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ON THE GRADED RING OF SIEGEL MODULAR FORMS OF
DEGREE TWO WITH RESPECT TO A NON-SPLIT SYMPLECTIC
GROUP

HIDETAKA KITAYAMA

1. INTRODUCTION

The purpose of this article is to report my talk at the conference “Automorphic forms,
automorphic representations and related topics” on January 2010. We give explicitly
the graded ring of Siegel modular forms of degree two with respect to a certain discrete
subgroup of a non-split symplectic group. (Theorem 1.1 below). In this section, we give
an introduction for our main result and the way to prove it.

Let B be an indefinite quaternion algebra over Q of discriminant D with the canonical
involution ~. We define the group U(2;B) as the unitary group with respect to the

quaternion hermitian space of rank two, i.e.
(0 1}y (0 1
I\10/97\1 0) "
7z

where 'g = (— ) for g = Ccl 2) We can regard U(2; B) as a subgroup of Sp(2; R) by

U(2; B) := {g € GL(2;B)

b d
fixing an isomorphism U(2; B) ®q R ~ Sp(2; R). If D # 1, then U(2; B) is a non-split Q-
form of Sp(2;R). Let O be the maximal order of B, which is unique up to conjugation. If
we take a positive divisor D; of D and put D, := D/D;, then there is the unique maximal
two-sided ideal 2 of O such that ARz Z, = O, if p | D or p{ D, and ARz Z, = 7O,
if p | Dy, where 7 is a prime element of O,. We treat a discrete subgroup of Sp(2;R)
defined by

-1
I(Dy, Dy) := U(2; B) N (g e ) .
We are interested in studying Siegel modular forms with respect to I'(Dy, D). We
denote by M (I") the space of Siegel modular forms of weight k with respect to I' =

I'(D4, D3). The main theorem of this paper is the following:

Theorem 1.1. The graded ring of Siegel modular forms with resptect to I'(1,6) is given
explicitly by

P Mi(T(1,6)) = C[Es, Ey, Xsa, Es] ® X5C[E2, Ex, Xsa, Es]
k=0

® x15C[Ex, B4, X506, E6] ® Xs56X15C[E2, B4, X540, Eé),

where we denote by Ey (k = 2,4,6) the Eisenstein series which are defined in [Hir99),
and denote by Xsq, Xsb and x15 the Siegel cusp forms of weight 5, 5 and 15 respectively,
which are defined in Proposition 1.3 and 1.4 below. The four modular forms E3, E4, Xsa
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and Eg are agebraically independent over C, and xs> and x15° can be written by Es, Ej,
xsa and Eg. Fourier coefficients of these forms are computable and given in Appendiz.

Explicit constructions of the graded ring of Siegel modular forms of split case have
been studied by many authors, for example, Igusa(lgu62], Ibukiyama[Ibu91], Freitag and
Salvati Manni[FS04], Gunji[Gun04] and Aoki and Ibukiyama[AIO5], but, as far as the
author knows, no results were known for the case of non-split Q-forms of Sp(2;R). We
are short of available methods in the case of non-split Q-forms because they have only
point cusps. Hirai [Hir99] determined the spaces of low weights for I'(6,1) by using his
explicit formula of Fourier coefficients of the Eisenstein series (cf. Proposition 2.2), Oda
lifting (cf. [Oda77],[Sug84]) and Hashimoto’s explicit dimension formula (cf. [Has84]),
but he did not obtain the graded ring.

We summarize the way to prove our main theorem, Theorem 1.1. The dimension
formula which we obtained in our previous work (see subsection 2.2) plays a crucial role
in our work. The first step to prove Theorem 1.1 is to determine the spaces of weight
k < 4. Note that the formula can not be applied for the spaces of weight £ < 4. We will
prove Proposition 1.2 in section 3.

Proposition 1.2.
M(I'(1,6)) = {0}, M,(I'(1,6)) = CEy,
M;(T(1,6)) = {0}, M,(T'(1,6)) = CE,* & CE,.

The second step to prove Theorem 1.1 is to construct xsq, Xs» and x15. Generally speaking,
it is difficult to construct modular forms of odd weight. As for xs, and X3, we will prove
Proposition 1.3 in section 4 by detailed calculation of Fourier coefficients of the space of
weight 10

Proposition 1.3. The Siegel cusp forms xs. and xs» of weight 5 exist and are determined
uniquely up to sign by the following relations:
2_ 31518745731 pn 126433528507 _pn 5 11304517601 _ 3

X5a~ = 116023384089600 311423218947072 14285468759040

~ Terieosieso B2 B — mooarastste B2 Es” — gossiartonseson b,
X" = Trssasasanassoo B10 + Toearrosstar B2 — Teavaaacasw 2 B

~ saorsesem B2 e + srossssassasts B2Ba’ + saetonqsrasasno La e

As for x15, we will prove Proposition 1.4 in section 5. We denote by {Es, Fy4, X54, E6 }«
the Siegel cusp form of weight 20 obtained from E,, E4, x5, and Eg by the differential
operator which is reviewed in subsection 2.5.

