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p-adic logarithmic functions and applications
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Abstract We explain how we define p-adic logarithmic functions to provide a new lower bound for
linear forms in two p-adic elliptic logarithms proven in [11] . We adapt the argument that relies on
the interpolation method on the variable change introduced by G. Chudnovsky, and on Faa-di-Bruno’s

formula adapted to matrices whose elements are p-adic elliptic logarithmic functions.

1 Introduction

Let K be a number field of finite degree D over Q. Denote the ring of integers by ©.
Let A,Be K, A :=4A3 —27B? # 0 and € be an elliptic curve defined by

Y2=X%_AX — B.

We may assume A, B € O (for; if A or B ¢ O, then there exists a suitable ¢ € © such
that the elliptic curve Y2 = X3 — A’X — B' with A’ = c*A € O, B' = ¢®B € © and
with the discriminant A’ = ¢12A, is isomorphic to &€ since the j-invariant remains equal
under these multiplications).

Let us denote by Q the algebraic closure of Q in C. Let p be a rational prime € Q
and | - |oc be an Archimedean valuation on K. For a place v of K over p, we write the
valuation |-|, normalized such that |z|, = p~ % (@) for z € Q. Denote K., the completion
of K by v, and write Q, the completion of Q by p. The field K, is a finite extension

of Q, of local degree n, = Ky, : Qp] with va = D. Put C, the completion of the

vlp
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algebraic closure of K,. We note that the algebraic closure of Ky is not complete itself.
It is well-known that C, is algebraically closed complete field of characteristic 0, in which
the algebraic closure of K, is dense and that there are D distinct embeddings of K into
C,. Denote again by |z|, the extension of |z|, on Cp.

For z € Pn(Q) having coordinates z = (o, - . :cN) € Pyn(K), define the absolute
logarithmic height of z by

ha) = g o oglmax{ s ol )

where the sum runs over all the normalized places of K. This definition is independent of
the choice of the projective coordinates and the choice of the field containing zg, ..., znN.

Let a € Q and put h(a) := h(1 : a), the absolute logarithmic height of the algebraic
number a. We may write h(a) = hoo(a) + hs(a) where the sum in hy(a) runs over all
the infinite places and the sum in hf(a) runs over all the finite places:

1
hoo(a) = n, log(max{1, (al,}),
~ [K : Q] v i%ite
hg(a) = 1 Z ny log(max{1, |al,})-
[K : Q] v finite
Now we fix a place v over p and denote |- | = | - |,. For a formal power series f(z) =
Z arz® € Cp[[z]], f(2) converges at z € C, if and only if lax2z¥| — 0. It is known that

the radius of convergence is also given by Hadamard’s formula.

Let us recall the Lutz-Weil p-adic elliptic function which corresponds to the p-adic version
of the Weierstra8 elliptic function gp. Consider £ be an elliptic curve C P2(C,):

7Y% = X3 - AXZ? - BZ® (A,B € O, 443 # 27B%).

Write A\, =

1
— ifp#2, X=3,C,={2€C; : |z| < p~*} and C, := Cp N K,

Tt is known that there exist two solutions ¢ and —¢ to the differential equation (¢')? =
1 — Ap* — By with (0) = 0, defined over C, — Ky, analytic in Cy, after [18] [26]. In

1 A

fact putting p? = oo we have (%) = pi — Ap, — B and ¢'(0) = 1. The function
0

¢(2) is called the Lutz- Weil p-adic elliptic function. The elliptic curve can be given the

structure of the p-adic Lie-group £(C,) C P?(C,) as follows. We may enlarge the domain

of the definition of the function ¢ to Cp (see e. g. the page 151 of [1] and [2], [23]).
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Definition 1.1 For the p-adic Lie-group £(C,) C P?(C,) we have the exponential map:
exp = expg : Cp — E(C,) C P3(C,)

Z = ((P(z), _(p/(z)a ‘103(2))

The p-adic exponential map is locally analytic only. The function ¢ is odd and injective;
indeed, |p(2)| = |z|, |¢'(2)| = 1 for any 2z € Cp, hence expg has no period [3]. There are
corresponding addition formula and derivation formula, similar to those of g.

Let 3 € K. Take u; and up in C,. We assume ¢?(u;) and %(ui) € K(i=12)ie

exp(u;) € £(K) (i =1,2). Put A = Bu; — ug which is a linear form in two p-adic elliptic

- 1 1
logarithms u; and up. Write h(P) := 5 lim, .o 4—ﬁh(2nP) the Néron-Tate height defined
on & for a rational point P € £(K).

