Hilbert Space Representations of Quantum Phase Spaces with General Degrees of Freedom

Asao Arai (新井朝雄)
Department of Mathematics, Hokkaido University
Sapporo, Hokkaido 060-0810
Japan

E-mail: arai@math.sci.hokudai.ac.jp

Abstract

For each integer $n \geq 2$ and a parameter $\Lambda = (\theta, \eta)$ with θ and η being $n \times n$ real antisymmetric matrices, a quantum phase space (QPS) (or a non-commutative phase space) with n degrees of freedom, denoted $\mathrm{QPS}_n(\Lambda)$, is defined, where θ and η are parameters measuring non-commutativity of the QPS. Some results on Hilbert space representations of $\mathrm{QPS}_n(\Lambda)$ are reported.

Keywords: Quantum phase space; non-commutative phase space; canonical commutation relations; quantum deformation.

Mathematics Subject Classification 2000: 81D05, 81R60, 47L60, 47N50

1 Introduction

As is well-known, one of the fundamental principles in von Neumann's axiomatic quantum mechanics is that a subset of physical quantities of a quantum system with n external degrees of freedom $(n \in \mathbb{N})$ are constructed from a self-adjoint representation of the canonical commutation relations (CCR) with n degrees of freedom, which is given by a triple $(\mathcal{H}, \mathcal{D}, \{Q_j, P_j\}_{j=1}^n)$ consisting of a complex Hilbert space \mathcal{H} , a dense subspace \mathcal{D} of \mathcal{H} and a set $\{Q_j, P_j\}_{j=1}^n$ of self-adjoint operators on \mathcal{H} satisfying (i) $\mathcal{D} \subset \cap_{j,k=1}^n D(Q_jQ_k) \cap D(P_jP_k) \cap D(Q_jP_k) \cap D(P_kQ_j)$, where, for a linear operator A on a Hilbert space, D(A) denotes the domain of A; (ii) (CCR)

$$[Q_j, Q_k] = 0, \quad [P_j, P_k] = 0,$$
 (1.1)

$$[Q_j, P_k] = i\delta_{jk}, \quad j, k = 1, \cdots, n, \tag{1.2}$$

on \mathcal{D} , where [X,Y] := XY - YX, i is the imaginary unit and δ_{jk} is the Kronecker delta. If Q_j and P_j $(j=1,\dots,n)$ are not necessarily self-adjoint, but symmetric, then the triple $(\mathcal{H},\mathcal{D},\{Q_j,P_j\}_{j=1}^n)$ is called a symmetric representation of the CCR with n degrees of freedom. This class of representations of CCR also plays important roles, e.g., in the theory of time operators ([1,2,3],[5,6],[12]).

In commutation relations (1.1) and (1.2), non-commutativity is imposed only between Q_j and P_j ($j = 1, \dots, n$). But, from a general mathematical point of view, it may be natural to extend non-commutativity to Q_j 's and P_j 's too. This idea leads us to a general concept of a quantum phase space (QPS) or a non-commutative phase space¹. In this paper we propose one of possible QPS's and report some results on Hilbert space representations of it (for more details, see [4]). In addition, we remark that non-commutative extensions of CCR have already been discussed in connection with quantum theory on non-commutative space-times (e.g., [7, 8, 9, 15]), non-commutative spaces (e.g., [10, 11]) and non-commutative phase spaces (e.g., [13, 14, 16, 17]). But it seems that representation theoretic investigations on non-commutative extensions of CCR have not yet been fully developed.

2 Hilbert Space Representations of a QPS

Let $n \in \mathbb{N}$ with $n \geq 2$. To define a QPS with n degrees of freedom, we take two $n \times n$ real anti-symmetric matrices $\theta = (\theta_{jk})_{j,k=1,\dots,n}$ and $\eta = (\eta_{jk})_{j,k=1,\dots,n}$. Then we introduce an algebra generated by 2n elements \hat{Q}_j , \hat{P}_j ($j = 1, \dots, n$) and a unit element I obeying deformed CCR with n degrees of freedom

$$[\hat{Q}_j, \hat{Q}_k] = i\theta_{jk}I, \tag{2.1}$$

$$[\hat{P}_j, \hat{P}_k] = i\eta_{jk}I,\tag{2.2}$$

$$[\hat{Q}_j, \hat{P}_k] = i\delta_{jk}I, \quad j, k = 1, \dots, n,$$
(2.3)

We call this algebra the QPS or the non-commutative phase space with n degrees of freedom and parameter

$$\Lambda := (\eta, \theta). \tag{2.4}$$

We denote it by $QPS_n(\Lambda)$.