Proposition 1.4. The Siegel cusp form {Es, E4, X5q, E6}« is divisible by xsb, S0 we can
define x15 := {E2, E4, X5a: E6 }«/ Xsb-

Fianlly, we will prove Theorem 1.1 in section 6. We can obtain the generating function
of dim¢ M (I'(1,6)) by using the dimension formula and Proposition 1.2. It is crucial for
the final step to prove the equality.



2. PRELIMINARIES

2.1. Siegel modular forms. We review Sigel modular forms to fix notation. Let Sp(2; R)
be the real symplectic group of degree two, i.e.

0, 1 02 1
Sp(2;R) = {g € GL(4,R) ‘ 9 (_i 0§) ‘9= (—iz 02) } '

Let £, be the Siegel upper half space of degree two, i.e.
$2={Z € M(2;C) | *Z = Z, Im(Z) is positive definite }.
The group Sp(2;R) acts on $, by

v(Z) := (AZ + B)(CZ + D)™*

for any v = (é, g) € Sp(2%;R) and Z € ;. Let T be a discrete subgroup of Sp(2;R)

such that vol(I'\$);) < co. We say that a holomorphic function F(Z) on £, is a Sigel
modular form of weight k of T if it satisfies

F((2)) = det(CZ + DY*f(Z), for Vy = (g g) eT,VZ € $,.

If a Siegel modular form F(Z) satisfies
det(Im(Z)"?)|f(Z)| is bounded on $s,

then we say that F(Z) is a Siegel cusp form. We denote by M(I') (resp. Sk(I')) the
spaces of all Siegel modular forms (resp. cusp forms) of weight k£ of I'. It is known that
M;(T) and Si(T") are finite dimensional vector spaces over C.

2.2. Dimension formula. Let B be an indefinite quaternion algebra over Q. We fix an
isomorphism B ®g R ~ M(2;R) and we identify B with a subalgebra of M(2;R). We
define U(2; B) and I'(D;, D5) as in section 1. It is known that U(2; B) ®qR is isomorphic
to Sp(2; R) by

¢:U(2; B) ® R — Sp(2;R)

ay (05) b2 —b1
_ | as Qy by —bs _ A B .
¢(g) = cs Ca dy —ds |’ g= (C D> € U(2a B) ®QR

—c —cy —dy d

whereA= [ ) B= by by = @), D= dy dy €B®gR, and we can
az Qa4 b3 b4 C3 C4 d3 d4

identify I'(D,, D) with a discrete subgroup of Sp(2; R) such that vol(I'(Dy, D;)\$2) < co.
In our previous paper [Kit], we obtained an explicit formula for dimensions of the spaces
Sk(T'(Dy, Dy)) of weight k > 5 for general (D;, D), including the vector-valued case. If

7
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we apply this formula to Si(I'(1,2p)) for an odd prime number p, then we have

k-2)(k-1)2k-3) ,,
27 3.5 =Dt

k(8 (2k —3)(8 — (&
+( +()273 ) (p)(p_(_?l))

dimeSk(T'(1, 2p)) = (p-1)

1 -1 -3
-m1-G)- 5(1 -3

2.11,0,0, -1, 0; 5]
L2000 () ()
[1,0,0,—1;4];:‘ 0 .-+ ifp=1,7mod8
22 1 --- ifp=3,5mod8
(—1)/2 - ifp=3
1 0 <« ifp=1,11 mod 12
T8 ) 0,1,-1;3], - ifp=5mod 12
(—1)k .- if p= T mod 12,
where (%) is the Legendre symbol and [aq, . . ., @m—1; m]x is the function on k which takes

the value a; if k =7 mod m. From this formula, we have dim¢Si(I'(1,6)) as follows. Our
formula is not valid for k < 4. In the following table, we formally substitute k¥ < 4 in the
formula.

k [LO 1 2 3 4 | 5 6

7 10 -« 15 -+~ 20 --- 25 -.-
dm|0 -1 0 -1 1|2 2 2

9
4 6 --- 13 --- 27 --- 47 ---

8
3

2.3. Fourier expansion. Let 2 be a maximal two-sided ideal of ©. Since the class
number of O is one, we can write A = On = 7O for some 7 € O such that |N7| = D,
where 2 corresponds to (D, D,) as in section 1. We define a three-dimensional Q vector
space B® := {z € B | Tr(z) = 0} and define a lattice A and its dual lattice by

A:=B’nA"', A*:={ye B°| Tr(zy) € Z for any z € A}.

