical pro-

cedure in Appendix $B$ where we exclude acceleration from $X$ , that is, we reset
$Q=8$ . Given $\mu_{\overline{\theta}}$ and $g_{\theta}$ , we set $G_{\theta}$ except for $G_{\beta_{pickup}}$ so that the corre-
sponding components of $\theta_{i}$ for $i=1,$ $\ldots,$

$I$ have the same signs as those of $\mu_{\overline{\theta}}$

have; and we set $G_{\beta_{pickup}}$ so that the variance of $\beta_{i,pickup}$ is equal to $V_{\overline{\beta}_{pickup}}$ .
Given $g_{d}$ and $g_{s}$ , we set $G_{d}$ and $G_{s}$ based on the assumption that we included
all of the largely influential product and cost characteristics in $X$ and $Z$ re-
spectively. The $g_{\theta},$ $g_{d}$ and $g_{s}$ are the smallest values to define their theoretical
prior variance-covariance matrix or variances. The $\mu_{\overline{\theta}},$

$V_{\overline{\theta}},$ $g_{\theta},$ $G_{\theta},$ $g_{d}$ and $G_{d}$

avoid the nonpositive cost problem, and $g_{s}$ and $G_{s}$ in addition to $g_{\theta},$ $G_{\theta},$ $g_{d}$

and $G_{d}$ avoid extremely large or small values for $R_{\xi}$ . and $R_{\theta}\cdot$ .
2We use a concept of cost shifter by which we use observed product characteristics as

alternatives to actual observed cost characteristics.
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We run three independent sequences for the MCMC algorithm in Appendix $A$ ,
each of which has $T=50,000$ iterations with a different set of initial param-
eter values. As for initial parameter values, we set $\beta^{(0)}=0,$ $\Sigma^{(0)}\theta=E_{8}$ ,
$\sigma_{d}^{2(0)}=10^{-10}$ and $\sigma_{s}^{2(0)}=1$ for all of the three MCMC sequences. The $\overline{\alpha}^{(0)}$ and
$\gamma^{(0)}$ has three sets as the large, middle and small. One of the three sequences
has only the large set and another one has only the small set. The remaining
seqeuence has the middle set with a uniformly generated random value for each
parameter with the upper and lower bounds corresponding to values in the fore-
mentioned large and small sets respectively. The large set has $\overline{\alpha}^{(0)}=60$ and
$\gamma^{(0)}=(5, \ldots, 5)’$ . The small set has $\overline{\alpha}^{(0)}=50$ and $\gamma^{(0)}=(-5, \ldots, -5)’$ . Given
$\overline{\theta}^{(0)},$

$\Sigma^{(0)}\theta$ and $\sigma_{d}^{2(0)}$ , we generate $\xi^{(0)}=(\xi_{1}^{(0)}, \ldots,.\xi_{10}^{(0)})’$ from $N(0, \sigma_{d}^{2(0)})$ and
$\theta^{(0)}=(\theta_{1}^{(0)}, \ldots, \theta_{1,000}^{(0)})$ from $MVN(\overline{\theta}^{(0)}, \Sigma^{(0)}\theta)$ in each sequence. These initial
parameter values are designed to avoid not only the nonpositive cost problem
but also the computational zero likelihood problem.

We summarize the results in Table 1, using the last halves of draws in the
three MCMC sequences. We checked the convergence of the MCMC algorithm,
using time-series plots for all of the parameters in Figures 1 through 3. The
means of $R_{\xi}$ . and $R_{\theta}$ . are 87.64% and 68.26% respectively.

