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The goal of this lecture is two-fold: first, it aims at presenting some arith-
metic results related to the title of the talk, obtained in the last six years
in collaboration with U. Zannier and showing its relation with the so-called
Erd\"os’ support problem; second, it makes a connection with an apparently

unrelated theory, arising from complex analysis, recently developped by
Noguchi, Winkelmann and Yamanoi. Finally, we refer to Noguchi’s lecture
for the most recent developments in the complex analytic case, obtained
by joining ideas from both fields.

1 Divisibility between values of power sums
Given two positive integers $a$ and $b$ , one expects that the ratio $\frac{b^{n}-1}{a^{n}-1}$ will not be an
integer for large values of $n$ , unless $b$ is a power of $a$ , in which case $a^{n}-1$ divides $b^{n}-1$

for all integers $n$ .
A theorem of van der Poorten [9] (holding actually in greater generality) ensures

that if the ratio $\frac{b^{n}-1}{a^{n}-1}$ is an integer for all integral exponents $n>0$ , then $b$ is a power

of $a$ . A stronger finiteness result was proved by Zannier and the author at the end of

last century [5]:

Theorem 1 Let $b>a>1$ be integers, $b$ not a power of $a$ . Then there exists a number
$n_{0}=n_{0}(a, b)$ such that for all $n>n_{0}$ , the ratio $\frac{b^{n}-1}{a^{n}-1}$ is not an integer.

So, for instance, $2^{n}-1$ divides $3^{n}-1$ only for a finitely maiiy exponents $n$ . The
method of proof of Theorem 1, which rests on Schmdit’s Subspace Theorem, is inef-
fective, so it does not lead to the determination of the number $n_{0}(a, b)$ in terms of $a,$ $b$ .
For instance, it is still unknown for which exponents $n$ does $2^{n}-1$ divide $3^{n}-1$ .

A natural quantitative problem arises $f\cdot rom$ the finiteness statementn of Theorem 1;

namely, once we know that the denominator in the fraction $\frac{b-1}{a^{n}-1}$ does not simplify

completely, we can try to bound the maximal possible simplification, represented by
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the greatest common divisor of $b^{n}-1,$ $a^{n}-1$ . Clearly, if $a,$ $b$ are multiplicatively
dependent, i.e. satisfy a relation of the form $a^{r}=b^{s}$ for integers $(r, s)\neq(0,0)$ (and
in this case we could then take $r>0,$ $s>0$ , in view of the hypotheses $a>1,$ $b>1$ ),
one can write $a=c^{s},$ $b=a^{r}$ for some integer $c>1$ so $c^{n}-1$ divides both $a^{n}-1$ and
$b^{n}-1$ , for every $n$ . If, otherwise, no multiplicative relation links $a$ and $b$ , it is natural
to expect that the $gcd(a^{n}-1, b^{n}-1)$ be (logarithmically) infinitesimal with respect
to $a^{n},$ $b^{n}$ . This became a theorem in 2003, due to Bugeaud, Corvaja, Zannier:

Theorem 2 Let $a,$ $b>1$ be multiplicatively independent integers, $\epsilon>0$ be a positive
real number. Then, provided $n$ is sufficiently large,

$gcd(a^{n}-1, b^{n}-1)<\exp(\epsilon n)$ .

In the above theorem, the terms $a^{n},$ $b^{n}$ can be replaced by element of any finitely
generated multiplicative group, up to formulating the inequality in terms of heights.
For this reason, we recall the notion of Weil height. Let $k$ be a number field; for $x\in k^{*}$ ,
its (logarithmic) height $h(x)$ si defined by

$h(x)= \sum_{v}\max\{0, \log|x|_{v}\}$ ,

where the sum is taken over the normalized absolute values of $k$ . This means that the
product formula $\prod_{v}|x|_{v}=1$ holds “without weights”.

In [7] we proved

Theorem 3 Let $k$ be a number field, $\Gamma\subset k^{*}$ a finitely generated multiplicative group.
For multiplicatively independent pairs $(u, v)\in\Gamma\cross\Gamma$ , the height of the mtio $(u-1)/(v-$
1 $)$ satisfies the asymptotic equivalence

$h((u-1)/(v-1)) \sim\max\{h(u), h(v)\}$ .

Note that for $u=a^{n},$ $v=b^{n}$ , the height $h((u-1)/(v-1))$ is equal to the maximum
between the numerator and the denominator in the reduced $fom$ of the above fraction;
so, in our case, $h((a^{n}-1)/(b^{n}-1))= \max(a^{n}-1, b^{n}-1)/gcd(a^{n}-1, b^{n}-1)$ . Hence
Theorem 3 is a generalizes Theorem 2.