Arakawa proved the following proposition in his master thesis [Ara75, Proposition 10] by
the same way as, for example, Maa[Maa71, §13].

Proposition 2.1 ([Ara75],[Hir99]). Let I'(Dy, D;) be the discrete subgroup of Sp(2;R)
defined in section 1 and k be a positive integer. Then f(Z) € My(I'(D1, Ds)) has the
following Fourier expansion

f(2)=Cs(0) + Y Cy(me[Tx(nZ2J)), (elz] := &™)

neA*
nJ>0

1
-1 0
an element of M(2;R). In particular, f(Z) € Sx(I'(D1, D2)) is equivalent to Cy(0) = 0.

where J = ) and nJ > 0 means that nJ is positive definite when we regard n as



2.4. Eisenstein series. By applying the method of Shimura [Shi83], Hirai [Hir99] studied
the Eisenstein series Ej (k > 2: even) on I'(D;, D,) and obtained an explicit formula of
Fourier coefficients of it. (Proposition 2.2 below). We define

A;rim = {7’ € A*

For n € A*, we denote by d, and y, the discriminant and the Dirichlet character of

Q(n)/Q and denote by B,, (resp. By y,) the m-th Bernoulli (resp. the generalized
Bernoulli) number. We define positive integers a, and f, by

077177 € A;rimv (2(1;177)2 = nfnz-
We put a,, = ordy(ay), fnp = ord,(fy,). Then the following proposition holds.

Proposition 2.2 ([Hir99] Theorem 3.10). Let k be an even positive integer. Then the
FEisenstein series Ey has the following Fourier expansion.

Ew(Z) =1+ ) C(n)e[Tr(n2)],

nEA*

n~ln & A* for any integer n}

nJ>0
BTy (1 = (PP ) (L = xa(2)P* )
-1, 1 = xn(@)p" )1 = xx(p)P"~ 1
Cn) =—%=21] T . [ =—=——11Fmk.
By Bok—2 2D p -1 oIDs pi—-1 »
((an,p an,p—1
D opP L (14 xy(p) Y pPE-IHEL L gfpIDy,
t=0 t=0
an,p Gn,p—1
(2k—-3)t (2k—3)t+k—2 o
p — Xn(p p - if p| Da,
Fymk) = { 2= ®) 2
anp (Gnp+tfnp—t an,pt+fnp—t—1
Z { Z p(2k——3)l+(k—1)t _ Xn(P) Z p(Zk—3)l+(k—1)t+k—2}
t=0 1=0 1=0
\ . -«« ifp [D.
We see from Proposition 2.1 that
Mk(F(Dl, Dz)) = Sk(F(Dl, D2)) if k is Odd, and
M (T(Dy, Ds)) = Sx(T'(D1, Ds)) & CE}, if k is even.

2.5. Rankin-Cohen type differential operators. We quote the following proposition
from Aoki and Ibukiyama[AI05].! For Z € H,, we write the (i, j) component of Z by z;.

For Siegel modular forms f; € My, (T) of weight k; (1 < i < 4), we define a new function
{f17f27f37 f4}* by
kifi kof: ksfs kafs
2h Ok B Oh
{f1>f2)f3af4}* = 2& gi; Qg Qﬁ :
3212 3212 5212 az12

Ozz2  Oz2  Ozp2  Oza22

n [AIO5], Proposition 2.3 has been proved in the case of general degree n.

79
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Proposition 2.3 (Aoki and Ibukiyama [AI05)). (i) The above function {f1, fa, f3, fa}« is
a Siegel cusp form of weight ky + ko + k3 + kg + 3.
(ii) f1, fa, f3, f4 are algebraiclly independent if and only if { f1, fa, f3, fa}s # 0.

3. PROOF OF PROPOSITION 1.2

In this section, we will prove Proposition 1.2, that is, we will determine the spaces
of weight k < 4. Note that the dimension formula is not valid for weight k£ < 4. (See
subsection 2.2).

We prepare to calculate Fourier coefficients. If we put

B:=Q+Qa+Qb+Qab,  a®=6,b°=5,ab=—ba,

then B is an indefinite quaternion algebra over Q of discriminant 6, which is unique up
to isomorphism. Let © be the maximal order of B, which is unique up to conjugacy. It
is known by Ibukiyama [Ibu72],[Ibu82] that © can be taken as

D=Z+Z1;b+Za(12+b)+Z(1_;a)b.