According to the 95% posterior intervals for $\overline{\theta}$ , consumers’ utility was in
average enhanced by size, dual air bags, minivans and SUVs while it was reduced
by TCO. The negative signs for Japan and U.S. dummies were measured against
the outside good with the highest market share of 62.73 among $j=0,$ $\ldots,$

$50$ .
Our results for $\Sigma\theta$ indicated there existed consumers’ heterogeneity for all of the
product characteristics. Specifically, the results indicated that some consumers
prefer pickup trucks while others not, given the fact that the 95% posterior
interval for $\overline{\beta}_{pickup}$ included zero. Our results for $\gamma$ indicated that size, dual
air bags took more cost; and minivans and SUVs took more cost while pickup
trucks took less cost than the other models. As for the negative $\gamma_{mileage}$ , since
mileage for a vehicle in general is highly correlated with the number of cylinders
and weight for it, the result reflected the fact that it took more cost to produce
vehicles with a greater number of cylinders or heavier vehicles.
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Table 1: Posterior means, standard deviations and quantiles (2.5%, 5%, 50%,
95% and 97.5%)

$\overline{\overline{Parameter}}$Mean Std.Dev. 2.5%5%50%95%97.5%
$\overline{\alpha}$ 53.47 2.43 48.92 49.40 53.42 57.53 57.87

$\overline{\beta}_{size}$ 2.81 0.20 2.42 2.49 2.80 3.15 3.22
$\overline{\beta}_{safety}$ 0.25 0.11 0.028 0.047 0.27 0.41 0.42
$\overline{\beta}_{\min ivan}$ 0.54 0.11 0.37 0.39 0.53 0.74 0.83
$\overline{\beta}_{pickup}$ 0.076 0.13 $-0.20$ $-0.15$ 0.088 0.27 0.29
$\overline{\beta}_{SUV}$ 1.38 0.13 1.10 1.14 1.39 1.60 1.63
$\overline{\beta}_{Japan}$ $-4.80$ 0.30 $-5.45$ $-5.31$ $-4.78$ $-4.34$ $-4.28$

$\frac{\overline{\beta}_{U.S}.-.4.650..26-.5.18-.5.11-.4.64-4.24-4.17}{\sigma_{\alpha}^{2}43832911213234610.9113.77}$

$\sigma_{\beta_{\epsilon\cdot z\epsilon}}^{2}$ 0.27 0.28 0.074 0.084 0.19 0.67 1.22
$\sigma_{\beta_{*af\epsilon ly}}^{2}$ 0.0024 0.0019 0.00066 0.00075 0.0019 0.0061 0.0078
$\sigma_{\beta_{\min ivan}}^{2}$ 0.011 0.0089 0.0030 0.0036 0.0085 0.025 0.031
$\sigma_{\beta_{pickup}}^{2}$ 0.034 0.028 0.0088 0.010 0.025 0.086 0.11
$\sigma_{\beta_{SUV}}^{2}$ 0.064 0.049 0.017 0.020 0.050 0.16 0.20
$\sigma_{\beta_{Jopan}}^{2}$ 0.58 0.34 0.20 0.23 0.48 1.26 1.48

$\frac{\sigma_{\beta_{Us}}^{2}0.881.040.200.230.552.714.47}{\gamma_{intercept}-1.250.77-2.75-2.50-1.250.0120.27}$

$\gamma_{hp/weight}$ 0.016 0.032 $-0.047$ $-0.036$ 0.016 0.069 0.079
$\gamma_{size}$ 0.62 0.25 0.13 0.21 0.62 1.02 1.10
$\gamma_{mileage}$ $-0.044$ 0.011 $-0.065$ $-0.062$ $-0.044$ $-0.027$ $-0.023$

$\gamma_{reliability}$ 0.023 0.030 $-0.036$ $-0.026$ 0.024 0.073 0.083
$\gamma_{sajety}$ 0.16 0.062 0.033 0.054 0.16 0.26 0.28
$\gamma_{\min ivan}$ 0.16 0.097 $-0.028$ 0.0041 0.16 0.32 0.36
$\gamma_{pickup}$ $-0.20$ 0.10 $-0.41$ $-0.37$ $-0.20$ $-0.031$ 0.0035
$\gamma_{SUV}$ 0.32 0.13 0.069 0.11 0.32 0.53 0.57
$\gamma_{Japan}$ 0.11 0.093 $-0.074$ $-0.045$ 0.11 0.26 0.29

