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Abstract

For each integer n > 2 and a parameter A = (6, 7n) with § and 7 being n x n real anti-
symmetric matrices, a quantum phase space (QPS) (or a non-commutative phase space) with
n degrees of freedom, denoted QPS,, (A), is defined, where 6 and 7 are parameters measuring
non-commutativity of the QPS. Some results on Hilbert space representations of QPS,,(A)
are reported.
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1 Introduction
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As is well-known, one of the fundamental principles in von Neumann'’s axiomatic quantum me-

chanics is that a subset of physical quantities of a quantum system with n external degrees of |

freedom (n € N) are constructed from a self-adjoint representation of the canonical commuta-
tion relations (CCR) with n degrees of freedom, which is given by a triple (¥, D, {Qj, P;}}-;)
consisting of a complex Hilbert space H, a dense subspace D of H and a set {QJ‘,PJ‘}?=1 of
self-adjoint operators on H satisfying (i) D C N},_; D(Q;Qk) N D(P;Px) N D(Q; Pk) N D(PQ;),

where, for a linear operator A on a Hilbert space, D(A) denotes the domain of 4; (ii) (CCR)

[QJ1 Qk] = 0’ [R}a Pk] = 01 (11)
[QJ?P’C] ='—i5jk, j,k=1,--~,n, (12)

on D, where [X,Y] := XY — YX, ¢ is the imaginary unit and §;; is the Kronecker delta.

If Qj and P; (j = 1,---,n) are not necessarily self-adjoint, but symmetric, then the triple

(3, D,{Qj, P;}}-1) is called a symmetric representation of the CCR with n degrees of freedom.

This class of representations of CCR also plays important roles, e.g., in the theory of time

operators ([1, 2, 3], [5, 6], [12]).
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In commutation relations (1.1) and (1.2), non-commutativity is imposed only between Q; and
P; (j =1,---,n). But, from a general mathematical point of view, it may be natural to extend
non-commutativity to @Q;’s and P;’s too. This idea leads us to a general concept of a quantum
phase space (QPS) or a non-commutative phase space!. In this paper we propose one of possible
QPS’s and report some results on Hilbert space representations of it (for more details, see [4]).
In addition, we remark that non-commutative extensions of CCR have already been discussed
in connection with quantum theory on non-commutative space-times (e.g., {7, 8, 9, 15]), non-
commutative spaces (e.g., [10, 11]) and non-commutative phase spaces (e.g., {13, 14, 16, 17]).
But it seems that representation theoretic investigations on non-commutative extensions of CCR

have not yet been fully developed.

2 Hilbert Space Representations of a QPS

Let n € N with n > 2. To define a QPS with n degrees of freedom, we take two n x n real
anti-symmetric matrices 8 = (6k);k=1,..n and 7 = (9jk); k=1,,n- Then we introduce an algebra
generated by 2n elements Qj, }53( j=1,---,n) and a unit element I obeying deformed CCR with

n degrees of freedom

Qs Q) = 01, (2.1)
[Py, Pi] = imj, (2.2)
[Q],Pk]=15jk-[a ],k:l,,n, (23)

We call this algebra the QPS or the non-commutative phase space with n degrees of freedom and
parameter

A:=(n,0). (2.4)
We denote it by QPS,,(A).

It is obvious that Qj and Qx (resp. 13]- and P;) with j # k do not commute if and only if
6k # 0 (resp. n;x # 0). Hence the parameter A “measures” the non-commutativity of Qj ’s and
f’j’s respectively. Moreover QPS,,(A) in the case § = n = 0 reduces to the algebra of the CCR
with n degrees of freedom. Hence QPS,,(A) can be regarded as a deformation of the algebra of
the CCR with n degrees of freedom.

Let }{ be a complex Hilbert space with inner product (-, -) (linear in the second variable)

and norm || - ||. Let D be a dense subspace of H and Q]-, P_, be symmetric operators on K.

Definition 2.1 We say that the triple (9—(,@, {Qj,ﬁj}?zl) is a representation (on ) of the
algebra QPS,(A) if D c N%,_, D(Q;Qk) N D(P;B) N D(Q;P) N D(P;Qy) and it satisfy (2.1)-
(2.3) on D with I being the identity on 3 (we sometimes omit the identity I below).