If we put 2 = a9, then 2 is the unique maximal two-sided ideal corresponding to (1, 6).
By a straightforward calculation, we obtain

. ,00+b+ab b

For n = x(5a + b + ab) /60 + yb/12 + za/6 € A*, we denote it by n = [z, ¥, z] and we can
see from a direct calculation that the condition nJ > 0 is equivalent to

>0, and
my = —(52% + 5y® + 242% — 2zy + 242z) > 0.

We have the following modular forms which are obtained as products of Eisenstein
series Ey’s:

weight 2 : Es, weight 4 : E,?, Ey,
weight 6 : Ey3, E2E,, E, weight 8 : Fy?, Ey2E,, EyEg, E4?, E.

For the sake of simplicity of Fourier coefficients, we use the following ¢ instead of Ej
(k=2,4,6,8):

2 = Es, P = —23 - (B4 — p2?),

0o = — ;38 (Bs — 02%) — 12 . 0o, s = 138811F,

then we have Fourier coefficients of them as in the following tables.



) )

9062784 | —5116 | —2180 | —56 | 1528671231360
49322592 | 12476 | 9556 | 90 | 5895562286880

52
64

3 )

[m,] 1 T @2 [ pa | 02° [wapa] w6 |
0 [10,0,0] || I 1 0 1 0 | 0
3 12,1, -1 48] 9 | 1 144 1 | 0
£ [[2,0, -1 72| 144 | -1 216 | -1 | 1
12 4,2, —2][[192 | 2688 | —2 || 7488 | 46 | —6
16 | [4,0, —2] || 216 | 5616 | 6 | 16200 | —66 | 42
19 [ [4, 1, —2] || 144 || 7200 | —5 || 21168 | 19 | —16
24 | [5, 1, —2] [ 288/ 15552 | 12 || 45792 | —36 | —60
27 116, 3, —3] | 192 | 18816 | 36 | 166464 | 132 | 96
36 | [6, 0, —3] || 360 || 41040 | —45 || 495288 | 363 | 21
40 [[6, 2, —3] | 288 | 52416 | —4 | 654048 | —580 | 100

[ My n | ©o° 19022% | a6 ©04° Vs
0 10,0, 0] 1 0 0 ] 0 138311
3 2,1, —1 192 1 0 0 13440
4 2,0, —1] 288 -1 1 0 87840
12142 3] 14592 | 94 | =6 | 1 | 110974080
16 | 4,0, —2 31968 —138 114 1 719673120
19 | 4,1, -2 42048 43 32 -2 2181836160
34 (15,1, —2] | 91008 | —84 | 84 | 4 | 10043268480
57 16,3, —3 || 553728 | 2532 | —192 | —4 | 21427714560
36 | 6,0, -3 1736352 | —4413 | 3261 —8 | 140109455520
20 (16, 2, —3] | 2302848 | 3452 | —764 | —4 | 277771616640
13 (16,1, =3] || 3318336 | —1613| 092 | 18 | 441018218380
28 [[8, 4, —4] [ 11137152 | 16012 | 3396 | 82 | 909100536960
51 []7,2, —4] || 7825536 | 3318 | —4992| 40 | 1337603408640

71, 4
8,0, —4

) )

From these tables and the results of the dimension formula, we can see the following:

M,(T(1,6)) D CE;, M4(I'(1,6)) D CE,* @ CE,,
Ms(T'(1,6)) = CE,* ® CE,E, ® CEs,
Ms(I'(1,6)) = CE,* @ CE,*E, ® CE,Es ® CE,>.

__ 48860325 1 4 __ 107719950 1~ 2 - 26257000 387686 1 2
(EB = 18184241 E, 18184241 Ey"Eq + 18184241 EyEe + 138811E4 )

We can prove Proposition 1.2 by using the spaces of weight 6 and 8. We prove the
following lemma.

Lemma 3.1. If k(# 6) is a positive divisor of 6, then there are no non-zero cusp forms
of weight k.
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Proof. We assume that there is a non-zero cusp form f of weight k. Then the Fourier
coefficients of f? € Sx(I'(1,6)) are:
C1(0,0,0) = C(0,0,0) - C¢(0,0,0) =0,
Cr(2,1,-1) = 2-C4(0,0,0) - Cs(2,1,-1) =0,
Cr2(2,0,-1) =2-C5(0,0,0) - C¢(2,0,-1) =0
so the Fourier coefficients of f¢/% € Sg(I'(1,6)) are also
Cfe/k(0,0,0) = Cfs/k(z, 1, —1) = CfS/k(2,0, ——1) = 0.

