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1 Introduction and Statemenfs of the main results

In this paper we consider the system of differential equations

N
ué:ui ai(t)—Zbij(t)fij(ui, uj) , 1= 1,...,N, N22, (GLV)
Jj=1

where the functions a;(t), 1 < ¢ < N, and b;(t), 1 < 4,5 < N, are assumed to be continuous and
nonnegative on R. Furthermore, let the functions f;;(z, y), 1 <14, j < N, be continuously differentiable

on R% = (0, 00)?, and we impose the following conditions on 48

( fi(z, y), 1<i< N, is continuously differentiable on [0, 00) x [0, 00);
fij(xi y)>01 (.’1}, y)ERﬁ_, lszaJSNv
(D1fii + Dafii)(z, ) >0, z€Ry, 1<i<N;

< le‘ij(za y) 2 0: (l‘, y) € R-zi»v 1 S i’ .7 S N; (11)
D2f’ij(z) y)ZO) (l', y)ERi) 1517]SN,

lim fii(x$ $)=OO, 1<:<N,
\  Z—o0
where D;, i = 1, 2, denotes the differentiation with respect to the i-th variable.

System (GLV) is a generalization of the following nonautonomous N-dimensional Lotka-Volterra com-
petition system which S. Ahmad and A. C. Lazer [2] considered:

N
up =wi |ai(t) = D bij(thy; |, i=1,...,N, N>2 (LV)
Jj=1

An prototype of system (LV), as well as (GLV), is the classical Lotka- Volterra competition model for two
species:

(1.2)

!
uy = uy(a1 — biyur — biauy),
uy = ug(az — baruy — bagus),

where a;, i = 1, 2, and b;;, 4, j = 1, 2, are positive constants. When the growth rates a;, i = 1, 2, and
the interaction coefficients b;;, i,j = 1, 2, satisfy

a; — bya <—C-L—2-—) >0, ap— by (Fal—) >0, (1.3)
11

b22
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there exists a unique equilibrium point (u}, u3) € RZ. It is known that, if (1.3) hold, then any solution
(u1(t), ua(t)) of system (1.2) with (us(to), u2(to)) € R? satisfies

ui(t) - u] and wup(t) —mu; as t— oo

In [2]-[4] it is shown that analogous results still hold for the nonautonomous equation (LV), as seen
below. In this paper we intend to generalize such results further.

We introduce notation. Put cp := sup,cp ¢(t) for bounded functions ¢(t) on R. Fori=1,..., N, we
put

fii(z) = fulz, ), z€Ry.

By assumption (1.1) fi, i = 1,..., N, have the inverse function 1-;1 : Ry — Ry. The assumptions
employed in the paper will be sellected from the following list:

(Al) b,‘i(t)>0, teR, 1<i1<N;
(A2)/ bii(s)ds =00, 1<i<N;
0

(A3) (-“L) <00, 1<i<N;
bii )

(8) = 22524 b (8)(a; /bjj) m
bii(t)
0i(8) — ;24 b5 (&) £i3(f7 (@i/bis)m), fi ((a;/bs5)m))
bii(t)
(AG) fij(z’ y) < .fjj(y)7 (Iv y) € Ria 1<y, .7 <N;
(A7) for any s > 1 sufficientry close to 1;
FiilF3t (sz), f5(sy)) < sfis(F3 (@), fi7' W), (2, y) €RE, 14, jS N,

REMARK 1.1. As in the case of (LV) and (1.2}, if fi;(x, y), 1 <4, j < N, are independent of z, (A6) is
satisfied. For (LV) we can take fi;(z, y) =y, 1 <4, § < N, which satisfy (A6) and (AT).

(Ad) tiglftai 50, 1<i<N;

(AS) inf >0, 1<i<N;

REMARK 1.2. Let
e
fislm, y) = 12
gy, i=j,

v, i,

where o4j, Bi; € Ry, If for i # 5, Bi; = aj; + B;;, then the functions fi;, 1 <4, j < N, satisfy (A6).
REMARK 1.3. Let
fis(m, y) =x®9yP4, (2, y) eR? 1<4, j <N,

where a;;, Bij € Ry. If oy + Bi; < min{aui + Bis, j;+ B;;}, then the functions f;, 1 < i, j < N, satisfy
(AT).

S. Ahmad and A. C. Lazer (2] supposed that the functions a;(t), 1 <i < N and b;(t), 1 <4, j < N,
satisfy conditions (A1)-(A3) and (A4). Under these conditions they have shown the following [2}:

(D) Ifu=(ui,...,un) s a solution of (LV) with u;(tg) > 0,1 <i < N, tg € R, then

0 < inf u;(t) < supu;(t) < oo, for 1<i<N.
t>to t>to
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(IT) If A is a compact subset of RY, then the Lebesgue measure of the set {u(t) | u is a solution of (LV)
satisfying u(to) € A} tends to 0 as t — oo.

Our main aim is to show that (I) and (II) are still valid for (GLV). To state the results we introduce
the symbol: For compact subset A of RY and to € R we set

u(t, to, A) = {u(t) | u is a solution of (GLV) satisfying u(to) € A}.
By u(-) we denote the Lebesgue measure of measurable sets in RN . We can show the following:

THEOREM 1.4. Let conditions (A1)-(A3), (A4), and (A6) hold. Let A be a compact subset of RY and let
to € R. Then,

pw(u(t, to, A)) =0 as t — oo.

THEOREM 1.5. Let conditions (A1)-(A3), (A5), and (A7) hold. Let A be a compact subset of RY and let
to € R. Then,

p(u(t, to, A)) >0 as t — oo.