It is obvious that \hat{Q}_j and \hat{Q}_k (resp. \hat{P}_j and \hat{P}_k) with $j \neq k$ do not commute if and only if $\theta_{jk} \neq 0$ (resp. $\eta_{jk} \neq 0$). Hence the parameter Λ "measures" the non-commutativity of \hat{Q}_j 's and \hat{P}_j 's respectively. Moreover $\mathrm{QPS}_n(\Lambda)$ in the case $\theta = \eta = 0$ reduces to the algebra of the CCR with n degrees of freedom. Hence $\mathrm{QPS}_n(\Lambda)$ can be regarded as a deformation of the algebra of the CCR with n degrees of freedom.

Let \mathcal{H} be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ (linear in the second variable) and norm $\|\cdot\|$. Let \mathcal{D} be a dense subspace of \mathcal{H} and \hat{Q}_j , \hat{P}_j be symmetric operators on \mathcal{H} .

Definition 2.1 We say that the triple $\left(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^n\right)$ is a representation (on \mathcal{H}) of the algebra $\operatorname{QPS}_n(\Lambda)$ if $\mathcal{D} \subset \cap_{j,k=1}^n D(\hat{Q}_j\hat{Q}_k) \cap D(\hat{P}_j\hat{P}_k) \cap D(\hat{Q}_j\hat{P}_k) \cap D(\hat{P}_j\hat{Q}_k)$ and it satisfy (2.1)–(2.3) on \mathcal{D} with I being the identity on \mathcal{H} (we sometimes omit the identity I below).

Note that the components x_j and p_j $(j = 1, \dots, n)$ of each element $(x_1, \dots, x_n, p_1, \dots, p_n)$ in the classical phase space $\mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$ can be regarded as multiplication operators acting in $L^2(\mathbb{R}^{2n})$. They form a commutative algebra.

If all \hat{Q}_j and \hat{P}_j $(j=1,\cdots,n)$ are self-adjoint, we say that the representation $(\mathcal{H},\mathcal{D},\{\hat{Q}_j,\hat{P}_j\}_{j=1}^n)$ is self-adjoint.

In every representation $\left(\mathcal{H},\mathcal{D},\;\{\hat{Q}_j,\hat{P}_j\}_{j=1}^n\right)$ of $\mathrm{QPS}_n(\Lambda)$, we have commutation relations (2.1)–(2.3) on \mathcal{D} . Hence the following Heisenberg uncertainty relations follow: for all $\psi\in\mathcal{D}$ with $\|\psi\|=1$ and $j,k=1,\cdots,n$,

$$(\Delta \hat{Q}_j)_{\psi}(\Delta \hat{Q}_k)_{\psi} \ge \frac{1}{2}|\theta_{jk}|, \tag{2.5}$$

$$(\Delta \hat{P}_j)_{\psi}(\Delta \hat{P}_k)_{\psi} \ge \frac{1}{2} |\eta_{jk}|, \tag{2.6}$$

$$(\Delta \hat{Q}_j)_{\psi}(\Delta \hat{P}_k)_{\psi} \ge \frac{1}{2} |\delta_{jk}|, \tag{2.7}$$

where, for a symmetric operator A and a vector $\psi \in D(A)$ with $\|\psi\| = 1$,

$$(\Delta A)_{\psi} := \|(A - \langle \psi, A\psi \rangle)\psi\|,$$

the uncertainty of A in the vector state ψ .

3 A Class of Self-Adjoint Representations of $QPS_n(\Lambda)$ on $L^2(\mathbb{R}^n)$

In this section, we show that there exist self-adjoint representations of $QPS_n(\Lambda)$ on $L^2(\mathbb{R}^n)$. This is done by using the Schrödinger representation of the CCR with n degrees of freedom.

We denote by $C_0^{\infty}(\mathbb{R}^n)$ the set of infinitely differentiable functions on \mathbb{R}^n with compact support.

Let $\left(L^2(\mathbb{R}^n), C_0^\infty(\mathbb{R}^n), \{q_j, p_j\}_{j=1}^n\right)$ be the Schrödinger representation of the CCR with n degrees of freedom, namely, q_j is the multiplication operator by the jth variable x_j on $L^2(\mathbb{R}^n)$ and $p_j := -iD_j$ with D_j being the generalized partial differential operator in x_j on $L^2(\mathbb{R}^n)$, so that

$$[q_i, p_k] = i\delta_{ik},\tag{3.1}$$

$$[q_j, q_k] = 0, \quad [p_j, p_k] = 0, \quad j, k = 1, \dots, n,$$
 (3.2)

on the subspace $C_0^{\infty}(\mathbb{R}^n)$.

Lemma 3.1 For all $a_j, b_j \in \mathbb{R}, j = 1, \dots, n$, $\sum_{j=1}^n (a_j p_j + b_j q_j)$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^n)$.