The above statement formally implies a further generalisation, where $u-1,$ $v-1$
are replaced by $u-p,$ $u-q$ for arbitrary (but fixed) points $p,$ $q\in k^{*}$ : simply enlarge
$\Gamma$ by adjoining $p,$ $q$ and then replace $(u, v)$ by $(u/p, v/q)$ .

Theorem 3 applies in particular to questions of divisibility between numbers of the
form $a^{m}-1,$ $b^{n}-1$ . It is easy to see that for positive integers $a,$ $b$ , with $gcd(a-1, b)=1$
there exist infinitely many pairs of integers $(m, n)$ such that $a^{m}-1$ divides $b^{n}-1$ ;
simply, take any $m\geq 1$ such that $gcd(a^{m}-1, b)=1$ (therc cxist $irifi_{11}itcly$ many of
them); then take for $n$ the order of $b$ modulo $a^{m}-1$ and we are done. With this
construction, however, the order of magnitude of $n$ will be larger then that of $m$ . As
a consequence of the above theorem, we can prove that this will always be the case:
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Corollary 1 Let $1<a<b$ be multiplicative independent positive integers. Then the
pairs $(m, n)$ for which

$\frac{b^{n}-1}{a^{m}-1}\in \mathbb{Z}$

satisfy $n/marrow\infty$ .

A natural generalisation of Theorem 1 concerns divisibility between values of power
sums; namely, one could replace the two functions $n\mapsto a^{n}-1$ and $n\mapsto b^{n}-1$ by
a pair of functions of the form $n\mapsto b_{1}a_{1}^{n}+\ldots+b_{k}a_{k}^{n}$ , for suitable rational numbers
$b_{1},$

$\ldots,$
$b_{k}$ and pairwise distinct positive integers $a_{1},$ $\ldots,$ $a_{k}$ . In that case one expects

that the divisibility between the values of two such fUnctions holds only for finitely
many integers $n$ , apart trivial cases, when divisibility holds identically (as in examples
like $(4^{n}-1)/(2^{n}-1)$ , where the ratio is always an integer, equal to $2^{n}+1$ ). This was
proved in [5]. Actually, the most general case is constituted by the so called linear
recurrence sequences, i.e. sequences of complex numbers of the form

$n\mapsto f(n):=p_{1}(n)\alpha_{1}^{n}+\ldots+p_{k}(n)\alpha_{k}^{n}$ .

Here $\alpha_{1},$
$\ldots,$

$\alpha_{k}$ , called the roots of $f$ , are pairwise distinct non-zero complex numbers
and $p_{1}(X),$ $\ldots,p_{k}(X)\in \mathbb{C}[X]$ are polynomials. For simplicity, we shall restrict our
attention to the case where the $p_{i}$ are all constant; in that case the sequence $n\mapsto f(n)$

will be called a power sum. One of our results in [6] states the following

Theorem 4 Let $R\subset \mathbb{C}$ be a subring, finitely generated over the integers. Let $f_{1},$ $f_{2}$ be
power sums whose roots generate together a torsion-free multiplicative subgroup of $\mathbb{C}^{*}$ .

If the mtio $f_{1}(n)/f_{2}(n)$ belongs to $R$ for infinitely many integers $n$ , then the function
$narrow f_{1}(n)/f_{2}(n)$ is a power sum.

Some remarks: (1) The constraint that the multiplicative group generated by the
roots of $f_{1},$ $f_{2}$ has no torsion can be avoided (at the cost of slightly rephrasing the
conclusion); actually, if $q$ is the order of the torsion sub-group, for every $r=0,$ $\ldots,$ $q-1$ ,

the power sums $n\mapsto f_{i}(qn+r)$ have roots in a torsion-free group; then one can apply
the above theorem to the ratios $f_{1}(qn+r)/f_{2}(qn+r)$ , for each value of $r$ . (2) The
above general result is reduced to the number-field case after applying a standard
specialization argument; hence, the most interesting case arises where the roots $\alpha_{i}$

and coefficients $p_{i}$ are algebraic numbers and $R$ is a ring of S-integers in a number
field. (3) In the case $f_{1}(n)=b^{n}-1,$ $f_{2}(n)=a^{n}-1$ , the ratio $f_{1}/f_{2}$ is a power sum if
and only if $b$ is a power of $a$ . Hence we re-obtain Theorem 1.

