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SOME PROPERTIES OF SPIN MODULES
OF THE SYMMETRIC GROUPS
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HOKKAIDO UNIVERSITY OF EDUCATION, ASAHIKAWA CAMPUS

1. INTRODUCTION

In the lecture, we investigated the cohomological properties of the spin module
of the symmetric group over a field of characteristic 2. This is a joint work with K.
Uno.

Let ¥, be the symmetric group of degree n and k be an algebraically closed field
of characteristic 2. Simple k¥,-modules are parametrized by the set of 2-regular
partitions of n. For n = 2(m+ 1), the simple module D(™+2™) corresponding to the
partition (m + 2,m) is called the spin module of £y(my1). DMH2™ |o  remains
to be simple and isomorphic to D(™*+1™) the simple kX, 41-module corresponding
to the partition (m + 1,m) of 2m + 1. D{™+Lm) is also called the spin module
of ¥om+1. The spin module has many interesting properties and investigated by
several authors (see for example, Benson [5], Gow-Kleshchev [8], Danz-Kiilshammer
[7]). For representations of the symmetric group, we refer to a book of James [9].
The following theorem is due to Nagai [10] and Uno [14] and we discussed its proof
at 2007 RIMS meeting [11].

Theorem 1.1. The complezity of the spin module D™+1™) of 55, .\ is equal to

[m/2].

Uno’s conjecture on the spin module D™*+1™) proposed in [14] concerns with
the cohomological variety of it and we also discussed the conjecture at 2007 RIMS
meeting [11]. Little progress has been made with our study, but in this lecture, we
shall explain some idea to attack the conjecture.

Let G be a finite group G and k be an algebraically closed field of characteristic
p > 0. The variety, the maximal ideal spectrum, of the cohomology algebra H*(G, k)
is denoted by Vg(k). For a finitely generated kG-module M, the annihilator ideal of
H*(G, k)-module Ext;(M, M) is denoted by I¢(M) and the subvariety determined
by Ic(M) is denoted by Vi(M). The complexity cg(M) of M is equal to the
dimension of Vz(M). For a homogeneous element { € H*(G, k), denote by V5(¢) C
Vi (k) the set of maximal ideals of H*(G, k) containing ¢. Thanks to theorems of
Quillen [12] and Avrunin-Scott [2], the variety of Vg(M) is determined by knowing
the varieties Vg(M |g) for all the elementary abelian p-subgroups F of G.

For our spin module, the most important case is the case that m = 2°~! for some
positive integer s and E C Xy, C Xom41 is a maximal regular elementary abelian
2-sugroup (of order 2°) in ¥y,,. The cohomology algebra H*(E, k) of an elementary
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abelian 2-group E of rank s is a polynomial ring of s variables (of degree 1) on
which GL(s,2) acts in an obvious way. The invariant subalgebra H*(E, k)GL(s2) g
generated by so called Dickson invariants ¢;(E) (0 £ 7 < s—1) of degree 2° — 2¢. For
precise definition and properties of Dickson invariants, see [1], [4]. Uno’s conjecture
is described as follows.

Conjecture 1.2. Let m = 2°°! and E be a mazimal regular elementary abelian
2-sugroup of Xom. Then the variety Vg(D™+b™) | 5 is Vi(c,—1(E)).

In Section 2, we give a lemma concerning the varieties of Carlson modules which
will be used to discuss varieties of the spin modules. To investigate the variety
of the spin module, it may help to know properties of the cohomology algebra of
the symmetric group. In Section 3, we construct some cohomology elements of the
symmetric group ;. which restrict to Dickson invariants ¢;(E), 0 £ i £ s —1
in the cohomology algebra H*(E,k) of a maximal regular elementary abelian 2-
subgroup E. In Section 4, using a presentation of the spin module D = D(m+Lm=1)
of the symmetric group G = £, due to Nagai-Uno [10], we describe a cohomology
element p € Ext,lczm (D, D). In Section 5, we propose a problem on relations between
resg,g(p) and cs_1(E) ®idp where m = 2°~! and F is a maximal regular elementary
abelian 2-subgroup of ¥,,,.