We may suppose that none of these 3 numbers 3, u;,u2 equals to 0, for, otherwise our
statement trivially follows thanks to the Liouville inequality: |a| > e~ K Qh(e) where
a€ K,a#0.

Denote non-negative real numbers hj, he, h3, p, E,a1,a2,band d by h; = iz(exp(ui)) (i =
1,2), hg = max(l,h(ﬁ)), p = p E = p/max(|ui],|uz]), a1 = max(l,hl), a; =

_ [K:Ql\ ‘
max(l,hg), d = max(l, Tog E ),g = max(l,h4,log(hl),log(hg),log(d)). We denote

further by h = hy = h(€) := max{1, h(1, A, B)} the height of the elliptic curve £.

Our proncipal result is as follows.

Theorem 1.1 [with R. Takada] Under the assumptions above, if we have
|A| < exp(—1.16 x 10%% x a; - ag - h3 - g° - d® - log E),

then we obtain

A=0

u
and B = -2 isan algebraic number of degree at most 2 over Q with
U

h(B) < 1og(5.89 x 10'7 x g2d® x max(a, ,/alag)).

Corollary 1.1 Whenever we have A # 0, then we obtain

|A| > exp(—1.16 x 10%® x a; -az - h3 - ¢° - d° - log ).
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We compare our result with that of G. Rémond and F. Urfels.
Put b = max (hg, ha, h1, ha, d) and ¢ = max(1, hy,logd). The result in [20] shows, if

|A| < exp(—5.7 x 10% x a1 -az-b-c - d® - log E),

then
A=0

and 8 = %2 is an algebraic number of degree at most 2 over Q of height
uy

log(4.29 x 10M x ¢? d® x max(a1, /a1 a2)).

We refine this result so as to obtain the best possible approximation concening with
the height of algebraic coefficients of the linear forms since our bound does not contain
log hs. Our constant is expressed in an explicit manner and the part of h3 is separately
written from other data. However, our numerical constant is larger than that of the
statement of [20].

2 p-adic elliptic logarithmic function

We define the p-adic logarithmic function in elliptic case as a reversed function of the
expg with an expression of Formal group over O, following [15] [24] (sec also [6][7]).

Let P = (X,Y,1) € §(K). Put t = t(P) = —X/Y, w(t) = —1/Y. We have P =
2

o(2) @
(X,Y,1) = (t,—1,w(?)) (cp’(z)’ 1, "
put E(r) the set of points P in £(K) with [¢(P)] < p~". We include the origin in £(r)
by convention, and then £(r) is a subgroup of £(K). Denote by p; the set of elements
t € K with |t| < p~". The map P — t(P) establishes a bijection between £(r) and p,
(Theorem 3.2, Chapter III, [15]). There is a power series expansion of w(t) in ¢ where
the coefficients are polynomials in A, B with coefficients in Z (Theorem 3.1, Chapter III,
[15]). This power series expansion is studied in [7]. Below we rewrite estimates obtained
in [7].

’((z))) Let 7 be a positive real number. We

Lemma 2.1 Under the notations above, we have w(t) = ZAnt” where A, € Z[A, B|
n>3
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is homogeneous of degree n — 3 (of weights 4,6 on A, B) of form Az =1 and

e X e
4A+6p=n—3,
Au>0
where ag:?‘ € Z with
3.gn-3
) < 3-8 n>3,A>0,u>0) .

|a)‘1”|°° “nd(A+1)3(p+1)3
Moreover, we have

h(An) <3n+ (n—3)h .

This lemma yields the estimate of the height of Taylor coefficients for the functions

992(2) — &)9 — ZAntn—l,

n>3

w(t) _ n—2
- = ZAnt .

n>3

1 A
Since expg(z) = (cpz(z)7 pf(iz)) : 1) = (t,—1,w(t)), the function z = z(t) corresponds
to the logarithmic function which is introduced in [15] (see [7] [24]). By writing X,Y in

terms of ¢ and w(t), the differential form Q(t) = — is viewed as a formal power series

2Y
in t, and we define as in [15][24] the formal integral logg(t) = / Q(t). With this formal

integral we have;

1 —2¢'
o (2, (),
o) = [ = [~ —a= [ 32 L s =)
T (E) e ()
o3 03
which is indeed the local reversed function around the origin, of the function t = ¢(P) =
X _ 92)

Y ¢(2)

Definition 2.1 Put logg(t) = 2(t). We call the function an elliptic p-adic logarithmic
function associate to .
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We rewrite the statement in [7] for convenience in explicit calculations below, by using

h = h(&):

Lemma 2.2 The Taylor expansion of logg(t) is given by

logg(t) Z B,t"

n>1
where By =1, B, = =G Cn = Z B™ A*B*  (n > 1) with b( ) €Z and
1 277,7 n A -
42+6p=n-1,
Aup>0
(25-3.5%)"

> > > 0).
Bl S o R 2 bAZ0k20)

Concerning the height, we have
h(Cp) <9n+ (n—1)h .