Note that the components z; and p; (j = 1,- - -, n) of each element (z1,:**1Zn,p1," -, Pn) in the classical phase
space R%® = R™ x R™ can be regarded as multiplication operators acting in L*(R*"). They form a commutative
algebra.
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If all Qj and P 5 (j = 1,---,n) are self-adjoint, we say that the representation (f}{,D,
{Qj 13;'};-‘:1) is self-adjoint.

In every representation (f}{, D, {Qj, Pj }?=1> of QPS,,(A), we have commutation relations

(2.1)-(2.3) on D. Hence the following Heisenberg uncertainty relations follow: for all ¥ € D
with ||¢||=1and j,k=1,---,n,

(AQ)Y(AGK)y > 3105l (25)
(AB)y(AP)y > =lsel, (2.6)
(AQj)y(AP)y > %I‘SjkL (2.7)

where, for a symmetric operator A and a vector ¥ € D(A) with |9 = 1,

(AA)y = [|(A - (¥, Ap))¥],

the uncertainty of A in the vector state 1.

3 A Class of Self-Adjoint Representations of QPS,(A) on L*(R")

In this section, we show that there exist self-adjoint representations of QPS,(A) on L%(R™).
This is done by using the Schrodinger representation of the CCR with n degrees of freedom.
We denote by C§°(R™) the set of infinitely differentiable functions on R™ with compact
support.
Let (Lz(R“),Cg"(R"),{qj,pj};-‘zl) be the Schrodinger representation of the CCR with n
degrees of freedom, namely, g; is the multiplication operator by the jth variable z; on L?(R™)

and pj := —iD; with D; being the generalized partial differential operator in z; on L%(R™), so
that
(gj, Pk] = 0%, (3.1)
[qJ7Qk] =O> [pjapk] :Oa jvkzla"'an) (32)

on the subspace C§°(R").

Lemma 3.1 For all aj,b; € R,j = 1,---,n, 3 0_,(a;p; + bjq;) is essentially self-adjoint on
CPR™).

For an n-tuple L = (Ly,---, Ly) of linear operators L;,j = 1,---,n, on a Hilbert space and
an n X n matrix A = (Ajk)jk=1,-n, we define the n-tuple AL = ((AL)1,--+,(AL)yn) of linear
operators by ‘

(AL);j =Y AjxLy. (3.3)
k=1
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We say that the parameter A = (6,7n) is normal if there exist n x n real matrices A, B,C
and D satisfying

A'D - B'C = I,, (3.4)
A'B-B'A =0, (3.5)
C'D-D'C =n, (3.6)

where I, is the n x n unit matrix and *A denotes the transposed matrix of A.

For a normal parameter A with (3.4)—(3.6), we can define a (2n) x (2n) matrix:

&:(éﬁ). (3.7)
Let
mm:(ja%)’h:(ja%>‘ (3.8)
Then we have
GG = K(A). (3.9)

Conversely, if a (2n) x (2n) real matrix G of the form (3.7) satisfies (3.9), then A, B,C and
D obey relations (3.4)-(3.6).

Thus A is normal if and only if there exists a (2n) x (2n) real matrix G satisfying (3.9). In
that case, we call G a generating matrix of A.

We remark that, for a normal parameter A, its generating matrices are not unique. For
example, if G is a generating matrix of A, then, for all orthogonal matrix M commuting with
K(A), MG is a generating matrix of A too.

Suppose that A is normal with (3.4)—(3.6). We set

q= (QI,"',Qn), P=(pl,"'1pn) (310)

and define
§:= Aq+ Bp, p:=Cq+ Dp. (3.11)

Then, by Lemma 3.1, the operators §; and p; (j = 1,---,n) are essentially self-adjoint on
Cg°(R™). Hence their closures ij and 51- are self-adjoint2. Moreover, we have the following

result:
Theorem 3.2 The set (L?(R™), C(R™), {Ej,ﬁj}j__.l,...,n) is a self-adjoint representation of QPS, (A).

We call the representation (L*(R™),C§°(R™),{4;,p;}j=1,-.n) the quasi-Schrédinger repre-
sentation of QPS,(A) with generating matrix G of the form (3.7).