2. A LEMMA FroM CoHOMOLOGY THEORY OF FINITE GROUPS

We refer to a book of Benson [3] for the cohomology theory of finite groups.
Here we give a lemma concerning Carlson module L; of a homogeneous element

¢ € HY(G,k). Let ¢ : Q"(k) — k be the corresponding cocycle and set L, = Ker ¢
if ( #0. If { =0, then set Ly = Q"(k) & Q(k). Then it holds that V(L) = Vg(¢)
is the set of maximal ideals that contain (. Following to the Carlson’s argument in
a proof of this fact [6], we have the similar result for an arbitraly kG-module M and
p € Extio(M,M).

Take any cocycle p' : Q*(M) — M representing p and then take a projective kG-
module P, 7 € Homgg(P, M) so that p = (¢/,7) : Q*(M)@® P — M — 0 becomes
exact. Then we obtain a short exact sequence of kG-modules,

0 Kerp— Q"M)®PL M0

The isomorphism classes p and Kerp in the stable category of kG-modules are
uniquely determined by p. We denote Kerp by L, u.

Lemma 2.1. In the notations above, the following statements hold.

(1) Ve(Lpm) = Va(Lys ar) for any s > 0.
(2) If p° = ¢ @ idy for some homogeneous element ( € H*™(G, k) and some
positive integer s, Then Vo(L, m) = Va(¢) N Ve(M).
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3. SoME COHOMOLOGY ELEMENTS IN H*(Z,,, k), n = 2°

For the cohomology of the symmetric group, we refer to a book of Adem and
Milgram [1]. Our aim in this section is to construct some cohomology elements of
3, to be able to understand the restrictions of them to Young subgroups easier.

3.1. The Complex of Rickard of a Finite Coxeter Group.

Let W be a finite Coxeter group with a generating set S. Let £ : W — N be
the length function with respect to S. For I C S, we set W; =< I >, a parabolic
subgroup of W and w; € Wj is the unique element of maximal length in W;.

We fix a total order on S in the following discussion. For s € S\ I, set n(/,s) =
Hsel;s<sl.

The W-poset, called the Coxeter poset, consists of all right cosets

{Ww;weW, I1CS}
The complex of right kW-modules associated to the Coxeter poset is described as

follows (the complex can be defined for any commutative ring). For I C S, let [I] =
> wew; W € kEWr. Then for I,J C S, there exists a unique kW- homomorphism

nry ¢ [LJkW — [J)kW, sending [I] to [J]
Whenever ] ¢ J C K C S, we have that myx onpy = 7.

Definition 3.1. Let A = A(W,S) be the cochain complex of right kW -modules
concentrated in degree 0 to |S| defined as follows ;

t_ At _
Ay=A=e) kW
for each t (0 £t < |S]) and the differentials d* : A* —» A (0S5t < |S|—1) on
[IJkW C At are given by
= ZSGS\I )7TUu{s}

It is easily checked that for s', s € S\I with s’ < s, n(l,s") = n(JU{s},s'), n(1,s) =
n(IU{s'},s) — 1 and that d**! o d* = 0.

In these notations, Rickard proved in [13] that the complex A of kW-modules
satisfies deep interesting properties. Among his results, we need the following facts.

Theorem 3.2. The following statements hold.

(1) H{(A(W,S)) =0 for0 < t < |S| and H°(A(W, S)) is isomorphic to the sign
representation of W.

(2) Let K C S. Then in the homotopy category K®(mod -kWy) of right kW-
modules, A(W, S) lw, is isomorphic to AWk, K).

(3) For eacht < |S|—1, the short ezact sequence 0 — Kerd* — A* —» Imd* — 0
is Wi-split for all K C S with |K| =t.

(4) Assume that we have a decomposition S = K U L such that st = ts for
all s € K andt € L. Then W = Wi x W, kW £ kWg ® kW, and
AW,S) = AWk, K)® AWy, L) in the homotopy category K®(mod -kW))
of right kW -modules.



41

Al = [S]kW = ky,. And if the characteristic of k is 2, then HY(A(W, S))  ky
and we have the |S|-fold extension of ky by itsef of the following form as the reduced
complex A(W,S) of A(W,S)

()_>kW._‘_)A0.‘ﬁA1_d_l_,...i'ﬂiAlSl—lﬂkw_,o
We shall use these facts due to Rickard to construct several cohomology elements of
the symmetric group over a field of characteristic 2.
In the rest of the section, assume that our field k& has characteristic 2.