$\frac{\gamma_{\ln}v\circ-.0.0890..057-.0.20-.0.18-.0.0890.00400.023}{\sigma_{d}^{2}00000980000110000023000002700000670.000260.00036}$

$-\underline{\sigma_{s}^{2}}$0.0250.00570.0160.0170.0240.0360.039
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Figure 1: Time series plots for $\overline{\theta}$ .
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Figure 2: Time series plots for the diagonal components of $\Sigma\theta$ .
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Figure 3: Time series plots for $\gamma,$
$\sigma_{d}^{2}$ and $\sigma_{s}^{2}$ .
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3.3 Prediction of the market shares for the top 50 models
in sales in the 1996 market

We compare observed market shares for the top 50 models in sales in the 1996
market with their predicted market shares from the last halves of draws for $\theta$ and
$\xi$ and observed data of their TCOs and $X$ . Note that the last halves of draws for
$\theta$ and $\xi$ are posterior draws for them. Specifically, we randomly obtain 300 sets
of draws for $\theta$ and $\xi$ and calculate the predicted market shares for $j=0,$ $\ldots,$

$50$

in terms of each set of the obtained $\theta$ and $\xi$ . Our predicted market shares are
the means of the 300 sets of the market shares for $j=0,$ $\ldots,$

$50$ .
The predicted and observed market shares for $j=0,$ $\ldots,$

$50$ are presented
in Figure 4. We also mark and specify 14 models whose observed market shares
were largely over/underestimated. In terms of the accuracy of the predicted
market shares for $j=0,$ $\ldots,$

$50$ , the mean of the absolute percentage errors was
70.70% while the mean of the absolute deviations was 0.0045.

Except for the 14largely over/underestimated models, our Bayesian esti-
mates predicted the observed market shares well for the other 36 models. Note
that the underestimated 8 models had been acheiving top ranks of sales at
least in the past 5 years. Therefore, we could fail to capture the reputation
of these popular models by each $\xi_{j}$ . If we could capture it, the overestima-
tions as well as the underestimations could improve. We can thus ascribe these
over/underestimations to limitation of our posterior estimation method for $\xi$ .
We will discuss the limitation in Section 4.

4 Conclusion and discussion

In this paper, we reviewed a Bayesian estimation method for a simultaneous
demand and supply model for market-level data which was proposed by Yo-
netani et al. (2010) and then showed an example of using it. In the example,
we concluded that it could be difficult to predict observed market shares for
some products due to our limitation of the posterior estimation method for $\xi$ .
Specifically, we could fail to caputure an unobserved product characteristic of
reputation for some popular vehicles by $\xi$ .

We have two ideas to improve it. The first idea is to estimate the compo-
nents of $\xi=(\xi_{1}, \ldots, \xi_{50})’$ individually to obtain each model-specific value more
precisely. Note that we estimated $\xi=(\xi_{1}, \ldots, \xi_{50})’$ all at once in MCMCI
through MCMC3 in the MCMC algorithm in Appendix A to reduce computa-
tional burden. However, it could be more difficult to estimate a model-specfic
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Figure 4: Predicted and observed market shares for the top 50 in sales of the
1996 models.
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Models with the number $j$ marked on the right figure

1. Ford F-Series
22. GMC Sierra $C/K$

2. Chevrolet $C/K$
35. Chevrolet Tahoe

3. Ford Explorer
39. Plymouth Neon

4. Ford Taurus 41. Dodge Dakota
6. Honda Accord 47. Chevrolet Suburban
7. Toyota Camry

49. Jeep Wrangler
8. Dodge Caravan
11. Jeep $G$ rand Cherokee
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value for $\xi_{j}$ for $j=1,$ $\ldots$ )
$50$ efficiently when we estimated $\xi=(\xi_{1}, \ldots,\xi_{50})’$

all at once. If we improved our MCMC algorithm to estimate $\xi=(\xi_{1}, \ldots, \xi_{50})’$

individually, we would increase computational burden when we use the 50 or
more models.