%For a closable linear operator 7', we denote its closure by 7.
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Remark 3.3 One can write

() (o)

In | _qg| ™ | (3.12)
1 p1

\n) \n)

on N?_, D(g;) N D(p;). Equation (3.9) is rewritten as follows:

GI'G = Jn +6(A) (3.13)
with
5(A) = ( g 2 ) . (3.14)

Hence 'G is symplectic if and only if §(A) = 0 (i.e., § = n = 0). Therefore the matrix §(A)
represents a difference from the symplectic relation. Note that the diagonal element 8 (resp. 7)

of 8(A) gives the non-commutativity of §;’s (resp. pi's) (j,k=1,---,n).

3.1 The Schrodinger representation of QPS

It may be interesting to consider a special case of A. Let a > 0,b > 0 be constants and

£im —1 (3.15)
142
4

Let v be an n X n real anti-symmetric matrix satisfying

e (3.16)
Then the parameter
As := (€%ay,€%y)  (the case 6 = ay,n = %) (3.17)
is normal, since the matirix .
o () 19

is a generating matrix of Ag, as is easily checked. We denote Ejj and Bj in the present case by

(jj(.s) and ﬁgS) respectively:

(8 1 5 1 j
i = 6(% - 5‘1('71’)1')) B = E(pj + -Z-b(vq)j), j=1:,n. (3.19)

We call this self-adjoint representation (L2(IR"), C3°(R™), {d;s),ﬁgs)} j=17...,n) of QPS,,(Ag) the
Schrodinger representation of QPS,,(Ag).
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3.2 Reconstruction of the Schrédinger representation of the
CCR with n degrees of freedom

In this subsection, we consider reconstruction of g; and p; in terms of §; and p;. By (3.12),
this problem may be reduced by the invertibility of the matrix G. From this point of view, we
introduce a class of parameters A.

We say that A is regular if it is normal and has an invertible generating matrix. It follows
from (3.9) that, if A is regular, then every generating matrix of A is invertible.

The next lemma characterizes the regularity of A:

Lemma 3.4 Let A be normal with a generating matriz G given by (3.7). Then A is regular if
and only if I, + 0n and I, + 0B are invertible. In that case, G is invertible and

-1,, _ -1
(G JnG ! = - ( ((1"?::r 17962)_1’7 ( }:'f(;;’)g_)l . ) : (3.20)

Let A be regular with a generating matrix G. Then we can write

F F
-1 _. 1 2
cr= (B B, a2
where Fy, F5, F3 and Fy are n X n real matrices.
Let
q:= (qu,"'vdn): f):= (ﬁla"'>ﬁn)- (322)

Theorem 3.5 The following equations hold:
q=F4a+ FRp, p=Fq+Fp. (3.23)
on N7_1D(g;) N D(p;)-
Theorem 3.5 also implies relations of matrix elements of G~

Corollary 3.6

FlotFl + anth + Flth - thFl =0, (3.24)
F360'F3 + Fyn'Fy + F3'Fy — Fy'F3 = 0, (3.25)
Fi0'F3 + Fon'Fy + F2'Fy — F2'F3 = I,. (3.26)

We now apply Theorem 3.5 to the Schrodinger representation {(jj(-s), ﬁgs) }7=1 of QPS,,(As):
Corollary 3.7 Let a,b,& and 7y be as in Subsection 3.1. Suppose that

1
x:=1- Zab # 0. (3.27)
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Then
1 (s, 1, .
%= 5 (qy(‘ '+ 50(’7;0(8))1') : (3.28)
1 /. 1., . .
Pi= gy (pg's) - gb(vq(s))j) , J=1,ym, (329)
on C§°(R™).

4 General Correspondence Between a Representation of QPS, (A)
and a Representation of the CCR with n Degrees of Freedom

4.1 Construction of a representation of QPS_(A) from a representation of the
CCR with n degrees of freedom

The contents in Section 2 suggest a general method to construct a representation of QPS,,(A)
from a representation of the CCR, with n degrees of freedom.