Let M be a kW-module and suppose that we are given a kW-homomorphism
f:M —Imd~ ! =Kerd for 0 £t < |S|. Then by taking a pull back diagram

0 y kw » A° » A2 — 5 A — M —5 0
[ I l
0 > kw » A > N SR U RN S S

we obtain a cohomology element in Ext},, (M, k). If M = ky, then we denote this

cohomology elements by co(f) = co(W, f) € H*(W, k). The complex A(W) itself
gives a cohomology element of degree |S| which is co(idw ), where idw : ky — kw =

AlSl is the identity map. The following lemma follows from the statement (3) in
Theorem 3.2.

Lemma 3.3. resww,(co(f)) = 0 for all K C S with |K| < t. In particular,
resw,w, (co(idw)) = 0 for all proper parabolic subgroup Wy .

Let K be a subset of S and denote by dﬁ? be the differentials for the complex
A(Wk, K). Then by the statement (2) in Theorem 3.2, we have a kWx-map 7 (K)* :

AW, S) lw,— A(Wk, K)t which induces the map from Ker d® to Ker dg? for each
t. For f € Homgw (kw, Ker d®), 7(K)* o f € Homyw, (kw, , Ker d?).

Lemma 3.4. In the notations above, resw,w, (co(f)) = co(m(K)* o f).

Assume that we have a decomposition S = K U L such that st =tsforalls € K
and t € L. Let us denote differentials for A(Wk, K) and A(Wy, L) by dgi) and
d) respectively. Let g € Homyw, (kw,, Ker d?) and h € Homyw, (kw,, Ker ).
Then Ker dgi) ® Ker dgj ) C Kerd™*9) under the isomorphism given in the statement

(4) in Theorem 3.2. Thus we obtain ¢ ® h € Homyw (kw, Ker dgi) ® Ker dgj)) C
Homyw (kw, Ker d(+9)),

Lemma 3.5. In the notations above, we have
co(g ® h) = co(g) ® co(h)
under the isomorphism H*(W, k) = H*(Wk, k) ® H*(Wy, k).
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3.2. Some Cohomology Elements in H*(X,, k).

The symmetric group ¥, of degree n is a finite Coxeter group with generating set
S={0oi=(i+1), 1£i<n—-1} of A,_;-type. The parabolic subgroups are
what are called Young subgroups of X,. We set W = ¥, in this subsection. For
notaional simplicity, we sometimes write S = {1,2,--- ,n—1}andfor I C S, I =
{i; 0; € I}. From the complex A(X,) = A(W), we saw that we obtain an (n —1)-
fold extension of kw by itself. We denote the corresponding cohomology element
co(idw) € H" YW, k) by co(W) = co(Z,). The following proposition follows by
Lemma, 3.3.

Proposition 3.6. In the notations above, the following statements hold.
(1) reswwy (co(W)) = 0 for any proper parabolic subgroup Wy of W. In partic-
ular, co(W) = 0 if n is not a power of 2.
(2) Assume that n = 2° and let E be a mazimal regular elementary abelian 2-
subgroup (of order 2°) of W = Xy.. Then
(a) resw g(co(W)) # 0.
(b) resw,r(co(W)) = 0 for all proper subgroup F of E.

In the rest, assume that n = 2% for some s. Set W = ¥,; and E be a maximal
regular elementary abelian 2-subgroup of ¥,.. By the distinguished properties of
Dickson invariant co(E), we can see that resw g(co(W)) = co(E) by Proposition 3.6.

For each t with 0 £ t £ s — 1, we shall construct a cohomology element ¢; =
ct(X2s) = c(W) such that reswg(c:) = c:(E). Let fix such ¢ in the following
disucussion. Set, for 1 £ ¢ S 2¢,

K=K ={(i-1)27+1,G-1)2" +2,--- , (i - 1)2°t + 27t — 1}

K=KO=u% KW =8\{it;1<ig2 -1}
Then W, = Ygs-« and W = Wi, X+ -XWkg ,. Ift =0, then K = Sand Wy = W.
Ift=s—1,then K={1,3,---,2°—1} and Wx 2 Z,* .