Moreover, the domain of convergence of logg(t) is {z € Cp, : |2 < 1}.

3 Differential operator

Consider a point u = (0,u1,u2) € C, ><C2 and the hyperplane W defined by 2o = 821 —23.
To prove our theorem, with respect to the fixed non-Archimedean valuation |-| = |-|,, we

note that there is no restriction to suppose |3| < 1, otherwise we may consider —uz —u;

5
instead of A.
We are going to look at (A,u;,uz). We choose as in [10] a basis of W: (8, 1,0) and
(-1,0,1). Put o = (01,02) € Z2, 01,09 > 0, and a differential operator over (Cp3 along

W
D= (05t 5) "o (ot )

Introduce also a “divided differential operator” along W as in [8];

z o! 0‘1!0'2 (71'0’2 (920 821

Put 7 = (10, 71,72) € Z3,70,71,72 > 0 and define with ¢ = ¢?;

fT:Cpfo,—NCp
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(20, 21, 22) = 20 Y(21) ™ P(22)™.

For Ty, T1,T5, So, S1 which are parameters > 0 in Z with Sy > 5, define a matrix

M= (Agfr(su))r;(a,s) = (Mr.s) (1)

where the lines are indexed by 7 = {r € Z3|0 < 7; < T;} , the columns by S = {(0,s) =
(01,09,8) € Z3|o1 > 0,02 > 0,|0] := 01 + 02 < Sp,0 < s < S1}. The number of lines
is L := (To + 1)(Ty + 1)(T2 + 1). The elements of the matrix are “divided derivatives”
instead of the ordinary derivatives in [20].

4 Interpolation matrix

Lemma 4.1 Let D = [K : Q]. For any L x L minor determinant A of M, we suppose;

IA| < exp(-D(log(L!) . DL(TO(hg +6) + 345 log(Tp + 1) + (So + 1)(18 + ha)

+852(Tyhy + Tyha) + (T1 + Ta)(16hy + 60log 2 + 12))).
Then the rank of M 1is strictly less than L.

We remove Sy log Sp in Proposition 6.1 of [20], that is essential for our improvement. For
this, we carry out the variable change from z to t.

Now we assume that the rank of M equals to L. We shall show that there exists an
L x L minor determinant A # 0 of M and give a lower bound for |A| which contradicts
the assumption of Lemma 4.1.

Recall that our matrix (1) is defined by M = (A7 f;(su)),,(6,s) Where
fr=2"p(2)"P(22),  ¥(2) = p(2)*.

Definition 4.1 We order the set of the indices (0,s) = (01,02,8) of columns of M
as follows. We order the set of o := (01,02) by the quantity |o| = o1 + 02, namely
if |o| < |0'| then define ¢ < o'. If |o| = |0’| then we order lexicographically (o1, 02).
We define an order for (0,s) = (01,02,8) firstly by the order defined above for o and
secondly by the order for s. Since the rank of M equals to L, then there exist L-tuple
of the indices of columns such that the corresponding L x L minor determinant is non-
zero. Choose the minimal L-tuple among such ones by the order defined now. We denote
the minimal L-tuple by (o4, Su); <u<L’ We put the corresponding square minimal matriz
N = (mrg,s,) and denote A = det N.
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We present some properties as follows [11].

Lemma 4.2 For a fized po, every column of index < (0uq,8u,) 8 contained in the
subspace generated by the columns of index (o, s,) with 1 < p < po.

Lemma 4.3 We have det A = det N = A # 0.

We are now going to give an upper bound for the height of the number a,, by doing
variable change of the functions “from z to t”.

Lemma 4.4 If s =0, then we have
Qrpy = Mrg,0 = Ag” fT(O)

= A;“‘ (onOw(zl)le(Zz)m)(O) = bT,g}“o + Cr,0,,0
with

_ 1 O\ 9\ B o (@)™ (wit2)\7
b”"“’o_a#,l!aw! (6151) °<at2> (B2(tr) = 2(t2)) ( i > ( t ) (0,0)

with ezact order |o,| = 01+ 0u2 for br s, 0. The term cr o, 0 5 a SUM of the derivatives
in (t1,t2)of order strictly inferior to |o,|.