For an *n*-tuple $L=(L_1,\dots,L_n)$ of linear operators $L_j, j=1,\dots,n$, on a Hilbert space and an $n\times n$ matrix $A=(A_{jk})_{j,k=1,\dots,n}$, we define the *n*-tuple $AL=((AL)_1,\dots,(AL)_n)$ of linear operators by

$$(AL)_j := \sum_{k=1}^n A_{jk} L_k. (3.3)$$

We say that the parameter $\Lambda = (\theta, \eta)$ is normal if there exist $n \times n$ real matrices A, B, C and D satisfying

$$A^{t}D - B^{t}C = I_{n}, \tag{3.4}$$

$$A^{t}B - B^{t}A = \theta, (3.5)$$

$$C^{t}D - D^{t}C = \eta, \tag{3.6}$$

where I_n is the $n \times n$ unit matrix and tA denotes the transposed matrix of A.

For a normal parameter Λ with (3.4)-(3.6), we can define a $(2n) \times (2n)$ matrix:

$$G := \left(\begin{array}{cc} A & B \\ C & D \end{array}\right). \tag{3.7}$$

Let

$$K(\Lambda) := \begin{pmatrix} \theta & I_n \\ -I_n & \eta \end{pmatrix}, \quad J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}. \tag{3.8}$$

Then we have

$$GJ_n{}^{\mathsf{t}}G = K(\Lambda). \tag{3.9}$$

Conversely, if a $(2n) \times (2n)$ real matrix G of the form (3.7) satisfies (3.9), then A, B, C and D obey relations (3.4)–(3.6).

Thus Λ is normal if and only if there exists a $(2n) \times (2n)$ real matrix G satisfying (3.9). In that case, we call G a generating matrix of Λ .

We remark that, for a normal parameter Λ , its generating matrices are not unique. For example, if G is a generating matrix of Λ , then, for all orthogonal matrix M commuting with $K(\Lambda)$, MG is a generating matrix of Λ too.

Suppose that Λ is normal with (3.4)–(3.6). We set

$$\mathbf{q} = (q_1, \dots, q_n), \quad \mathbf{p} = (p_1, \dots, p_n)$$
 (3.10)

and define

$$\hat{\mathbf{q}} := A\mathbf{q} + B\mathbf{p}, \quad \hat{\mathbf{p}} := C\mathbf{q} + D\mathbf{p}. \tag{3.11}$$

Then, by Lemma 3.1, the operators \hat{q}_j and \hat{p}_j $(j = 1, \dots, n)$ are essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^n)$. Hence their closures \bar{q}_j and \bar{p}_j are self-adjoint². Moreover, we have the following result:

Theorem 3.2 The set $\left(L^2(\mathbb{R}^n), C_0^{\infty}(\mathbb{R}^n), \{\overline{\hat{q}}_j, \overline{\hat{p}}_j\}_{j=1,\cdots,n}\right)$ is a self-adjoint representation of $\operatorname{QPS}_n(\Lambda)$.

We call the representation $(L^2(\mathbb{R}^n), C_0^{\infty}(\mathbb{R}^n), \{\overline{\hat{q}}_j, \overline{\hat{p}}_j\}_{j=1,\dots,n})$ the quasi-Schrödinger representation of $QPS_n(\Lambda)$ with generating matrix G of the form (3.7).

²For a closable linear operator T, we denote its closure by \bar{T} .

Remark 3.3 One can write

$$\begin{pmatrix} \hat{q}_1 \\ \vdots \\ \hat{q}_n \\ \hat{p}_1 \\ \vdots \\ \hat{p}_n \end{pmatrix} = G \begin{pmatrix} q_1 \\ \vdots \\ q_n \\ p_1 \\ \vdots \\ p_n \end{pmatrix}$$

$$(3.12)$$

on $\bigcap_{j=1}^n D(q_j) \cap D(p_j)$. Equation (3.9) is rewritten as follows:

$$GJ_n{}^tG = J_n + \delta(\Lambda) \tag{3.13}$$

with

$$\delta(\Lambda) := \left(\begin{array}{cc} \theta & 0\\ 0 & \eta \end{array}\right). \tag{3.14}$$

Hence ${}^t\!G$ is symplectic if and only if $\delta(\Lambda)=0$ (i.e., $\theta=\eta=0$). Therefore the matrix $\delta(\Lambda)$ represents a difference from the symplectic relation. Note that the diagonal element θ (resp. η) of $\delta(\Lambda)$ gives the non-commutativity of \hat{q}_j 's (resp. \hat{p}_k 's) $(j, k=1, \dots, n)$.