Set k = |K| = 2}(2°~* — 1) and consider [K]kW C A*. We can see that a W-
invariant element u(K) = w(K®) =3 . w = [K] X cw,\w? € [KJEW C A*
is contained in Ker d* = Imd*~!.

Let fxw : kw — Imd*! be a kW-homomorphim sending 1 to u(K®). Then
we obtain a cohomology element co(fxw) € H¥(W,k) = H*®™'-)(W,k). The .
cohomology algebra H*(Wk, k) is isomorophic to H*(Wk,,k) ® --- ® H*(Wk,,, k).

Denote co(fxw) by ci(W) = ¢;(X9:). The statements (1) and (2) in the following
proposition will be obtained as an easy consequence of Lemmas 3.4 and 3.5. The
statement (3) follows by the distinguished properties of Dickson invariant c;(E).

Proposition 3.7. Assume that n = 2°. Then the following statements hold.
(1) reswwy (c:(W)) = co(Wk,) ® - - - ® co(Wk,)-
(2) ForI C S, if resww,(c(W))#0, then I D K.
(3) reswe(c:(W)) = ci(E).
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4. THE SPIN MopuLE D(mtlm-1) op 3,

Set @ = {1,2,---,2m} C Q = {0,1,2,---,2m,2m + 1} and %y, = Zq C
Yom+2 = Bq,- The spin module D™+2™) ig of dimension 2™. Using a presentation

of the spin module D™+2™) given by Nagai and Uno [14], we have the following
lemma.

Lemma 4.1. Set 7; = (i 2m + 1), 0 <4 < 2m. Then for o € Sop, o071 = 7,
and the following statements hold.
(1) For a subset A C 0, > ica Ti U5 centralized by Xp X Tgya.
(2) The following elements in kXomyo annihilate DM+2m),
(a) Fori# j, i+ 75+ (i 7).
(b) Fori#j, imj +mmj + 1.
(c) For three distinct i, j, k, (7; + )7 + (T + Tj)-
(d) (m + 1) 14 To + Z:ll 09i—-1.
(3) The following elements in kEomio annihilate D™2™) (15 4 1).
(a) 70+ 1.
(b) For 1 7é 0, 14+ Ti(TO + 1)
(c) For a subset A C Q, |A|- 14 (3 ;.5 7i)(T0 + 1).
(4) Let B3 = (01,02) and Ty = (0,). Then
(a) o1 is Eg-invariant and Try, 5,(01) annihilates Dm+2m)
(b) o173 is Tp-invariant and 1 + Try, 5, (0173) annihilates D(m+2m)
(5) Let 24 = (0'1,0'2,0'3> and 22 X 22 = <01) X <O’3>. Then 0103 1S (22 X Eg)—
invariant and Trg, s, x,(0103) annihilates D(M+2m),

4.1. The Restriction of DMt2m) g 3, .

The restriction of the spin module D(M+2m) of Yomt2 to Loy, is a self extension
of the spin module DM+1m=1) of 53, This is isomorphic to the restriction of the
spin module D™+1™) of ¥, 1 to Loy, and described as follows.

Set M = Mm+lm=-1) = pm+2m) |- and D = M(ro +1) C M where 7, =
(0 2m +1). 79 centralizes 2y, and therefore D is a kXs,,-submodule of M. We can
see that D = D(m*1m=1) and D = {u € M ; u(rp + 1) = 0} and we have a short
exact sequence of kX,,,-modules,

(1) 0-DLMLDoo

where f is the multiplication map by the element 7o + 1 and g is the inclusion map.

Let k € Q2 and consider Lo\ (5} = Xom_1. Set 7 = (k 2m+1). Then (1, %) & T3
centralizes Yo\ (x). By Lemma 4.1, we have the following equalities on the effects on
M by multiplying the following elements,

'(’7’0 + 1)Tk(7'0 -+ 1) = -(7'0 + 1)(7'07'](7'0 + Tk) = '(To + 1)7’0 = '(To + 1)

Thus if we define a map hy : M — M by h(u) = u- 7, u € M, then h; is a
kX.q\{k}-homomorphism and

fohrog=1idp
Thus the short exact sequence (1) splits as a sequence of kXq\ (x)-modules.
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Let p € Extyy, (D, D) C Extyy, (D, D) be the cohomology element determined
by the exact sequence (1).