The second idea is to reconsider our assumption to set the prior of $\sigma_{d}^{2}$ .
The assumption was that all of the major influential product characteristics
on consumers’ utility were observed. We need better information to set an
alternative prior of $\sigma_{d}^{2}$ . However, we also have to pay attention to keeping
appropriate values for $R_{\xi}$ . if we retain to estimate $\xi$ all at once.

In future, we need more empirical studies in other differentiated product
markets, using the proposed method. To predict consumers’ purchasing behav-
ior from market-level sales volume data is useful because it is more difficult or
costs more to obtain consumer-level purchase incidence data. We believe that
these empirical studies will be an important contribution to the literature of
consumers’ purchasing behavior.

A MCMC algorithm
Let $\xi^{(t)},$ $\theta^{(t)},\overline{\theta}^{(t)},$

$\Sigma^{(t)}\theta,$ $\gamma^{(t)},$ $\sigma_{d}^{2(t)}$ and $\sigma_{s}^{2(t)}$ denote values for $\xi,$ $\theta,\overline{\theta},$
$\Sigma\theta,$ $\gamma$ ,

$\sigma_{d}^{2}$ and $\sigma_{s}^{2}$ respectively at the tth iteration for $t=0,$ $\ldots$ in which $\xi^{(0)},$ $\theta^{(0)}$ ,
$\overline{\theta}^{(0)},$

$\Sigma^{(0)}\theta’\gamma^{(0)},$ $\sigma_{d}^{2(0)}$ and $\sigma_{s}^{2(0)}$ especially denote their initial values we have to
set; and let $\theta^{*}=(\theta:, \ldots, \theta_{I}^{*})$ and $\xi^{*}=(\xi_{1}^{*}, \ldots, \xi_{J}^{*})’$ denote proposal draws for
$\theta=(\theta_{1}, \ldots, \theta_{I})$ and $\xi=(\xi_{1}, \ldots, \xi_{J})’$ in their Metropolis-Hastings algorithms
respectively. Our MCMC algorithm is as follows.

MCMCO Set values for the hyperparameters $\mu_{\overline{\theta}},$
$V_{\overline{\theta}},$ $g_{\theta},$ $G_{\theta,\overline{\gamma},V_{\gamma},g_{d},G_{d}}$ ,

$g_{s}$ and $G_{s}$ , and $\theta^{(0)},\overline{\theta}^{(0)},$
$\Sigma^{(0)}\theta,$ $\gamma^{(0)},$ $\sigma_{d}^{2(0)},$ $\sigma_{s}^{2(0)}$ and $\xi^{(0)}$ .

For $t=1,$ $\ldots$ ,

$MCMC1Ge.nerate\sigma_{d}^{2(t-1)})$
each component of

$\xi^{*}=(\xi_{1}^{*}, \ldots,\xi_{J}^{*})’$

randomly from $N(0$ ,

MCMC2 Calculate

$R_{\xi}^{(t)}=\{\begin{array}{l}\min(\frac{f(v,p|\xi\rangle\theta^{(t-1)},\gamma^{(t-1)},\sigma_{9}^{2(\ell-1)})}{J(v,p|\xi^{(t-1)},\gamma,\sigma_{\epsilon}^{2(t-1)})}, 1)if the denominator f(v,p|\xi^{(t-1)}, \theta^{(t-1)}, \gamma^{(t-1)}, \sigma_{\theta}^{2(t-1)})>0,1 otherwise.\end{array}$
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MCMC3 Set $\xi^{(t)}=\xi^{*}$ with probability $R_{\xi}^{(t)}$ or $\xi^{(t)}=\xi^{(t-1)}$ with probability

$1-R_{\xi}^{(t)}$ .

MCMC4 Generate each component of $\theta^{*}=(\theta_{1}^{*}, \ldots, \theta_{I}^{*})$ randomly from $MVN$

$(\overline{\theta}^{(t-1)}, \Sigma^{(t-1)}\theta)$ .