Let (i}C, D,{Qj, Pj}?=1) be a representation of the CCR with n degrees of freedom, namely,
X is a Hilbert space, D is a dense subspace of H and Qj and P; (j =1,---,n) are symmetric
operators on H such that D C N7 k=1 D(Q;Qk) ND(P; Py) N D(Q; Pr)ND(PrQ;) and {Q;, Pi}i_q
obeys the CCR with n degrees of freedom on D: for j,k=1,---,n,

[Qj) Qk] = 07 {P]’ Pk] = 0, [Qja Pk] = Z5Jk (41)

‘onD. Let
Qz(Qla"',Qn)> P:(Pla"'iP’ﬂ)'

Let A be normal and A4, B,C, D be n x n real matrices obeying (3.4)—(3.6). By an analogy
with (3.11), we define the n-tuples

Q = (le T an); (42)

and
P:= (P, -, B, | (4.3)
by
Q:=AQ+BP, P:=CQ+ DP. (4.4)

Theorem 4.1 The set (9{, D, {Qj,f’j};-‘:l) defined by (4.4) is a representation of QPS,(A).

We remark that the representation (9{, D, {Qj, f’]};‘:l) of QPS,, (A) is not neéessarily self-
adjoint even in the case where all Q; and P; (j =1,---,n) are self-adjoint.
As in the case of quasi-Schrédinger representations of QPS,,(A) discussed in Section 2, we

have the following fact:
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Theorem 4.2 Let A be regular with generating matrizc G given by (3.7) and F1, F3, F3 and F}
be as in (8.21). Then

Q=FQ+FRP, (4.5)
P = F3Q + FyP. (4.6)

onD.

4.2 Construction of a representation of the CCR with n degrees of freedom
from a representation of QPS, (A)

We next consider constructing a representation of the CCR with n degrees of freedom from a
representation of QPS,, (A). A method for that is suggested by Theorem 4.2.

Let (9{, D, {Qj, I:’j };‘=1) be a representation of QPS, (A) on a Hilbert space H with D dense
in . Throughout this subsection, we assume the following:

(A) The parameter A is regular with generating matrix G given by (3.7).

Let Fy, F», F3 and Fy be as in (3.21). Then we can define Q(A) = (Q1(A),--,@n(A)) and
P(A) = (Pi(A),- -+, Pa(A)) by

Q(A) == FIQ + RP, (4.7)
P(A) := F3Q + F4P. (4.8)

Theorem 4.3 Assume (A). Then (%,D,{Qj(A),}Dj(A)};I=1) is a representation of the CCR
with n degrees of freedom.

The next theorem shows that every representation of QPS, (A) with condition (A) comes

from a representation of the CCR with n degrees of freedom:

Theorem 4.4 Assume (A). Let Q(A) and P(A) be defined by (4.7) and (4.8) respectively. Then
Q = AQ(A) + BP(A), P =CQ(A)+ DP(A) (4.9)

on D.

5 Irreducibility

For a Hilbert space H, we denote by B(J) the set of all bounded linear operators B on H with
D(B) = H. Let A be a linear operator on }{. We say that A strongly commutes with B € B(H)
if BA C AB (i.e., for all ¥ € D(A), By € D(A) and BAy = ABv). For a set A of linear

operators on H, we define

A’ :={B € B(X)|BAC AB,VA € A}. (5.1)



59

We call A’ the strong commutant of A.
We say that A is irreducible if A" = {cI|c € C} (C is the set of complex numbers).

Lemma 5.1 Let S be a self-adjoint operator on a Hilbert space H and B € B(JH) such that
BS C SB. Then, for allt € R, Be*S = ¢it5B,

Theorem 5.2 Assume (A) in Subsection 3.2. Let (5{,9, {Qj;, .Pj}?___l) be a representation of
the CCR with n degrees of freedom. Suppose that, for each j = 1,---,n, Q; and P; are essentially

self-adjoint on D and {Qj,f’j};-‘:l is irreducible. Then the representation <9{,D, {51_,;51_}?:1)
of QPS,(A) given by (4.4) is irreducible.

We can apply Theorem 5.2 to the quasi-Schrédinger representation {aj, 1_3j };-‘=1 of QPS,,(A)

discussed in Section 2.

Theorem 5.3 Assume (A). Then {q;,p;}}-, is irreducible.

6 Weyl Representations of QPS, (A)

6.1 Definition and basic facts

As is well known, a Weyl representation of the CCR with n degrees of freedom on a Hilbert

space H is defined to be a set {Q;, Pj};‘=1 of 2n self-adjoint operators on H obeying the Weyl

relations:
eitQ,’ e’ist — e—istéjkeispk CitQj , (6 1)
€itQi gisQk — oisQn oitQs (6.2)
eitPigisPe — eisPegitPi 5} —1 ... n s teR. (6.3)

Based on an analogy with Weyl representations of CCR, we introduce a concept of Weyl
representation of QPS, (A).