We shall use notations from the notion of Coxeter groups introduced in Section
3. We shall investigate the cohomology element p.

Set S={ox; 1Sk<2m—1} and Xgn = W = (W, S). We use the letter X,
X? to describe the complex A (W, S).

X 0okbx0f x1 L xmes 07 yeme2 ST 0L

If |I| £ m — 1, then Wi C Zq\x) for some k € Q. We have observed that the

sequence 0 » D & M Lp—ois Ya\({k}-split. Thus we can lift the identity map
idp : D — D to have the following commutative diagram of kW-modules,

0 ., D %, M =, pg &L,
| e [
0 , D idD®L; D ®X0 idp®d°® D ® Xl idp®d! N
AU M _g°f M AN D .0

[ |- |-

. DeXm™? M8, g xm-1 28, g Imgml —— 0

p™ is uniquely determined modulo maps which through the map idp ® d™ .
In the following discussion, we shall give maps A* (0 < ¢ £ m—1) and the resulting
map ™ in degree m-term explicitly.

We have an isomorphism Homyw (M, D ® [I[1kW) = Homgw, (M lw,, D) given by
Homyw (M, D ® [I]kW) 3 A & A 2 Homyw, (M |w,, D), where

Av) = Z Moz V@ [Iz, ve M
zeW\W

IfI C K, then (idp®m; x)oX € Homgw (M, DQ[K]kW') corredponds to Trw, wy (A) e
HOIIlkWK (M lWK, D)

The maps we shall define are multiplication maps of elements in kXq,. Let ; =
(12m+1) 0 £ 4 < 2m and set

70) =7, 7()=0103--0%-1-{o1+03+  F+02i-1+Tsp} (1SiSm-1)
And let I; be an i-points subset of S given by
I, ={1,3,---,2t — 1}, 1<i<m

Set 0 = 0103 Oom-1, pi = (20— 121 +1)(20 20 +2), 1 £ ¢ < m-—1 and
F:<p1’°"apm—1>' Then

Cw(O'):W]mXF, F%'Zm
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Define \° : M — D ® X© as follows. For v € M,
N(v) = Z vz~ {7(0) (10 + 1)}z ® [z

zeWa\W
Z vzl {n(n+1)}z®[@)r € DR [2]kW = D ® X°
zEW\W
For each i with 1 £4 < m — 1, define A : M — D ® X* as follows. For v € M,
M(v) = Z vz~ (i)(ro + 1)}z ® L]z € D® [L]kW c D ® X'
reW\W

Define p™: D — D ® X™ as follows. For u € D,
pm(u) = Z uz™! - {0103 Oam_1}2 ® [z

zeWr,, \W

= Z ur oz ® [Cw(o)]lz € DR[IL)kW Cc D® X™
zeCw(o)\W

where [Cw(0)] = Zhecw(a) h = [Im] ZyeF Y.

Lemma 4.2. The maps X' (0 <3< m—1) and u™ defined above make the diagram
given above to be commutative.

A proof uses Lemma 4.1 and will be done direct calculations.

4.2. The Restriction of D(™tLm-1) to0 ¥, x T, T, 13,, m = 2.
In this subsection let m = 2¢. We shall investigate the restriction of D(m+1m=-1)
to X X Xy Set
S1={01,09,...,021}, S2={0241,00043," * ,02m-1}, T =81US; =5\ {02}
Oy ={1,2,---,20}, Qp={20+1,20+2, - ,2m}
Ws, = Lq, E 3o, Ws, =23q, E Lo, Wr=W;xW,
Wr is a Coxeter group with generating set T' of type Age_1 X Age_;1. Set
p=(1204+1)(220+2) - (6 20+1)--- (20 2m)
Then W¢ = W, and we can consider a semidiect product
Wr C (I’VS1 X WS2) X (/,L) =Yl
In fact, (Ws, x Ws,) % (u) = Nw(Wr). We denote this subgroup by Wj.
For1£i£20-1,
Uf = 02¢+i
so that p acts on T. Consider the complex Y = A(Wr,T) associated to Wr. Each
term Y = @3 ;1 =t JkWr of Y becomes kWy-module by defining the action

of 1 as follows. For [I]y € [I|kWr C Y?, define [I]y- i to be
Uy - p=[I"]v* € [I"kWr C Y*