3.1 The Schrödinger representation of QPS

It may be interesting to consider a special case of Λ . Let $a \geq 0, b \geq 0$ be constants and

$$\xi := \frac{1}{\sqrt{1 + \frac{ab}{4}}}.\tag{3.15}$$

Let γ be an $n \times n$ real anti-symmetric matrix satisfying

$$\gamma^2 = -I_n. \tag{3.16}$$

Then the parameter

$$\Lambda_{S} := (\xi^{2}a\gamma, \xi^{2}b\gamma) \quad \text{(the case } \theta = \xi^{2}a\gamma, \eta = \xi^{2}b\gamma) \tag{3.17}$$

is normal, since the matirix

$$G_{S} := \begin{pmatrix} \xi I_{n} & -\frac{1}{2}\xi a\gamma \\ \frac{1}{2}\xi b\gamma & \xi I_{n}, \end{pmatrix}$$

$$(3.18)$$

is a generating matrix of Λ_S , as is easily checked. We denote \bar{q}_j and \bar{p}_j in the present case by $\hat{q}_j^{(S)}$ and $\hat{p}_j^{(S)}$ respectively:

$$\hat{q}_{j}^{(S)} := \xi \overline{\left(q_{j} - \frac{1}{2}a(\gamma p)_{j}\right)}, \quad \hat{p}_{j}^{(S)} := \xi \overline{\left(p_{j} + \frac{1}{2}b(\gamma q)_{j}\right)}, \quad j = 1, \dots, n.$$
 (3.19)

We call this self-adjoint representation $\left(L^2(\mathbb{R}^n), C_0^\infty(\mathbb{R}^n), \{\hat{q}_j^{(\mathrm{S})}, \hat{p}_j^{(\mathrm{S})}\}_{j=1,\cdots,n}\right)$ of $\mathrm{QPS}_n(\Lambda_{\mathrm{S}})$ the Schrödinger representation of $\mathrm{QPS}_n(\Lambda_{\mathrm{S}})$.

3.2 Reconstruction of the Schrödinger representation of the CCR with n degrees of freedom

In this subsection, we consider reconstruction of q_j and p_j in terms of \hat{q}_j and \hat{p}_j . By (3.12), this problem may be reduced by the invertibility of the matrix G. From this point of view, we introduce a class of parameters Λ .

We say that Λ is regular if it is normal and has an invertible generating matrix. It follows from (3.9) that, if Λ is regular, then every generating matrix of Λ is invertible.

The next lemma characterizes the regularity of Λ :

Lemma 3.4 Let Λ be normal with a generating matrix G given by (3.7). Then Λ is regular if and only if $I_n + \theta \eta$ and $I_n + \eta \theta$ are invertible. In that case, G is invertible and

$${}^{t}(G^{-1})J_{n}G^{-1} = -\begin{pmatrix} (I_{n} + \eta\theta)^{-1}\eta & -(I_{n} + \eta\theta)^{-1} \\ (I_{n} + \theta\eta)^{-1} & (I_{n} + \theta\eta)^{-1}\theta \end{pmatrix}.$$
(3.20)

Let Λ be regular with a generating matrix G. Then we can write

$$G^{-1} = \begin{pmatrix} F_1 & F_2 \\ F_3 & F_4 \end{pmatrix}, \tag{3.21}$$

where F_1, F_2, F_3 and F_4 are $n \times n$ real matrices.

Let

$$\hat{\mathbf{q}} := (\hat{q}_1, \dots, \hat{q}_n), \quad \hat{\mathbf{p}} := (\hat{p}_1, \dots, \hat{p}_n).$$
 (3.22)

Theorem 3.5 The following equations hold:

$$\mathbf{q} = F_1 \hat{\mathbf{q}} + F_2 \hat{\mathbf{p}}, \quad \mathbf{p} = F_3 \hat{\mathbf{q}} + F_4 \hat{\mathbf{p}}.$$
 (3.23)

on $\bigcap_{j=1}^n D(q_j) \cap D(p_j)$.

Theorem 3.5 also implies relations of matrix elements of G^{-1} :

Corollary 3.6

$$F_1 \theta^t F_1 + F_2 \eta^t F_2 + F_1^t F_2 - F_2^t F_1 = 0, \tag{3.24}$$

$$F_3\theta^{t}F_3 + F_4\eta^{t}F_4 + F_3^{t}F_4 - F_4^{t}F_3 = 0, (3.25)$$

$$F_1 \theta^t F_3 + F_2 \eta^t F_4 + F_1^t F_4 - F_2^t F_3 = I_n. \tag{3.26}$$

We now apply Theorem 3.5 to the Schrödinger representation $\{\hat{q}_j^{(S)}, \hat{p}_j^{(S)}\}_{j=1}^n$ of $QPS_n(\Lambda_S)$:

