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Orbital Gauss sums associated with the space of binary
cubic forms over a finite field
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§0 Introduction

We consider an orbital L-function associated with the space of binary cubic forms over rational
integer ring. The orbital L-function satisfy a functional equation. The functional equation
may be expressed in terms of an orbital Gauss sum. In this paper, we shall evaluate the
orbital Gauss sum.

Notation. If K is a field, K is its group of units and M, (K) is the ring of n X n matrices
over K. When K is commutative, GL,(K) is the group of n x n matrices over K which are
invertible. We use the notation B(K) and N(K) for the subgroups of GL,(K) of matrices of

the form
* ok 1 x
0 =)’ 01

respectively. Unless otherwise specified, Gx = G(K) = GL(K).
Let x be a Dirichlet character of conductor f. An usual Gauss sum is defined by

!
2 ‘ 1)’

f
r(0) = Y_x(@exp(

§1 The space of binary cubic forms over a finite field.

First, a review of the basic theory is in order. Let K be a field. The space Vk of binary
cubic forms with coefficients in the field K is of four dimensional, and we shall identify a
4-tuple = = (xy, 7o, T3, 74) € K* with the form given by:

Fy(u,v) = 21u® + 2200 + z3uv? + 240°.

We shall define an action of the group Gx = GL3(K) on Vi by the following functional
equation:

Fra= (et ) R (3 5)
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b) is any element of Gg. This is arranged so that

where z is any element of Vx and g = ((cl d

(8 2) -z = ax. Let P(z) denote the discriminant of the form F, explicitly given by

P(z) = 2223 + 18z, Ty7374 — 42324 — 47123 — 277773

The hypersurface Sk = {z € V| P(z) = 0} is invariant under Gk. Let Vi denote the set of
all nonsingular forms in Vi, Vi = {z € Vk| P(z) # 0} = Vx — Sk. A basic feature of this
representation is that

P(g- z) = (det g)*P(z).

A non zero rational function R(z) on Vi is called a relative Gg-invariant if there exists a
character x of Gk such that R(g-z) = x(g)R(z) for all z € Vg and g € Gk. The discriminant
generates the ring of relative invariants of this representation of GLs(K).

§2

Let p be a prime number. We shall assume that p # 2, 3. Let F, be the finite field of prime
power of order g. We put K = F;. The hypersurface Sk and nonsingular set Vj decomposes
into three G i orbits.

Lemma 1. We put s; = (1,0,0,0) and s2 = (0,1,0,0). The Gk-orbits in Sk are preciously

So = {0},
S1 = Gk - s1 = {z € Vk| F; has a triple root};
Sy = Gk - 83 = {z € Vk| F;, has a double root and a distinct simple root}.

For a form z in V}, let K(z) denote the cubic ring of z over K. The degree of K(z) is 3.

Lemma 2. Two nonsingular binary cubic forms over F, are Gk -equivalent if and only if their
cubic ring are same. The Gg-orbits in Vi, are preciously

VII{,l = {z € Vg| Fo(z) = Fg x F, x Fg};
VI’<,2 ={re€ VI’(| Fo(z) = Fg x Fo};
VII{,3 = {:I: € VII{I Fq(x) = ]Fq3}'

The order of stabilizer in Gk of nonsingular binary cubic forms with cubic ring Fy xF, x F,
F,2 x F, and Fys is 6, 2 and 3, respectively. If p = 1 mod 3, there are three nonsingular G-
orbits with representatives:

Iy = (1,0, _1)0)7 Zr = (T,O,"‘].,O), T = (S,O, 07 _l)a

where  is any element of F that is not a square and s is any element that is not a cube.

§3 The orbital Gauss sum.
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For simplicity, we shall assume that K =F,. Let ¢ be a character of multiplicative group
of FX of nonzero elements of F,,. Extend ¢ to I, by the convention ¥(0) = 0. The alternating
form:

1 1
[z,y] = 2195 — §x2y3 + '3:5531/2 — T4,

has the property that [g-z, det(g) 'g-y] = [z,y] for all 7,y € V and g € Gk. For z,y € Vx,
we put

mv/=1
z ’ l[w,y])-

(z,y) = exp(

We define the orbital Gauss sum.