It is not hard to see that the differentials d* commute with this action of u. Thus
Y becomes a complex of kWy-modules.
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By Lemma 4.1, the action of the following two elements
£-14+01+03+ - +0u-1, £-1+0u+0ui3+ -+ 0ma
on D(m+1m=1) coincide. Thus the action of 7 on D™+1™~1) commutes with those
of elements in Wpr = Wg, x Wg, and of p. In this subsection, set
D=pmttm=1) | L=D.trCD

L is a kWy-submodule of D and L = {u € Dy ; ur = 0} as 72 = 0. So we have a
short exact sequence of kWy-modules

(2) 0-L%% D20
where fj is a multiplication map by 7 and g is an inclusion map.
If we denote the spin module D¢*+14=1 of 3, . = ¥y, by D, then we can see that
L= D&% L |y wws,= D1 ® D

where D®"™2 js g tensor induction.

Let n € Ext,lc[zmmz](L, L) C Extys, .5,(L, L) be the cohomology element deter-
mined by the exact sequence (2).

We shall construct maps v* : D —» LQ®Y* and 6! = (idy ® d"+!) o 4* which give
the following commutative diagram.

0 L go goo fo D goofo
ll [ [
0 , L ldL®L L ® YO id; ®d° L ® Yl idL ®d?
_g0ofo, D _gooho, D _fo, L — 0

e

' id,®d¢—3 LoY!? idp ®d¢ 2 [ ®Y!! idp ®df-1 L®Imd-! —— 0
Set
d(0,0)=(120+1), 0(0,0)0=1, o(1,1)g=01, 0(0,1)0 = 0241
For 1154, set .
o(%,1) = (0103 - 09i-1) - {(o1 + 03+ -+ 02i-1) + (20 +1 20+ 1)}
0(0,%) = (0ae4102043 * - - O2042i—1) - {(02e41 + - -+ + O2pq2i-1) + (1 20+ 20 + 1)}
For 1 £ j<iZs¥, set
o (j,%)
= (01 s U2j—1)(02l+1 s 02l+2(i—j)—1)
Alor+ -+ +025-1) + (02041 + -+ + O2e42i-5)-1) + (27 + 1 26+ 2(i — j) + 1)}
o(i,i)o = 0103 - 02i-1, 0(0,%)0 = 0204102043 * * O2e42i-1
0(j,1)o = (01 - 02j-1)(02e41 - - O2et2(i—j)-1)
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We have the following equalities.
o(jif =oli—4,5), (i) =0 j,i)
By Lemma 4.1, for 0 £ 5 £ £— 1, we have the following equality on the action on D
T2 41204206 —5)+1)+ (25 +120+2(i—5)+1) -7
=0'2j+1'(2j+1 2€+2(Z'—])+1)+(2J+1 2£+2(’i—j)+1)'02j+1 =1
Thus the following lemma holds.
Lemma 4.3. Forue L, u-o(j,i)r =u-0(j,i)o foreach0 L j i <0 1.
For each 1 < i £ ¢, we define the certain i-elements subsets of {1,3,---,2¢ —
1,20+ 1,--- ,2m — 1} as follows,
I(i,%) ={1,3,--- , 21 — 1}
I(0,5) = {20+ 1,2 +3,--- , 20+ 2i — 1}
Then
1(G,9)* = I(i — j,5)
And we set WI(j,i) = W(], Z) cCWwW.
Lemma 4.4. 0(j,1) and o(j,i)o are W(j,1)-invariant. Let k ¢ I(j,1) and set I =
I(7,%) U{k}. Then the following statements hold.
(1) Ifk 75 2] + 1, 2€+ 2(’& — j) + 1, then Trw(j,i),WI(O'(j, Z)) =0.
(2) Ifk =25+ 1, then I = I(§j + 1,5+ 1) and Trw(aw(+rin(0(5,9) =

(3) If k=2¢ + 2(2 - j) + 1, then I = I(],'L -+ 1) and TrW(j,,-),W(j,,‘H)(a(j,z')) =
O'(j,i + 1)0

Let, ‘
i=ap+a;-2+---4+as-2° j=by+b -2+ ---4+b-2°, 0=Za,b, <1

be the 2-adic expansions of ¢ and j. We say that 7 contains j, or j is contained in 3
provided that by < a,, for all u. We write 1 D j or j C 4 if 4 contains j. Notice that
the definition here is slightly different from Definition 24.12 [9]. 0 and 4 are always
contained in 1.

