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We start with a simple one-way balanced ANalysis-Of-VAriance (ANOVA). There are
two possible models. In one lnodel, all $r_{C}\lambda 11domv_{\dot{C}}tria1:$) $1es$ have the salne mean. $I_{l1}$ the otlier
model, random variables in each level has a different lnean. Formally, the independent
observations $y_{ij}$ $(j_{-}--1, \ldots , p, j--- l, \ldots:r, n-\cdot--pr)$ are assumed to arise from the linear
model:

$/?_{ij}++\epsilon_{ij’}$

where $\mu,$ $\alpha_{i}(i--1, \ldots, p)$ and $\sigma^{2}$ are unknown. We assume $\sum\alpha-0$ as uniqueness
constraint. Clearly two models are written as follows:

$\mathcal{M}_{1}:\alpha=(\alpha_{1:}\ldots, \alpha_{p})’=0$

(2)
vs $\mathcal{M}_{A+1}$ : $\alpha\in\{a\in \mathcal{R}^{p}|a\neq 0, a’1_{\nu}=0\}$ .

In (2). $\Lambda$ means the nanie of the factor and the subscript $\lrcorner 4+1$ is from the fact that $E[y_{ij}]$

in (1) consists of the sum of the constant term and the levcl of the factor.
In this paper, we will consider Bayesian model selection based on Bayes factor for

ANOVA problem. Model colnparison, which refers to using the data in order to decide
on the plausibility of two or more competing models, is a common problem in modern
$st_{\dot{\zeta}}ttisti(:a1$ science. In the Bayesian framework, the approach for model selection and
hypothesis testing is essentially same, whereas there is a big difference in classical fre-
quentist procedures for model selection and hypothesis testing. A natural approach is
to use Bayes factor (ratio of marginal densities of two models), which is based on the
postcrior model probabilities (Kass and Raftcry (1995)). That is the reason why we take
Bayesian approach based on Bayes factor in this paper.

One of the most importamt topic on Bayesian model selection is consistency. Consis-
tency means that the true model will be chosen if enough data are observed, assuming
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that one of the competing models i,s true. It is well-known that BIC by Schwarz (1978)
lias consistency in classical (so called $i:_{?\downarrow},$

$>l^{j^{j}\prime}$ ) situation. As a variant of $(il)>n^{\backslash }$
’ problem,

whi($:^{:}1\cdot$1 is lrot in moder11 statistics, the consistency in the (:ase where $parrow$ oo and $r$ is fixed
in one-way ANOVA setup, has been considered by Stone (1979) rmd Berger et al. (2003).
In the following, (CASE $I$” $\dot{c}und^{e(}CASE$ II” denote the cases where

I. $7^{\cdot}$ goes to infinity and $p$ is fixed,

II. $p$ goeb to inf\’inity and $l$
. is fixe$(1$ ,

respectively. Under known $\sigma^{2}$ and CASE II, Stone (1979) $|.)(1_{1}owe(1$ tliat BIC always chooses
the null moclel $\mathcal{M}l$ (tliat) is. BIC is not consistent under $\mathcal{A}4_{A+1}$ ) eveu if $\alpha’\alpha/\{p\sigma^{2}\}$ is
sufficiently large. This is reasonable because BIC is originally derived by the Laplace
approximation under classical situation. Under known $\sigma^{2}$ , Berger et al. (2003) proposed
the f3avcsian criterion called GBIC, which is derived by $tI_{1}e$ Laplace approximation under
CASE II. Then they $sIiowed$ that GBIC has model selection consistency under CASE II.

Generally, the original representation of Bayes factors or marginal densities involve
integral. In the normal linear lnodel setup, even if conjugate prior is used, hyperparalneter
and its prior $di_{b}tribution$ are usually introduced in order to guarantee objectivity, which is
called fully Bayes method. (On the otller hand. in empirical Bayes method, lnaximization
of thl conditional marginal density given $h\dot{\rangle}$ with respect to $1iyperp_{C}aralneter$

is applied.) Since finding a prior of hyperparameter. whicl] enables analytical cal culation
completely, is considered as extremely hard, the Laplace approximation has been applied.
Needless to say, the Lapla,ce approximation needs some assumptions, in particular, on
“wliat goes to infil$1ity’\backslash$

, However, when both $p$ and , are large (or $.$)$\zeta\cdot nl^{:}a11)$ in analysis of
real data, the answer to tlie question whi $(^{\backslash },h$ type of the $L_{c1}\prime 1’\cdot ap\iota$)$1^{\cdot}(xi_{1}nationic.;$ lnore

appropriate, is obscure. Moreover an approximated Bayes factor under one assumption
docs not necessari]y have consistency on the other assumption, which is not good for
practitioners. $rI’ 11$ erefore Bayes factor

1. without integral representation, $wllicll$ is however based on fully Bayes method,

2. with model selection $COIlsistt_{-}^{1}ncy$ for two asymptotic situations. CASE I and II

is desirable. which we will propose in tlris paper. Actually, a special choice of the prior of
$1_{\dot{1}}ype$1 $p_{\dot{c}}\iota r_{\dot{c}}$1$111etc^{:)}r$ , which colnpletely enables analytical calculation of the marginal density,
is the key in the paper.

Eventually $tlle$ Bayes factor which we recommend is given by

$BF_{f’ FJ_{t’}^{1}}’\cdot\cdot\vee t_{A+1}\grave{\cdot}\mathcal{M}_{\rceil}]=\frac{\Gamma(p/2)\Gamma(p(\uparrow\cdot.-!)/2)}{\Gamma(1/2)\Gamma(\{.y)r-1\}/2)}(\frac{1\prime V_{E}}{IV_{7’}})^{-p(7-1)/2+1/2}$ (3)
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where
$\frac{M_{F_{\lrcorner}}J’}{1,\{\prime\tau\prime}=\frac{\sum_{ij}(y_{ij}-\overline{y}_{i}.\cdot)^{o}\sim}{\sum_{ij}(y_{\dot{?}j}-\overline{y}.)arrow)},\overline{y}_{i}$ . $= \frac{\sum_{j}y_{ij}}{r},\overline{y}..=\frac{\sum_{ij}y_{ij}}{q_{J}r}$ .

It is not only exactly proportional to the posterior $probal$)$ility$ of $\mathcal{M}_{A+1}.$ , but also a function
of $\uparrow\eta_{f}^{\check{\prime}}’../t’\uparrow\prime^{r_{\mathcal{T}}}$ , which is fundamental aggregated information of one-way ANOVA, from the
frequentist viewpoint.
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