Corollary 3.7 Let a, b, ξ and γ be as in Subsection 3.1. Suppose that

$$\chi := 1 - \frac{1}{4}ab \neq 0. \tag{3.27}$$

Then

$$q_j = \frac{1}{\xi \chi} \left(\hat{q}_j^{(S)} + \frac{1}{2} a(\gamma \hat{p}^{(S)})_j \right),$$
 (3.28)

$$p_j = \frac{1}{\xi \chi} \left(\hat{p}_j^{(S)} - \frac{1}{2} b(\gamma \hat{q}^{(S)})_j \right), \quad j = 1, \dots, n,$$
 (3.29)

on $C_0^{\infty}(\mathbb{R}^n)$.

4 General Correspondence Between a Representation of $QPS_n(\Lambda)$ and a Representation of the CCR with n Degrees of Freedom

4.1 Construction of a representation of $QPS_n(\Lambda)$ from a representation of the CCR with n degrees of freedom

The contents in Section 2 suggest a general method to construct a representation of $QPS_n(\Lambda)$ from a representation of the CCR with n degrees of freedom.

Let $(\mathcal{H}, \mathcal{D}, \{Q_j, P_j\}_{j=1}^n)$ be a representation of the CCR with n degrees of freedom, namely, \mathcal{H} is a Hilbert space, \mathcal{D} is a dense subspace of \mathcal{H} and Q_j and P_j $(j=1,\dots,n)$ are symmetric operators on \mathcal{H} such that $\mathcal{D} \subset \cap_{j,k=1}^n D(Q_jQ_k) \cap D(P_jP_k) \cap D(Q_jP_k) \cap D(P_kQ_j)$ and $\{Q_j, P_j\}_{j=1}^n$ obeys the CCR with n degrees of freedom on \mathcal{D} : for $j, k = 1, \dots, n$,

$$[Q_j, Q_k] = 0, \quad [P_j, P_k] = 0, \quad [Q_j, P_k] = i\delta_{jk}$$
 (4.1)

on D. Let

$$\mathbf{Q} = (Q_1, \cdots, Q_n), \quad \mathbf{P} = (P_1, \cdots, P_n).$$

Let Λ be normal and A, B, C, D be $n \times n$ real matrices obeying (3.4)–(3.6). By an analogy with (3.11), we define the n-tuples

$$\hat{\mathbf{Q}} := (\hat{Q}_1, \cdots, \hat{Q}_n), \tag{4.2}$$

and

$$\hat{\mathbf{P}} := (\hat{P}_1, \cdots, \hat{P}_n),\tag{4.3}$$

by

$$\hat{\mathbf{Q}} := A\mathbf{Q} + B\mathbf{P}, \quad \hat{\mathbf{P}} := C\mathbf{Q} + D\mathbf{P}. \tag{4.4}$$

Theorem 4.1 The set $\left(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^n\right)$ defined by (4.4) is a representation of $\operatorname{QPS}_n(\Lambda)$.

We remark that the representation $(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^n)$ of $QPS_n(\Lambda)$ is not necessarily self-adjoint even in the case where all Q_j and P_j $(j = 1, \dots, n)$ are self-adjoint.

As in the case of quasi-Schrödinger representations of $\operatorname{QPS}_n(\Lambda)$ discussed in Section 2, we have the following fact:

Theorem 4.2 Let Λ be regular with generating matrix G given by (3.7) and F_1, F_2, F_3 and F_4 be as in (3.21). Then

$$\mathbf{Q} = F_1 \hat{\mathbf{Q}} + F_2 \hat{\mathbf{P}},\tag{4.5}$$

$$\mathbf{P} = F_3 \hat{\mathbf{Q}} + F_4 \hat{\mathbf{P}}.\tag{4.6}$$

on D.

4.2 Construction of a representation of the CCR with n degrees of freedom from a representation of $QPS_n(\Lambda)$

We next consider constructing a representation of the CCR with n degrees of freedom from a representation of $QPS_n(\Lambda)$. A method for that is suggested by Theorem 4.2.

Let $(\mathcal{H}, \mathcal{D}, \{\hat{Q}_j, \hat{P}_j\}_{j=1}^n)$ be a representation of $QPS_n(\Lambda)$ on a Hilbert space \mathcal{H} with \mathcal{D} dense in \mathcal{H} . Throughout this subsection, we assume the following:

(A) The parameter Λ is regular with generating matrix G given by (3.7).