MCMC5 Calculate

$R_{\theta}^{(t}!_{=}\{\begin{array}{l}\min(\frac{f(v,p|\xi^{(t)},\theta)\gamma^{(c-1)},\sigma_{*}^{0(t-1)})}{\int(v,p|\xi^{(\ell)},\theta^{(1-1)},\gamma^{(t-1)},\sigma^{2(1-1)})}, 1)if the denominator f(v,p|\xi^{(t)}, \theta^{(t-1)}, \gamma^{(t-1)}, \sigma_{s}^{2(t-1)})>0,1 otherwise.\end{array}$

MCMC6 Set $\theta^{(t)}=\theta^{*}$ with probability $R_{\theta}^{(t}!$ or $\theta^{(t)}=\theta^{(t-1)}$ with probability
$1-R_{\theta}^{(t}!$ .

MCMC7 Generate $\overline{\theta}^{(t)}$ from $f(\overline{\theta}|\theta^{(t)}, \Sigma^{(t-1)}\theta)$ .

MCMC8 Generate $\Sigma^{(t)}\theta$ from $f(\Sigma\theta|\theta^{(t)},\overline{\theta}^{(t)})$ .

MCMC9 Generate $\gamma^{(t)}$ from $f(\gamma|\theta^{(t)}, \sigma_{s}^{2(t-1)}, \xi^{(t)},p)$ .

MCMC10 Generate $\sigma_{s}^{2(t)}$ from $f(\sigma_{s}^{2}|\theta^{(t)}, \gamma^{(t)}, \xi^{(t)},p)$ .

MCMCII Generate $\sigma_{d}^{2(t)}$ from $f(\sigma_{d}^{2}|\xi^{(t)})$ .

MCMC12 If random draws from the Metropolis-Hastings algorithm for $\theta$ in
MCMC4 through MCMC6, from $f(\overline{\theta}|\theta^{(t)}, \Sigma^{(t-1)}\theta)$ in MCMC7, from
$f(\Sigma\theta|\theta^{(t)},\overline{\theta}^{(t)})$ in MCMC8, from $f(\gamma|\theta^{(t)}, \sigma_{s}^{2(t-1)}, \xi^{(t)},p)$ in MCMC9,
from $f(\sigma_{s}^{2}|\theta^{(t)},\gamma^{(t)}, \xi^{(t)},p)$ in MCMC10 and from $f(\sigma_{d}^{2}|\xi^{(t)})$ in MCMCII
stabilize, then stop the iteration. Otherwise $inc\iota easet$ by one and return
to MCMCI.

$B$ A pre-analytical procedure

We explain how we obtain the values for
$\mu_{\overline{\theta}}$ and the diagonal components of

$V_{\overline{\theta}}$ in Section 3, using a pre-analytical MCMC. In the pre-analytical MCMC,
we assume that there is no consumer heterogeneity, that. is, $\theta_{i}=\overline{\theta}$ for $i=$

$1,$
$\ldots$ , 1,000. The pre-analytical MCMC includes the original MCMCO through
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MCMC3, MCMC9 through MCMC12 and an additional random walk
Metropolis-Hastings algorithm corresponding to the first method in Chib and
Greenberg (1995) to generate $\overline{\theta}$ . There are two points to be noted. First, the
pre-analytical MCMC no longer requires MCMC4 through MCMC8 to gen-
erate $\theta,\overline{\theta}$ and $\Sigma\theta$ . Second, we use a proposal distribution of the multivariate
normal distribution with the mean vector of the current $\overline{\theta}^{(t-1)}$ and the variance-
covariance matrix of diag $($ 1, 0.01, $\ldots,$

$0.01)$ in the additional Metropolis-Hastings
algorithm to generate $\overline{\theta}$ .

To obtain the values for $\mu_{\overline{\theta}}$ and the diagonal components of $V_{\overline{\theta}}$ , we will
have two steps. We will first obtain tentative values for $\mu_{\overline{\alpha}}$ and $V_{\overline{\alpha}}$ . Given
the tentative $\mu_{\overline{\alpha}}$ and $V_{\overline{\alpha}}$ , we will then obtain values of $\mu_{\overline{\theta}}$ and the diagonal
components of $V_{\overline{\theta}}$ .