Definition 6.1 Let {Qj, f’j};'zl be a set of self-adjoint operators on a Hilbert space H{. We say
that {Qj, f’,-};-;l is a Weyl representation of QPS,,(A) if

eitQj eisﬁ’k — e-—istéjk eis.ﬁk eitQj , ' (64)
itQ; gisQr — e~ i5tBjk gisQk eitQ,-, (6.5)
eth,- ezst = e—istn,-keka ez’tP,-’ 7, k=1,---,n,st€R. (6.6)

We call these relations the deformed Weyl relations with parameter A.

For a linear operator A on a Hilbert space, we denote its spectrum by o(A).
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Proposition 6.2 Let {Q_,-,f’j}}-‘zl be a Weyl representation of QPS,(A). Then it is a self-
adjoint representation of QPS, (A). Moreover, for each j = 1,---,n, Qj and }5] are purely

absolutely continuous with
U(Qj)=R) 0’(]3]) =R, j=1,--,n (67)

Remark 6.3 The converse of Proposition 6.2 does not hold. Indeed, there exists a self-adjoint
representation of QPS,,(A) which is not a Weyl one [4].

Proposition 6.4 The set {e*9i 5|t € R,j = 1,--+,n} is irreducible if and only if so is
{Q), B}y

7 TUniqueness Theorems on Weyl Representations of QPS, (A)

For each regular parameter A, every Weyl representation of QPS, (A) on a separable Hilbert
space is unitarily equivalent to a direct sum of a quasi-Schrédinger representation {&j, ﬁj};-;l of
QPS,(A):

Theorem 7.1 Assume (A). Let {Qj,pj}?=l be a Weyl representation of QPS, (A) on a sep-
arable Hilbert space H. Then there ezist closed subspaces Hy such that the following (i)-(ii)
hold:

(i) H = @) H, (N is a positive integer or o).

(i) For each j =1,---,n, Qj and 13_, are reduced by each Hp, ¢ =1,---,N. We denote by
Qg-e) (resp. f’j(e) ) the reduced part of Q; (resp. P;) to He.

(iii) For each £, there exists a unitary operator Up : Hy — L2(R™) such that
A(l) pr— < A 77— = .
U£Q§ )UZ lij’ Ung( )UE lzpj, j=1,---,n, (7.1)
where {aj, 5j}?=1 1 the quasi-Schrédinger representation of QPS, (A) defined by (3.11).

Theorem 7.1 tells us that, under the assumption there, every Weyl representation {Q I }5]-};;1
of QPS,(A) is unitarily equivalent to a direct sum of the quasi-Schrédinger representation

{4;,B;}7-1, because the operator
U:=a) U H - VLR,

is unitary and
UQ;U ' =oNg;, URU™ =eoVp,.

Remark 7.2 There exist self-adjoint representations of QPS,,(A) which are not uinitarily equiv-
alent to {Ejj,iaj};.;l [4).
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Theorem 7.1 and the irreducibility of the representation {(_jj, ﬁj };-‘=1 immediately lead us to
the following fact:

Corollary 7.3 Assume (A). Let {Q;, P; }3-1 be an irreducible Weyl representation of QPS,(A)
on a separable Hilbert space H. Then there exists a unitary operator W : H — L?(R™) such that

wQW1t=g, WPhRW'=p, j=1,--,n

Applying this corollary to the case where {Qj, IADj};’zl is a quasi-Schrédinger representation
of QPS,,(A), we obtain the following result:

Corollary 7.4 Let A be regular. Let G and G’ be two generating matrices of A: G is given by

(8.7) and :
- (4 7).
where A', B',C’ and D’ are n x n real matrices. Let {5;,1—7;};’-_—1 be the quasi-Schridinegr repre-
sentation of QPS,(A) with generating matriz G':
q :=A'q+B'p, p'=C'q+ D'p.
Then there erists o unitary operator V : L(R®) — L%(R™) such that

Va;-V_l = aj, Vﬁ;V*l :5]., j=1,---,n. (72)

Corollary 7.4 shows that, for each regular parameter A, quasi-Schrédinger representations of

QPS,,(A) are unique up to unitary equivalences.
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