Let F_1, F_2, F_3 and F_4 be as in (3.21). Then we can define $\mathbf{Q}(\Lambda) = (Q_1(\Lambda), \dots, Q_n(\Lambda))$ and $\mathbf{P}(\Lambda) = (P_1(\Lambda), \dots, P_n(\Lambda))$ by

$$\mathbf{Q}(\Lambda) := F_1 \hat{\mathbf{Q}} + F_2 \hat{\mathbf{P}},\tag{4.7}$$

$$\mathbf{P}(\Lambda) := F_3 \hat{\mathbf{Q}} + F_4 \hat{\mathbf{P}}.\tag{4.8}$$

Theorem 4.3 Assume (A). Then $(\mathfrak{H}, \mathfrak{D}, \{Q_j(\Lambda), P_j(\Lambda)\}_{j=1}^n)$ is a representation of the CCR with n degrees of freedom.

The next theorem shows that every representation of $QPS_n(\Lambda)$ with condition (A) comes from a representation of the CCR with n degrees of freedom:

Theorem 4.4 Assume (A). Let $Q(\Lambda)$ and $P(\Lambda)$ be defined by (4.7) and (4.8) respectively. Then

$$\hat{\mathbf{Q}} = A\mathbf{Q}(\Lambda) + B\mathbf{P}(\Lambda), \quad \hat{\mathbf{P}} = C\mathbf{Q}(\Lambda) + D\mathbf{P}(\Lambda)$$
 (4.9)

on D.

5 Irreducibility

For a Hilbert space \mathcal{H} , we denote by $B(\mathcal{H})$ the set of all bounded linear operators B on \mathcal{H} with $D(B) = \mathcal{H}$. Let A be a linear operator on \mathcal{H} . We say that A strongly commutes with $B \in B(\mathcal{H})$ if $BA \subset AB$ (i.e., for all $\psi \in D(A)$, $B\psi \in D(A)$ and $BA\psi = AB\psi$). For a set A of linear operators on \mathcal{H} , we define

$$A' := \{ B \in B(\mathcal{H}) | BA \subset AB, \forall A \in A \}. \tag{5.1}$$

We call A' the strong commutant of A.

We say that A is *irreducible* if $A' = \{cI | c \in \mathbb{C}\}\$ (\mathbb{C} is the set of complex numbers).

Lemma 5.1 Let S be a self-adjoint operator on a Hilbert space \mathfrak{H} and $B \in \mathsf{B}(\mathfrak{H})$ such that $BS \subset SB$. Then, for all $t \in \mathbb{R}$, $Be^{itS} = e^{itS}B$.

Theorem 5.2 Assume (A) in Subsection 3.2. Let $(\mathcal{H}, \mathcal{D}, \{Q_j, P_j\}_{j=1}^n)$ be a representation of the CCR with n degrees of freedom. Suppose that, for each $j=1,\dots,n$, Q_j and P_j are essentially self-adjoint on \mathcal{D} and $\{\bar{Q}_j, \bar{P}_j\}_{j=1}^n$ is irreducible. Then the representation $(\mathcal{H}, \mathcal{D}, \{\bar{Q}_j, \bar{P}_j\}_{j=1}^n)$ of $QPS_n(\Lambda)$ given by (4.4) is irreducible.

We can apply Theorem 5.2 to the quasi-Schrödinger representation $\{\hat{q}_j, \hat{p}_j\}_{j=1}^n$ of $QPS_n(\Lambda)$ discussed in Section 2.

Theorem 5.3 Assume (A). Then $\{\bar{q}_j, \bar{p}_j\}_{j=1}^n$ is irreducible.

6 Weyl Representations of $QPS_n(\Lambda)$

6.1 Definition and basic facts

As is well known, a Weyl representation of the CCR with n degrees of freedom on a Hilbert space \mathcal{H} is defined to be a set $\{Q_j, P_j\}_{j=1}^n$ of 2n self-adjoint operators on \mathcal{H} obeying the Weyl relations:

$$e^{itQ_j}e^{isP_k} = e^{-ist\delta_{jk}}e^{isP_k}e^{itQ_j}, (6.1)$$

$$e^{itQ_j}e^{isQ_k} = e^{isQ_k}e^{itQ_j}, (6.2)$$

$$e^{itP_j}e^{isP_k} = e^{isP_k}e^{itP_j}, \quad j, k = 1, \dots, n, s, t \in \mathbb{R}.$$

$$(6.3)$$

Based on an analogy with Weyl representations of CCR, we introduce a concept of Weyl representation of $QPS_n(\Lambda)$.