Lemma 4.5 If s # 0, then we have

1 o\ [ 8\** o
Nrop,sy = U,u,l!Uy,2!¢(3uul)Tl¢(5uu2)T2 (8_t1> © (55) ( (Z(tl),z(tg))) |t=0

= d'r,aﬂ,su + eT,Uﬂ,SlL

with
F(2(t1), 2(t2)) = (B2(t1) — 2(t2))™ (9 (2(tr) — Y (suw))*"

x (1h(2(t2)) — Y(s,u2)) 2™ T(2(t1), spu1) T (2(ta), spua) 2™
and

Qoo = WA (=) () Pt D)l

01102 (suu1) (s, un) T2

with exact order |o,] = oy1 + ou2 for dro, s, The term erq, s, 15 a sum of the deriva-
tives in (t1,t2)of order strictly inferior to |oy|.
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Lemma 4.6 Put further

b-,-o 0 (’I.f Sﬂ = 0)
lrgns, =4 70 2
TyOpusSp {d—r,au’s# (Zf Su # 0) ( )

and the new matriz
B = (Vrp) = (brous,)-
Then we have det B = det A = det N = A.

Now we are going to give a lower bound for the height of A = det(v,,) = det(a-,) # 0.
We do not use the differential equation, as is done in [20]. We have then next Lemma
to estimate the height of each 7, .

Lemma 4.7 Consider v, , namely either by 5,0 0T dr s, s,. Then we have

h(bﬁr’awo) <345 log(TQ + 1) + Tohs + 6T + (So + 1)(18 + h4)
+3(Th + T3),

h(dro,s) < 3.450log(To + 1) + Tohs + 6Ty + (So + 1)(18 + hy)
+(T1 + T2)(16hg + 60log 2 + 12) + 852(T1hy + Tohs).

h(%’,#) = (3)

Lemma 4.8 We have

h(A) < log(L!) + L(To(h3 +6) + 3.450log(To + 1) + (So + 1)(18 + hy)

+8S2(T1hy + Tahy) + (T1 + To)(16hs + 60log 2 + 12)).

By means of the Liouville inequality, we can complete the proof of Lemma 4.1.

5 Extrapolation

It is possible to prove;

Lemma 5.1 Let A be an L x L minor determinant of M. Suppose

|A| < exp (—BIL log E) = E~L/S0,
0
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Then we have

|A| < exp L —L—-—2SO+1 logFE | . (4)
2\ Sy

Lemma 5.2 Assume that there exist Ty, Ti, T2, S0, S1 € Z > 0 with the following con-
ditions. So > 5, S —1 € 3Z, S1 € 3Z, (So + 2)(So + 5)(S1 + 3) > 2916111 1>, (So +
2)(50+5)(T1 +T2) > 32411115, (So+2)(51 +3) > 81 max{Tl,Tg}, (So+2)(T1 +T2) >

L .
27T Ts, So+2 > 9Ty. Assume further 5 > g E x (2Q)+2Sp—1, E; > Tog E x R with
log(L!)

Q = == 4 Ty(hs + 6) + 3.450 log(Ty + 1) + (So + 1)(18 + ha) + 857 (T1h1 + Toho) +

L
Tih
(T} + T)(16hy + 60log 2 + 12) and with R = 20%T5( 14 -

Now suppose

13 53
+ Taho) + -2—h4 + > log 2).

|A| < exp <—£ log E) :
So

Then we have A = 0.

We have to choose parameters to achieve the proof of the main theorem. We have
Put Ty = [coara293d°], Th = [cra2bgd®], Th = [coa1bgd3], So = 1+ 3[czaiazbg?d®),
S1 = 3|cagd], with absolute constants cg, c1, 2, €3, 4.

Since the quantity Q only differs from the assumptions in [20], thanks to the calculations
due in [20], it is sufficient to choose;

co =213 x 10%8, ¢ = ¢ = 9.85 x 106, ¢3 = 6.09 x 10%, ¢4 = 5.50 x 10°.
Thus we complete the proof of our main theorem since

(1 + Co)(l + Cl)(l + C2)

< 1.16 x 10%°
363 -2

and

18¢ >
0 \/Cg max(ﬁ,@) < 5.89 x 10'7.
363 4
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