2 Support problem

A question closely related to the divisibility problems treated so far was posed by
Erd\"os in 1988: do the prime divisors of $a^{n}-1$ determine the positive integer $a$? More
generally, if for two fixed positive numbers $a,$

$b$ and all the exponents $n$ , the prime
divisors of $a^{n}-1$ also divide $b^{n}-1$ , is it true that $b$ is a power of $a$? A positive answer
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can be easily deduced from a theorem of Schinzel [10], published already in the sixties,
much earlier than Erd\"os’ formulation. An explicit solution, together with its elliptic
version, was provided by $Corralesarrow Rodriga\tilde{n}ez$ and Schoof [3] in 1997.

A related problem has been raised by Ailon and Rudnick [1]: let $a$ and $b$ be multi-
plicatively independent positive inetgers; does the ratio

$\frac{gcd(a^{n}-1,b^{n}-1)}{gcd(a-1,b-1)}$

take the value 1 infinitely often?
In other words, the supports of $a^{n}-1$ and $b^{n}-1$ should remain as disjoint as possible,

for infinitely many $n$ .
Let us now see the elliptic curves case; here are two results in the elliptic case, the

first one due to $Corrales-Rodriga\tilde{n}ez$ and Schoof, the second to Larsen [8]:

Theorem 5 Let $E$ be an elliptic curve defined over the ring of S-integers in a number
field $k$ , with origin $O$ ; let $P_{1},$ $P_{2}\in E(k)$ be rational points of infinite order. Suppose
that for every $n$ , the set of primes $\mathcal{P}\in spec(\mathcal{O}_{S})$ such that $nP_{1}\equiv 0$ (mod $\mathcal{P}$ ) is
contained in the set of primes $\mathcal{P}$ such that $nP_{2}\equiv 0$ (mod $\mathcal{P}$ ). Then there exists an
isogeny $\Phi$ : $Earrow E$ with $\Phi(P_{1})=P_{2}$ .

Theorem 6 Let $E_{1},$ $E_{2}$ be elliptic curves over a ring of S-integers, with origins $O_{1},$ $O_{2}$

respectively. Let $P_{i}\in E(k)$ be non-trosion points. Suppose that for every $n$ , the set of
primes $\mathcal{P}\in spec(\mathcal{O}_{S})$ such that $nP_{1}\equiv 0_{1}$ (mod $\mathcal{P}$ ) is contained in the set of primes
$\mathcal{P}$ such that $nP_{2}\equiv 0_{2}$ (mod $\mathcal{P}$ ). Then $E_{1},$ $E_{2}$ are k-isogenous.

In both the original (toric) and the elliptic versions, it is essential that one considers
the reduction (modulo primes) to the origin of the group. For instance, the Schinzel-
Corrales-Schoof-Larsen method of proof does not apply to prime divisors of $a^{n}-p$ ,
$b^{n}-q$ for arbitrary $p,$ $q$ ; to our knowledge, it cannot be escluded that for some choice
of $a,$ $b$ , the prime divisors of, say, $a^{n}-2$ and $b^{n}-3$ are the same for all large $n$ .

3 Geometric formulation
Let us consider again Theorems 1, 4, and rephrase them in more geometric terms.
Take a power sum, given by an expression of the form

$f(n)=p_{1}\alpha_{1}^{n}+\ldots+p_{k}\alpha_{k}^{n}$,

where to simplify we suppose that the roots $\alpha_{1},$
$\ldots,$

$\alpha_{k}$ generate a torsion-free multi-
plicative group in $k^{*},$ $k$ being a number field, and the coefficients are algebraic numbers
in $k$ . Then we can take a basis $u_{1},$ $\ldots,$

$u_{r}$ of the group generated by $\alpha_{1},$
$\ldots,$

$\alpha_{k}$ and
write $f(n)$ as a Laurent polynomial in $(u_{1}^{n}, \ldots, u_{r}^{n})$ as

$f(n)=F(u_{1}^{n}, \ldots, u_{r}^{n})$ .

4



Taking a finite set of places $S$ such that $u_{1},$ $\ldots,$
$u_{r}\in \mathcal{O}_{s}^{*}$ , one can view the point

$(u_{1}, \ldots, u_{r})\in \mathcal{O}_{s^{r}}^{*}$ as an S-integral point in the torus $G_{m}^{r}$ . Let us denote by $g$ this
point, and view it as a morphism $g$ : $spec\mathcal{O}_{S}arrow G_{m}^{r}$ . Consequently, $g^{n}$ will be the

point $(u_{1}^{n}, \ldots, u_{r}^{n})$ . Now, let $D$ be the hypersurface defined by $F(X_{1}, \ldots, X_{r})=0$ in
$G_{m}^{r}$ . Then the values $f(n)\in \mathcal{O}_{S}$ of the power sum $f$ generates the ideal $(g^{n})^{*}(D)$ ,