Definition 6.1 Let $\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n$ be a set of self-adjoint operators on a Hilbert space \mathcal{H} . We say that $\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n$ is a Weyl representation of $QPS_n(\Lambda)$ if

$$e^{it\hat{Q}_j}e^{is\hat{P}_k} = e^{-ist\delta_{jk}}e^{is\hat{P}_k}e^{it\hat{Q}_j}, \tag{6.4}$$

$$e^{it\hat{Q}_j}e^{is\hat{Q}_k} = e^{-ist\theta_{jk}}e^{is\hat{Q}_k}e^{it\hat{Q}_j}, \tag{6.5}$$

$$e^{it\hat{P}_j}e^{is\hat{P}_k} = e^{-ist\eta_{jk}}e^{is\hat{P}_k}e^{it\hat{P}_j}, \quad j,k = 1,\dots,n,s,t \in \mathbb{R}.$$

$$(6.6)$$

We call these relations the deformed Weyl relations with parameter Λ .

For a linear operator A on a Hilbert space, we denote its spectrum by $\sigma(A)$.

Proposition 6.2 Let $\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n$ be a Weyl representation of $QPS_n(\Lambda)$. Then it is a self-adjoint representation of $QPS_n(\Lambda)$. Moreover, for each $j = 1, \dots, n$, \hat{Q}_j and \hat{P}_j are purely absolutely continuous with

$$\sigma(\hat{Q}_j) = \mathbb{R}, \quad \sigma(\hat{P}_j) = \mathbb{R}, \quad j = 1, \dots, n.$$
 (6.7)

Remark 6.3 The converse of Proposition 6.2 does not hold. Indeed, there exists a self-adjoint representation of $QPS_n(\Lambda)$ which is not a Weyl one [4].

Proposition 6.4 The set $\{e^{it\hat{Q}_j}, e^{it\hat{P}_j} | t \in \mathbb{R}, j = 1, \dots, n\}$ is irreducible if and only if so is $\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n$.

7 Uniqueness Theorems on Weyl Representations of $QPS_n(\Lambda)$

For each regular parameter Λ , every Weyl representation of $QPS_n(\Lambda)$ on a separable Hilbert space is unitarily equivalent to a direct sum of a quasi-Schrödinger representation $\{\bar{q}_j,\bar{p}_j\}_{j=1}^n$ of $QPS_n(\Lambda)$:

Theorem 7.1 Assume (A). Let $\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n$ be a Weyl representation of $QPS_n(\Lambda)$ on a separable Hilbert space \mathcal{H} . Then there exist closed subspaces \mathcal{H}_{ℓ} such that the following (i)-(iii) hold:

- (i) $\mathcal{H} = \bigoplus_{\ell=1}^{N} \mathcal{H}_{\ell}$ (N is a positive integer or ∞).
- (ii) For each $j=1,\dots,n$, \hat{Q}_j and \hat{P}_j are reduced by each $\mathcal{H}_\ell, \ell=1,\dots,N$. We denote by $\hat{Q}_j^{(\ell)}$ (resp. $\hat{P}_j^{(\ell)}$) the reduced part of \hat{Q}_j (resp. \hat{P}_j) to \mathcal{H}_ℓ .
- (iii) For each ℓ , there exists a unitary operator $U_{\ell}:\mathcal{H}_{\ell}\to L^2(\mathbb{R}^n)$ such that

$$U_{\ell}\hat{Q}_{j}^{(\ell)}U_{\ell}^{-1} = \bar{q}_{j}, \quad U_{\ell}\hat{P}_{j}^{(\ell)}U_{\ell}^{-1} = \bar{p}_{j}, \quad j = 1, \dots, n,$$

$$(7.1)$$

where $\{\hat{q}_j, \hat{p}_j\}_{j=1}^n$ is the quasi-Schrödinger representation of $QPS_n(\Lambda)$ defined by (3.11).

Theorem 7.1 tells us that, under the assumption there, every Weyl representation $\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n$ of $\mathrm{QPS}_n(\Lambda)$ is unitarily equivalent to a direct sum of the quasi-Schrödinger representation $\{\hat{\bar{q}}_j, \hat{\bar{p}}_j\}_{j=1}^n$, because the operator

$$U := \bigoplus_{\ell=1}^N U_\ell : \mathcal{H} \to \bigoplus^N L^2(\mathbb{R}^n),$$

is unitary and

$$U\hat{Q}_jU^{-1} = \bigoplus^N \bar{\hat{q}}_j, \quad U\hat{P}_jU^{-1} = \bigoplus^N \bar{\hat{p}}_j.$$

Remark 7.2 There exist self-adjoint representations of $QPS_n(\Lambda)$ which are not uinitarily equivalent to $\{\hat{q}_j, \hat{p}_j\}_{j=1}^n$ [4].