We have an isomorphism Homgw,.(D, L ® [I]kWy) = Homyw, (D lw,, L) given
by Homyw,.(D, L ® [IkWr) 3 v < 4 € Homyw, (D lw,, L), where

v(v) = Z Az Nz ® [I]z, ve D
zeW\W
It I C K, then (id, @ m; ) o v € Homyw,(D,L ® [K]kWr) corredponds to
Trw, i (%) € Homywy (D Lwy, L).
Define 7% : D — L ® Y as follows. For v € D,
7O (u) = Z u-z710(0,0)7z ® [)z) € L [@]kWr = LR Y?°
zeWe\Wr
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For 1<i<¢—1,definev: D - L®Y" as follows. For u € D,

Y=Y ¢ Y w-zlo(Gi)rz@ U3y €@ LY[I(j,i)kWr C LRY?

iCi | zeW(i)\Wr jci

We have observed that o(3,1) is W(j, %)-invariant. So the maps +* are kW r-homomorphsms.
And we can see easily that 4* commute with action of u so that ' are kW,-
homomorphisms.

For 1 <i< ¢ defineé': L - L®Y* as follows. Foru € L,

Fu)=>_ Y u-zlo(5,4)ez®I(d)z p €Y LRU(),8)kWr C LRY?
JjCi | zeW(j,i)\Wr jCi

We can see that §* is also a kWjy-homomorphism.

Lemma 4.5. The maps v (0 £ i £ £—1) and §° defined above make the diagram
given above to be commutative.

Assume that n = 2m = 2° for some integer s = 2 so that m = 2°71,¢ = 2572,
Then only 0 and £ are contained in £ and

I(¢,6) ={1,3,---,26—1}, 0(£,€)o= 0103 091

I(O,f) = {23‘*' 1,20+3,---,2m — 1}, 0(0,3)0 = 0204102043 " * * O2m~1

Set
I(1)=1I(6,0)={1,3,---,2¢—1} C S
0'(1) = 0’(3, 8)0 = 0103+ 0p%_1 € W](l)
I(2) =1(0,0) = {2+ 1,20+ 3,--- ,2m — 1} C S,
0(2) = 0(0, 5)0 = 020410243 """ Oom-1 € WI(2)
Then
= Y wrleMz@IMe+ Y. u-zlo(@r (2

.'tGW](l)\WT IGW](Q)\WT

= Y uae(1e @ O (e [S3

z€Cwg_ (o(1)\Ws,

+ Z u-z7'0(2)z ® [S1] - [Cws, (0(2))]z

zeCWsz (0(2))\W32
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5. THE VARIETIES Vg(D™m+1m=1) Vg (Mm+Lm=1)) poR ¥y, WITH m = 2571

Assume that n = 2m = 2° for some integer s 2 2 and let E be a maximal regular
elementary abelian 2-subgroup of ¥5s. Let D and M be kX,-modules and L be a
k¥ 1 Xo-module defined in Section 4. Let u € X,, 1 X3 be a regular involution and
set ' = Cg, 5, (1). Then I = A(X,,) x ( ) where A(X,,) is the diagonal subgroup
in Xy, X X, C Xy 1 Xy, We shall propose a problem concerning the cohomology
elements p € Extyy (D, D) and 1 € Exty_,s (L, L). If n = 22, then we can see
that

resg, 5(p°) = c1i(E) ®idp,  resg sz, r(n) =0

Problem 5.1. Assume that n = 2°. Then are the followmg statements true ¢

(1) There ezists a positive integer k, t such that resg, g(p*) = cs_l(E) ® de
(2) There ezists a positive integer u such that ress, 5, r(7*) = 0.

By an inductive argument and Lemma 2.1, we have the following remark.

Remark 5.2. If the problems have affirmative answers, then the following state-
ments hold.

(1) Vg(DtmHhm) | p) = Vi(cs—1(E)).
(2) Vg(Dm+lm=1) | o) = Vip(k).

In particular, Conjecture 1.2 is true.
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