Hence we have f8/% = 0 because of the table of Fourier coefficients of the space of weight
6 on page 7, but this contradicts the assumption that f is not zero. O

Proof of Proposition 1.2. Noting that modular forms of odd weight are necessarily
cusp forms, we see that M;(T'(1,6)) = M3(I'(1,6)) = {0} by Lemma 3.1. Also we see that
M,(I'(1,6)) = CE, by Lemma 3.1 because if there is a non-zero element f of M,(I'(1,6))
which is linearly independent of E;, then we can assume that f is a cusp form by adjusting

Next, we prove My(I'(1,6)) = CE;>®CE,. We assume that there is a non-zero element
f € My(T'(1,6)) which is linearly independent of E,* and E4. Then we can assume that
C;(0,0,0) = C¢(2,1,—1) = 0 by adjusting them by E,? and Ej (cf. the table on page 7).
Then the Fourier coefficients of f2 € Sg(I'(1,6)) are

Cy2(0,0,0) = C£(0,0,0) - C4(0,0,0) =0,
Cp(2,1,-1) =2-C(0,0,0) - C¢(2,1,-1) = 0,
Cp2(2,0,—1) = 2-C4(0,0,0) - C¢(2,0,—1) = 0,
Cp(4,2,-2) = 2-C4(0,0,0) - C7(4,2,—2) + C(2,1,-1)* = 0.

Hence we have f2 = 0, and therefore f = 0. This contradicts the assumption.

4. PROOF OF PROPOSITION 1.3

In this section, we will prove Propositin 1.3, that is, we will determine the spaces
of weight 5 and 10. By the dimension formulla, we have dim¢M;5(I'(1,6)) = 2 and
dimeM;o(T'(1,6)) = 7. We can obtain a 6-dimensional subspace V' of Myo(I'(1,6)) by

products of Eisenstein series Ej’s:
V = CE,® ® CE,*E; ® CE»*Es ® CE,E,*> ® CE,Eg & CEo.

We define ¢, ¢4 and g as in section 3 and define ;o by

_ 31513745731 | 5 52522796831 3
P10 = Frsos3384080600 * (£10 — P2°) + su500eT278400 * P2 P4

21884300761 . 2 _ 829232049 2 | 318067693 .
+ 181508546400 * P2 P6 — 171004675 < P24 T Te7ic0ae7s | P4¥s:

Then we have Fourier coefficients of them as in the following table.




| my | n || ©2° l ©2° P4 ] ©2” 06 I P24 ) P4 | $10 ]
0 [0, 0, 0] 1 0 0 0 0 0
3 , 1, =1 240 1 0 0 0 0
4 ,0, -1 360 -1 1 0 0 0
12 , 2, —2 24000 142 -6 1 0 0
16 ,0, =2 52920 —210 186 1 -1 0
19 , 1, =2 69840 67 80 -2 1 1
24 , 1, =2 151200 —132 228 4 -2 | -4
27 , —3 1291200 7236 —480 44 —6 | —6

~

4137480 | —14373 | 11685 | 64 | —36 | —24

40 | |6, 2, —=3] | 5496480 12092 676 —28 | —14 | -12
43 |16, 1, —3] | 8018640 -5021 9008 | =78 | 55 | 23
48 | [8, 4, —4] || 40679520 | 155356 | —6540 | 82 102 | 96
51 , —4] 1| 19124640 | 10182 3648 -8 | —44 | 20

22154400 | —17188 | 15652 | 112 4 -8
189615960 | —326884 | 275764 | —654 | 118 | 320

|
N

w
>
00| | | ool o) o o | o] on| | ol o
O| | pof x| = o] Of wof =] =] o] o] of -
|
o

|
>

Lemma 4.1. For a non-zero element f € M5(I'(1,6)), there is a non-zero element xy € V
such that x is divisible by f (i.e. the function xs/f is holomorphic).

Proof. We can take some g € Ms(I'(1,6)) such that M5(I'(1,6)) = Cf & Cg. We have
either f2€ Vor f2¢ V. If f2 € V, Lemma 4.1 holds for x; = f?. Hereafter we assume
f2 € V. Then we have M;o(I'(1,6)) = V & Cf2. We have either fge Vor fg g V. If
fg € V, then Lemma 4.1 holds for x; = fg. If fg € V, we can write fg =z + - f? for
some z € V and some r € C*. Hence wehave V3> z = fg—r-f2 = f(g—r- f) and
z # 0. We see that Lemma 4.1 holds for xy = . O

Lemma 4.2. We can find a basis xsq, Xsp of Ms([(1,6)) which satisfy the following
conditions:

Cys.(0,0,0) =0, Cysn(2,1,-1) =0, Cys (2,0,—1) = 1,
Cys, (0,0,0) =0, Crr(2,1,-1) = 1, Cyer(2,0,—1) = 0.