Theorem 7.1 and the irreducibility of the representation $\{\bar{q}_j, \bar{p}_j\}_{j=1}^n$ immediately lead us to the following fact:

Corollary 7.3 Assume (A). Let $\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n$ be an irreducible Weyl representation of $QPS_n(\Lambda)$ on a separable Hilbert space \mathcal{H} . Then there exists a unitary operator $W: \mathcal{H} \to L^2(\mathbb{R}^n)$ such that

$$W\hat{Q}_{j}W^{-1} = \bar{\hat{q}}_{j}, \quad W\hat{P}_{j}W^{-1} = \bar{\hat{p}}_{j}, \quad j = 1, \dots, n.$$

Applying this corollary to the case where $\{\hat{Q}_j, \hat{P}_j\}_{j=1}^n$ is a quasi-Schrödinger representation of $QPS_n(\Lambda)$, we obtain the following result:

Corollary 7.4 Let Λ be regular. Let G and G' be two generating matrices of Λ : G is given by (3.7) and

$$G' = \left(\begin{array}{cc} A' & B' \\ C' & D' \end{array} \right),$$

where A', B', C' and D' are $n \times n$ real matrices. Let $\{\bar{q}'_j, \bar{p}'_j\}_{j=1}^n$ be the quasi-Schrödinegr representation of $QPS_n(\Lambda)$ with generating matrix G':

$$\hat{\mathbf{q}}' := A'\mathbf{q} + B'\mathbf{p}, \quad \hat{\mathbf{p}}' = C'\mathbf{q} + D'\mathbf{p}.$$

Then there exists a unitary operator $V: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ such that

$$V\bar{q}'_{i}V^{-1} = \bar{q}_{i}, \quad V\bar{p}'_{i}V^{-1} = \bar{p}_{i}, \quad j = 1, \dots, n.$$
 (7.2)

Corollary 7.4 shows that, for each regular parameter Λ , quasi-Schrödinger representations of $\operatorname{QPS}_n(\Lambda)$ are unique up to unitary equivalences.

Acknowledgement

This work is supported by the Grant-In-Aid No.21540206 for Scientific Research from Japan Society for the Promotion of Science (JSPS).

References

- [1] A. Arai, Generalized weak Weyl relation and decay in quantum dynamics, *Rev. Math. Phys.* 17 (2005), 1-39.
- [2] A. Arai, Spectrum of time operators, Lett. Math. Phys. 80 (2007), 211-221.
- [3] A. Arai, On the uniqueness of weak Weyl representations of the canonical commutation relation, Lett. Math. Phys. 85 (2008), 15–25. Erratum: Lett. Math. Phys. 89 (2009), 287.
- [4] A. Arai, Representations of a quantum phase space with general degrees of freedom, mp_arc 09-122.

- [5] A. Arai, Strong time operators in algebraic quantum mechanics and quantum field theory, RIMS Kôkyûroku Bessatsu B16 (2010), 1-13.
- [6] A. Arai and Y. Matsuzawa, Construction of a Weyl representation from a weak Weyl representation of the canonical commutation relation, *Lett. Math. Phys.* 83 (2008), 201– 211.
- [7] D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli, Field theory on noncommutative spacetimes: Quasiplanar Wick products, *Phys. Rev. Lett. D* 71 (2005), 025022(1-12).
- [8] S. Doplicher, K. Fredenhagen and J. E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields, *Commun. Math. Phys.* **172** (1995), 187–220.
- [9] V. Gayral, J. M. Gracia-Bondia and F. Ruiz Ruiz, Position-dependent noncommutative products: classical construction and field theory, *Nucl. Phys.* **727**[PM](2005), 513-536.
- [10] H. Grosse and M. Wohlgenannt, Induced gauge theory on a noncommutative space, Eur. Phys. J. C 52 (2007), 435-450.
- [11] Y. Habara, A new approach to scalar field theory on noncommutative space, Prog. Theor. Phys. 107 (2002), 211-230.
- [12] F. Hiroshima, S. Kuribayashi and Y. Matsuzawa, Strong time operators associated with generalized Hamiltonians, *Lett. Math. Phys.* 87 (2009), 115–123.
- [13] L. Jonke and S. Meljanac, Representations of non-commutative quantum mechanics and symmetries, Eur. Phys. J C 29 (2003), 433–439.
- [14] K. Li and J. Wang, The topological AC effect on non-commutative phase space, Eur. Phys. J. C 50 (2007), 1007-1011.
- [15] Y.-G. Miao, H. J. W. Müller-Kirsten and D. K. Park, Chiral bosons in noncommutative spacetime, J. High Energy Phys. 08 (2003), 038.
- [16] L. R. Riberio, E. Passos, C. Furtado and J. R. Nascimento, Landau analog levels for dipoles in non-commutative space and phase space, Eur. Phys. J. C 56 (2008), 597-606.
- [17] J.-Z. Zhang, Consistent deformed bosonic algebra in noncommutative quantum mechanics, Int. J. Mod. Phys. A 23(2008), 1393-1403.