Definition 1. For a,b € Vg, we define

W(%,a,b) = ) v(det(9))(z, g-v)

9€Gk
After basic calculation, we find that
W(p, g-a, g - b) = P(detg)""y(detg)) "W (¢, a, b)
where g, ¢’ € G(K). We can take the following set:

V(F,) = {3olvo € So} U {mltr € S} U {walyz € S2} U {yslys € Vi } U {walys € V] i} U {wslys € Vig}-

For positive integers 4, j, 0 < i,j < 5, we define a matrix valued Gauss sum W () as a 6 x 6
matrix whose (4, j) component is given by -m(—}();W(t/J, Yi, Uj)-
J

We shall assume that 1% = 1. Our main result is as follows.

Theorem 1. Let 1 be a trivial character. If p =1 mod 3, then

1 pP=1 p(®*-1) ?p(p Dp-1) Ipe-1)E*-1) 3plp—-1)(*-1)

1 -1 »plp-1) zpp-1)2p—-1)  —3p(p-1) —3p(®* - 1)
way=| L p-1 p-2  —zpp-1) —zp(p—1) 0

1 2p—1 =3p 619(:0 +5) —3p(p—1) 3p(p—1)

1 -1 -p —gp(p—1) 2P(P +1) —3p(p — 1)

1 —-p-1 0 Gp(p -1) —ip(p—1) 3p(p+2)

If p =2 mod 3, then

1 pP—1 p(*-1) ?p(p ~1)(p-1) iplp-1@E*—-1) 3p(@-1)p*-1)

1 -1 pp-1) zplp-1)(2p-1) —3p@-1) —-1p(p* - 1)
way=| ! p-1 pe=2  —aplp-1) —3p(p—1) 0

1 2p—1 =3p 6p(—p +5) ip(p+1) —3p(p+1)

1 -1 ~p tp(p+1) 3p(-p+1) ,}p(p +1)

1 —p-1 0 —zp(p+1) 3p(p+1) 3p(p —2)
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Theorem 2. Let 9 be a nontrivial cubic character. If p =1 mod 3, then

0 0o 0 0 0 0
0 pr(@) 0 Wp-DrE) —HEnee- V@) e - )W)
W(w)= 0 0 0 0 0 0
0 7(¥) 0 14 1x 1B
0 —y(dr)2(y) 0 gx %Y %D
where
| : 20y - ) 4G) — 22 (%)
A=r'@)+4r (@) = =5, B=9(s) (W) ~ 2" Whp = ),
_ 4.7 2 7'5(¢) _ 2 7 5(¢)
C=4(s) (W) + PWp ~ 7). D=ulars) () + ),
= (T M an =74y —M
X = g(ar)(r4(@) + ) and ¥ = 74() — -

Proofs. For simplicity we assume a = b = s;. We put w = ((1) (1)> . Elementary methods of
linear algebra give the Bruhat decomposition

G(K) = B(K) U B(K)wN(K)

where

B(K):{(S 2) (é ’;) la,ce K*ne K}

and B(K)wN(K) = { (g g) (é ’1‘) (‘1) (1)) ((1) T) ja,ce K*n,me K},

For g; € B(K) and g, € B(K)wN(K), we define

Wiy, s1,81) = Z P(detg)([s1, g1+ s1])

g1€B(K)

and

Wa(w,s1,8) = D W(detgs)([s1, g2 s1])-

92€ B(K)wN(K)

For 1 < ¢ < 2, the twisted action of g; on the element s; is given by g;-s; = (a?c71,0,0,0), go
s1 = (a®c™'n?,3an?,3an,a"1c?). A straightforward calculation shows that

Wi (¥, s1,81) = Z Y(detg)([s1, gi-s1])

geB(K)

= Y %))

a,ceK*X, neK

z{@—U% if =1,

0 otherwise.
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We deduce the analogous equality for Wa (4, sy, 51)

Wald,s1,8)= Y Y(detg){lsr, g~ s1])

geB(K)wN(K)

= Y pae)

a,ceKX, nmeK

= Y )

a,cEKX, nmeK

>, d(a)a)

a,cEK*, nmeK

=p*(p— D7(¥).

Combining all these equalities, we obtain

Wb o) = Talbsnon) + Wil ) = {p2(p ~1)7(#) othervise

More precious proof will be shown in [SM].
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