Proof. Let f,g be a basis of M5(I'(1,6)). We see from Lemma 4.1 that we can take r,
s € C so that f(rf + sg) € V — {0}. We put Fourier coefficients of them as

Cf(2715'—1) = qQ, Cf(2a0a'—1) =/8a
Cy(2,1,~1) =7, C,(2,0,-1) = 6

83
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We assume o = v = 0. Then Fourier coefficients of h := f(rf + sg) are as follows:
Cr(0,0,0) = C4(0,0,0) - C4(0,0,0) = 0,
Ch(2,1,-1) = C4(0,0,0) - Cy(2,1,-1) + C¢(2,1,-1) - Cx(0,0,0) = 0,
Cr(2,0,-1) = C4(0,0,0) - Cp(2,0,—-1) + C¢(2,0,-1) - Cy(0,0,0)=0
Ch(4,2,~2) = C4(0,0,0) - Cp (4,2, —2) + Cs(4,2,-2) - C4:(0,0,0)
+ Cf(2,1,-1) - Cp(2,1, -1)=0,
Ci(4,0,-2) = C5(0,0,0) - Cy:(4,0,-2) + C¢(4,0,-2) - C(0,0,0)
+Cy(2,0,-1) - C5(2,0,—1) =0,
Cn(4,1,-2) = C;(O, 0,0) - Cfl(4, 1,-2)+ Cf(4, 1,-2)- Cf/(O, 0,0)
+C¢(2,0,-1) - Cp:(2,1,-1) + C¢(2,1,~1) - Cy(2,0,-1) = 0,
where f' := rf + sg. Hence we have h = 0 because of the table of Fourier coefficients
of the space of weight 10. This contradicts the above. Hereafter we assume that either
a or v is non-zero. We can assume that « = 0 and v = 1. If 8 = 0, then the Fourier

coefficients of h satisfy the same condition as above. So we have 3 # 0. We can assume
B=1andd =0. O

Y

Proof of Proposition 1.3. We take a basis x5, and xs, which satisfy the condition of
Lemme 4.2. Then we can verify that Fourier coefficients are as follows:

Cyxs.(0,0,0) =0, Cxsa(2,1,-1) =0, Cysa(2,0,-1) =1,

CXsa (3’ 0, "2) =0, CXSa(3’ 0, —1) =0, CXsa (3v 1, —2) =-1, CX5a(37 1, —1) =-1,
Cys(0,0,00 =0,  Cyy(21,-1) =1,  Cy,(2,0,-1) =0.

Cysy(3,0,-2) = =1, Cyy(3,0,=1) = =1, Cyp(3,1,-2) =0,  Cyy,(3,1,—1) =0.

By Lemma 4.1, we have f := xsqs(Xsa+8xs) € V for some o, 5 € C. Fourier coefficients
of f are

C5(0,0,0) = C4(2,1,—1) = Cy(2,0,—1) = C4(4,2, —2) =0,
Cs(4,0,-2) = o, Cs(4,1,-2) =3

by the same calculation as in the proof of Lemma 4.2. We can see from the table of Fourier
coefficients of the space of weight 10 that f = —apsps + (a + )10 and C¢(5,1,-2) =
—2a — 48. On the other hand, we have

Cf(5, 1, —2) = CXSa (O, 0, 0) . Cfr(5, 1, —2) + sta (5, 1, —-2) . Cf/(o, 0, 0)
+ th (2, 0, ——1) . Cfl(3, 1, —1) + CX5Q(3, 1, —1) . Cfl(2, 0, —-1)
+ CXsa(Z’ 1, _1) ’ Cf'('?” 0, -1) + CXs«:(37O’ _1) ) Cf’(27 1, —1)
= —2q,

where f' = axs. + Oxs»- Hence we have 3 = 0, and therefore we can assume f = ys5,2
and '

f = 10 — paps
__ 31513745731 __ 126433528597 5 11304517601 3
- 416023384089600E10 311423218947072E2 + 14285468759040E2 E4
41742579637 2 38947571 2 _ 1000259890201
1557116094735360 Ey°FEg 120147846816 ErEy 9083177219289600 E4Eg.
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If Xs0ax50 € V, then we have xs54(x50 + X56) € V and this contradicts the above argument.
Hence xs.xs € V and Mi1o(I'(1,6)) = V @ CxsaXxss- We put xss2 = v + TXsaX5s for some
v €V and r € C. Then v = x5(xs6 — TX54) and