where $D$ is viewed as a divisor in $G_{m}^{r}$ , so its pull-back $(g^{n})^{*}(D)$ is an ideal of $\mathcal{O}_{S}$ .
Now, let us consider two power sums $f_{1},$ $f_{2}$ with values in a ring of S-integers; they

correspond to two S-integral points $g_{i}$ in tori $G_{i}$ and divisors $D_{i}$ , for $i=1,2$ . The
condition that $f_{1}(n)$ divides $f_{2}(n)$ for some value of $n$ can be expressed in terms of
inclusions of corresponding ideals. The conclusion of Theorem 4 that $f_{1}$ divides $f_{2}$ in

the ring of power sums can be translated, at least under suitable technical hypothesis,
by saying that a suitable isogeny takes $D_{1}$ to $D_{2}$ . Precisely, in [4] Noguchi and the
author derived from the main results of [6] the following statement:

Theorem 7 Let $\mathcal{O}_{S}$ be a ring of S-integers in a number field $k$ . Let $G_{1}$ and $G_{2}$ be

linear tori, and let $g_{i}\in G_{i}(\mathcal{O}_{S})$ be elements generating Zariski-dense subgroups in $G_{i}$

$(i=1,2)$ . Let $D_{i}$ be irreducible divisors defined over $k$ with trivial stabilizer. Suppose

that for infinitely $7nany$ natural numbers $n$ , the inclusion of ideals

$(g_{1}^{n})^{*}(D_{1})\supset(g_{2}^{n})^{*}(D_{2})$ (1)

holds. Then there exists an etale morphism $\phi$ : $G_{1}arrow G_{2_{l}}$ defined over $k$ , and a positive
integer $h$ such that $\phi(g_{1}^{h})=g_{2}^{h}$ and $D_{1}\subset\phi^{*}(D_{2})$ .

The condition on the stabilizer of the divisors $D_{i}$ can be relaxed, but cannot be
completely avoided. For instance, take $k=\mathbb{Q},$ $\mathcal{O}_{S}=\mathbb{Z},$ $G_{1}=G_{m},$ $D_{1}=\{1\}$ ; then
$G_{2}=G_{m}^{2},$ $D_{2}=\{1\}\cross G_{m}+G_{m}\cross\{1\}$ , so that $D_{2}=F^{-1}(0)$ for the polynomial
$F(X_{1}, X_{2})=(X_{1}-1)(X_{2}-1)$ . Choose $g_{1}=2,$ $g_{2}=(2,3)$ . Clearly condition 1 is

satisfied for every $n$ , as it amounts to the fact that $2^{n}-1$ divides $(2^{n}-1)(3^{n}-1)$ , but
there exists no dominant map $G_{1}arrow G_{2}$ .

The above formulation leads naturally to generalizations, both in the arithmetic
and in the analytic setting. Still remaining in the arithmetic realm, one is tempted

to replace tori by abelian or semi-abelian varieties. We leave this as a conjecture,
since the techniques of [6] do not seem to apply easily to the compact case. A related
conjecture by Silverman, formulated in [11], attempts to extend Theorem 2 to elliptic

curves. It states the following:

Given an elliptic curve $E$ defined over $\mathbb{Q}$ via a Weierstrass model, for a point $P\in$

$E(\mathbb{Q})$ write $x(P)=A(P)/D(P)$ as a fraction in lower terms. Take two independent
points $P,$ $Q\in E(Q)$ . Then log gcd$(D(nP), D(nQ))$ should be $o(n^{2})$ .

The above conjecture, which constitues the compact analogue of Theorem 2, would
follow from the celebrated Vojta’s conjectures, as explained by Silverman [11].

In another direction, one could ask for the same conclusion of Theorem 7 under the
hypothesis of the inclusion of the supports of the divisors $(g_{i}^{n})^{*}(D_{i})$ . For this problem
some special result has been obtained by Barsky, B\’ezivin and Schinzel, but, as already
mentioned, even in the one dimensional case the general problem remains open.
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For the analytic analogue, which holds in the general case of semi-abelian varieties,
we refer the reader to Noguchi‘s contribution. For instance, the $gcd$ estimates of
Theorem 2 admit a Nevanlinna theoretic analogue, proved by Noguchi-Winkelmann-
Yamanoi, which also holds for elliptic curves; so the analytic analogue of Silverman’s
conjecture is proved in Nevanlinna’s theory.

It is worth to notioe that the corresponding statement in Nevanlinna theory to
Theorem 7, which, as we said, holds in general for holomorphic maps to semi-abelian
varieties, is phrased in exactly the analogue way, via the well-known correspondence
between arithmetic geometry and Nevanlinna theory; especially its conclusion is just
the same.
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