In the first step, we set $Q=1$ and run the pre-analytical MCMC with
$T=2,000$ . For the hyperparameters, we set $\mu_{\overline{\theta}}=\mu_{\overline{\alpha}}=20$ and $V_{\overline{\theta}}=V_{\overline{\alpha}}=100$

to obtain a so-called diffuse prior for $\overline{\theta}=\overline{\alpha}$ ; and set the same hyperparameter
values for $\overline{\gamma},$ $V_{\gamma},$ $g_{d},$ $G_{d},$ $g_{s}$ and $G_{s}$ as those in Section 3. Note that we no
longer need $g_{\theta}$ and $G_{\theta}$ for the prior of $\Sigma\theta$ . The number of the pre-analytical
MCMC sequences and the initial parameter values required except for $\overline{\alpha}^{(0)}$ are
the same as those in Section 3. As for the initial parameter values for $\overline{\alpha}^{(0)}$ ,
we set 45 and 65 for the two pre-analytical MCMC sequences with the large
and small sets of the initial parameter values respectively; and we set a uniform
random number from $U(45,65)$ for $\overline{\alpha}^{(0)}$ for the remaining one pre-analytical
MCMC sequence.

In the second step, we include $X$ as well as $p$ in the model and thus $Q=9$ .
Then the number of iterations for the pre-analytical MCMC in the second step
is 20,000. For the hyperparameters, we set3

$\mu\overline{\theta}$

$=$ $(\mu_{\overline{\alpha}},$

$\mu\overline{\beta}_{hp/weight},$ $\mu\overline{\beta}_{\epsilon iz\epsilon},$ $\mu\overline{\beta}$ , a $fety’\mu\overline{\beta}_{mini}$ va $n’\mu\overline{\beta}_{pickup},$ $\mu\overline{\beta}sUV’\mu\overline{\beta}_{Japa\mathfrak{n}},$ $\mu\overline{\beta}_{U.S}$ .
$)’$

$=$ $($ 56. $15,0_{1}\ldots$ , $0)’)$

$V_{\overline{\theta}}=$ diag $(V_{\overline{\alpha}}, V_{\overline{\beta}_{hp/w\epsilon ight}}, V_{\overline{\beta}_{siz\epsilon}}, V_{\overline{\beta}_{\epsilon afety}}, V_{\overline{\beta}_{\min ivan}}, V_{\overline{\beta}_{pickup}}, V_{\overline{\beta}_{SUV}}, V_{\overline{\beta}_{Japan}}, V_{\overline{\beta}_{U}.s}.)$

$=diag(4.33,100, \ldots, 100)$

for the prior of $\overline{\theta}$ ; and set the same hyperparameter values for $\overline{\gamma},$ $V_{\gamma},$ $g_{d}$ ,
$G_{d},$ $g_{s}$ and $G_{s}$ as those in Section 3. Note that $\mu_{\overline{\alpha}}=56.15$ and $V_{\overline{\alpha}}=4.33$

are the posterior mean and variance of $\overline{\theta}$ from the last halves of draws in the
first pre-analytical MCMC sequences. The number of the second pre-analytical
MCMC sequences and the initial parameter values required except for $\overline{\alpha}^{(0)}$ for

3The notation $hp$ ” stands for horsepower.
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the second pre-analytical MCMC are the same as those in Section 3. We use
the same settings for the initial parameter values for $\overline{\alpha}^{(0)}$ for the second step as
those in the first step.

The results indicated that the 95% posterior interval for $\overline{\beta}_{hp/weight}$ was below
zero although it was expected to be above zero. We thus remove acceleration
from $X$ and re-run the pre-analytical MCMC with the same settings as those
in the last pre-analytical MCMC. Notice $Q=8$ . The values for

$\mu_{\overline{\theta}}$ and the
diagonal components of $V_{\overline{\theta}}$ in Section 3 are the corresponding posterior means
and variances of $\overline{\theta}$ from the last halves ofdraws in the last pre-analytical MCMC
sequences.
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