We give examples of systems (GLV) for which above conditions hold.

EXAMPLE 1.6. We consider system (GLV) for two species

3
up = uy [(cost+7)—(sint+7)-uf—~(sint+1)-( “ 5 ug)
1+ uy

]\

4
uy = up [(cost+9)—(sint+2)~( et 73 u‘i‘) —(sint+9)-u§].
1+ u3

Obviously (A6) holds. We have

1
a1(t) — bi2(t) (:Tzz) >cost+7— (sint+1)- > 2,
M

10
8

8
6

(t)—bm(t)(bu) >cost+9— (sint+2) — > 2.

So conditions (A1)-(A3) and (A4) hold. Of course condition (1.1) hold.

EXAMPLE 1.7. We consider system (GLV) for two-species
uy = uy[(cost +7) — (sint +7) - uf — (sint 4+ 1) - uyud),
uy = ug [(cost +9) — (sint + 2) - udu? — (sint +9) - uf] .
Obviously (A7) holds. We have

ex(t) = bua(Ofia (75 (2 =) ) ! i ((sz 2”))
(5 (R) >
aa(t) - b s (7 (& )M) it (5 ) >>

2/6 2/4
>cost+9—(sint+2)-<_8-—) <§> > 2.

So conditions (A1)-(A3), (A5) hold. Of course condition (1.1) hold.

>cost+ 7 — (sint+ 1)
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2 The sketch of the proof of the main results

In this section we give the sketch of the proof of the main results. As a first step, we note that every
solutions u of (GLV) with u(to) € RY remains here as long as it exists. To see this we rewrite system
(GLV) in the form

ué(t) =pi(t)ui(t), i=1,2,..., N,

where the functions p;(t), 1 <i < N, are given by
N
pi(t) = as(t) = Y bij(8) fis (us(t), u;(t)).
Jj=1
Since p;, 1 < i < N, is continuous on the domain of u, for ¢ in the domain of u we obtain

t
ui(t) = ui(to)exp/ pi(s)ds > 0.
to

Hence u(t) € RY. Next we rewrite system (GLV) in the form
v = g(u, t),

where u(t) = (w1(t),...,un(t)) € RV, and g(u, t) = (g1(u, t),..., gn(u, t)) is given by

N
g,'(:l.‘, t) =T a.,-(t) - Z b,-j(t)f,-_,-(:c,-, (IJJ')ZI N 1 S 1 S N,
j=1
for z = (z1,...,ZN) € R¥. Since the functions a;, 1 < i < N, and bij, 1 <4, j < N, are continuous on

R and the functions f;;, 1 <4, j < N, are continuousuly differentiable on R%, for every ¢ = (¢;) € RY
and T € R, there exists a unique solution u(t) of (GLV) with u(r) = £&. We denote it by u(t, 7, £) =
(u;(t, 7, £)). Recall that we have introduced the notation:

u(t, to, A) = {u(t, to, £) | £ € A}

for A C Rﬁ‘_’ . Furthermore, since the functions g;(z, t), 1 <1 < N, are continuously differentiable with
respect to the components of z € RN, u(t, 7, £) are continuously differentiable with respect to the
components of £ € RN. Therefore we can introduce the following notations. We denote by De(u(t, 7, £))
the N x N matrix with (i, j)th entry equal to du,(t, 7, £)/0¢;:

aui(tr T, €)
D u(t’ T’ 6) = [———_— bl
3 65]
where ¢ € RY. Similarly we define N x N matrix D,g(z, t) by
_ [ 0gi(z, t)
D:g(z, t) = [_3;,—— ,

where z € RY.
Now for t > to and & € RY, we set ug(t) = u(t, to, &). Then it is well known [6] that

X'() = ABDX (@), X(to) =1,
where
X(t) = Dfu(tv t07 60)1 A(t) = Drg(uO(t)s t)’

and I is the N x N identity matrix. Furthermore we know that

¢
det X(t) = exp/ trA(s)ds.

to
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Therefore, we have

a,
det Deult, to, &) = exp / ai (uo(s), s)ds.
i= i

Hence it follows from the change of variables formula that

N
plu(t, to, A)) =/ dz —/ det Deu(t, to, &o)déo —/ exp/ Za—g- uo(s), s)dsd€o
u(t, to, A)

i=1

< /A exp L;bg “_'“ /an )u4(5) Fis(wi(s))ds

d&o.

uz 0 to j=1

Therefore, by (A2) and (1.1), in order to prove Theorems 1.4 and 1.5, it is sufficient to prove the following
claim:

Claim (see Taniguchi [1, Lemmas 3.1 and 4.1}). If either conditions (A1)~(A3), (A4), and (A6) or
conditions (A1)—(A3), (A5) and (A7) hold, there exists some numbers Ma, 64 > 0 and t4 > to such that
fort>ta,i=1,..., N, and &y € A,

da < uilt, to, o) < Ma. (2.1)
In fact, by (1.1), (2.1), we have
691 Ma 4
/ (uo(s) s)ds < Zlog —_ - 6A6A/ Zb.,(s)ds = Nlog—— —040) / Zb,,(s)ds,

to j—1 to j—1

0,_

where &, := min{fi;(64) | 1 <i < N}. Therefore, by (A2), we have

/ ag, (up(s), s)ds —» —co0 as t — oo

()11

uniformly with respect to £y € A; that is
plu(t, to, A)) =0 as t — oo.
This completes the proof.
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