C4(0,0,0) = C4(2,1, 1) = C4(2,0,-1) = C4(4,0,-2) = 0,
Cr(4,2,-2) =1, C§(4,1,-2) = —r

by the same calculation as above. Hence we have v = o042 + @406 + (=7 + 1)¢10 and
Cy(5,1,—2) = —4r — 2. On the other hand, we have '

Co(5,1,=2) = Cy, 0,0,0) - C(5, 1, =2) + Cyy (5,1, =2) - C(0,0,0)
+ C'Xs,,(z, 0,-1)-Cy(3,1,-1) + C'Xs,,(3, 1,-1)- Cy(2,0,-1)
+ CXSb(2’ 1’ —1) ' Cv’('?’a 07 —1) + Cx$5(3’ Oa _1) ' Cvr(2, la _1)
= -2,

where v’ = x5, + 'Xs.. Hence we have r = 0, and therefore v = x5? and

X5b2 = paps® + PaP6 + P10

__ 31513745731 266799861 5 261925781 3
— 416023384089600 Eyo + 1281577032704 E, 1587274306560E2 E,
1914649869 2 935053847 2 551346719209
6407885163520E2 Es + 51903869824512 ErBy” + 3406191457233600E4E6'

5. PROOF OF PROPOSITION 1.4

In this section, we will prove Proposition 1.4, that is, we will determine the spaces of
weight 15 and 20. By the result of the dimension formula, we have dime Ma(I'(1,6)) = 28.
We can verify that the subspace V' of Myy(I'(1,6)) spanned by all products of E,, Ej,
Xsa; Xso and Eg is of dimension 26. If we put 8, := {Ea, E4, X5a, F6}+ and dggp =
{Es, Ey4, X5b, E6}«, then we can verify that the complementary space of V' in My (I'(1,6))
is spanned by da0, and dogp by calculating Fourier coefficients of them.

By Proposition 1.3, we see that E,, E;, Fg and xs,% — x5, are algebraically dependent
over C, so we have {Ej, E;, Fg, x5a> — Xxs6°}« = 0. By an elementary property of the
differential calculus, we have

{B2, B4, X50%, Es} = 2 X5a - {E2, Ea, X0, Fe}s
Il
{EZ, E4) X5b2a EG} =2 X5b * {EZa E47 X5b, ES}*-

Hence we see that there is a cusp form xi5 such that {Es, Ey4, Xsa, F6}+« = XspX15 and
{Ez2, B4, x5, E6}« = X5aX15- .

By the result of the dimension formula, we have dim¢M;5(I'(1, 6)) = 13. We see that
the subspace U of Mj5(I'(1,6)) spanned by all products of Ez, Ey4, Xsq, X56 and Eg is of
dimension 12. If x5 € U, then we see that dy0, = XsX15 € V, but this is not the case.
Hence we see that M5(I'(1,6)) = U @ Cxs.

a
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6. PROOF OF THEOREM 1.1

In this section, we will prove Theorem 1.1. First, we calculate the generating function
of dim¢ My (I'(1,6)). From the dimension formula in subsection 2.2 and Proposition 1.2,
we see that

> dime Mg (T(L,6))t* = 1 +¢* +2¢* + > dimeSk(T(1,6))* + > ot
k=0 k=5 k=3
(1+)(1+1t2)
(1-)(1 -1 = 5)(1 - %)
By the results of the previous sections, we have obtained

(1) @Mk(P(l,ﬁ)) 2 C[E;, E4, X54, X5b: F6, X15)-
k=0

We do not mean that six modular forms in the right side of (1) are algebraically indepen-
dent over C. We need to determine the precise structure of the right side of (1).

Lemma 6.1.
(1) Ea, E4, x50 and Eg are algebraically independent over C.

(i) X562, X15> € C[E2, E4, X350, Eé]-
(iii) 1 and xsp are linearly independent over C[E,, Fy, Xsq, Fs).
(iv) 1 and x15 are linearly independent over C[E, Ey, Xsa, X5, E6)-

Proof. (i) This is followed from Proposition 2.3 because {Ey, Ey, X5a, E6}x = XxssX15 7 0.
(i) This is proved by comparison of Fourier coefficients. In fact, we give-the expression
of xs.2 and xs,2 by Es, Ey, X5, and Eg in Appendix.
(iii) If o + Bxsp = O for a, B € C[E3, Ey, X5, E6), then we have o? = 5,2, We see from
(i) that o and 32 can be regarded as the squares of polynonials with four variables Ej,
E4, x5« and Eg, while xs2 is not so. Hence we have a = 8 =0.
(iv) If f + xs09 = xa5(h + xs0J) for f,g,h,j € C[Ey, E4, Xsa, E], then we have

2(fg — x15°hi)xss = —f2 — x56°9% + x15”h” + X5 X1575°-
We see from (ii) and (iii) that
(2) fg = x15°hj,
(3) 2+ xs629° = x152(R? + x5%5%)-
We can see that x5 is irreducible as a polynomial with 4 variables E,, Ey, x5, and E.
We see from (2) that either f or g is divisible by x15%. We see from (3) that both f and

g are divisible by x152. By dividing (2) and (3) by X152, we obtain equations of the same
shape as (2) and (3). We can repeat this infinitely, so f, g, h and j must be 0. O

We see from Lemma 6.1 that
C[Ez, E4, Xsa, Xs5b> Es, X15] = CE2, E4, X5, Xsb, E6] ® X15C[E2, E4, Xsa, X5, E6]
= C|[E3, E4, X540, Es] ® x5:C[Ez, Ey4, X5a, Es|
® C|[Ez, E4, Xsa, Es) ® x5tC[E2, Es, X5, Eé).

Hence the generating function of dim¢Mj(I'(1,6)) is the same as that of dimensions of
right side of (1). We have completed the proof of Theorem 1.1.



We give a table of Fourier coefficients of the generators of @;., Mk(I'(1,6)) in Theorem

7. APPENDIX

1.1.
| n | B E, ] FEg [ Xsa | X6 | x15 |
000 [ 1 T 1 0] 0 ] 0
2.1-1) | 48 | 960/13 5016/341 o 1 ] 0
(20.1) | 72 | 2160/13 7560,/341 T 1 0 ] 0
(4,2,-2) [ 192 | 35520/13 1066464 /341 0 16 0
(4,0,-2) || 216 | 71280/13 3878280/341 6 0 0
(4,1,-2) || 144 | 95040/13 8134560/341 -16 | =27 0
(5,1,-2) || 288 198720/13 24101280/341 0 0 1
(6,3,-3) [ 192 | 234240/13 39682944 /341 0 12 0
(6,0,-3) | 360 | 546480/13 | 149423400341 | 81 | 0 | 0
(6,2,-3) || 288 | 682560/13 239023008/341 40 0 0
(6,1-3) [ 144| 717120/13 | 10348128/11 | 16 | 135 | O
(8,4,-4) | 480 | 1141440/13 546063840/341 0 256 0
(7,2,-4) || 288 |1157760/13 694612800/341 0 54 112
(7,1-4) || 288 1304640/13 | 7781 17536/341 —68 0 162
(8,0,-4) |l 504 | 2283120/13 1985686920/341 | —92 0 0
(8,3,—4) 144 | 2168640/13 | 2360177568/341 128 | —189 0
(8,1,-4) | 336 3024960/13 | 3938762016/341 0 85 0
(8,2,-4) | 576 | 3516480/13 4303182240/341 | —224 | —432 0
(9,3,-5) | 576 4544640/13 6765837120/341 0 0 —3564
(9,1,-5) || 288 371520 8301345696/341 | —112 0 —-5103
(9,2,-5) || 288 4752000/13 9366960960/341 | 112 162 | —1296
(10,2,-6) || 864 | 6557760/13 12363956640/341 0 0 14976
(10,0,-5) || 720 | 6968160/13 14784532560/341 | 890 0 0
(12.6,-6) | 768 | 8666880,/13 | 20002277376/341| 0 | 192 | 0

We can write xs;2 and X152 as polynomials of 4 variables E,, E4, X5, and Eg as follows.
These are followed from the comparison of Fourier coefficients.

yso? = (5005/8149248) * Eo5 — (15587/16298496) * Eo*E, — (4433/16298496) x E,*Eg
+ (1859/5432832) * EyE4® + (4433/16298496) * E4Eg + Xsa°,

x1s2 = (7193626131746618585,/222607917767232721152) * E,™° — (307986483294442487
/1426973831841235392) % E, '3 B, +(1416328854305111/54400761917701056) * E; " Eg + (40
87366592607641/6860451114621324) * E;' E, — (192607575137275/1394891331223104)*
E,"E,Eg + (50704311727294/69507316593) * E»'%xs,% — (52003816542174887/59873027
009422464) x B, E;® + (2912260461769/319066052303232) x E»° Eg* 4 (1922370985523/67
06208323188) * E,8 B2 Eg — (20825649443174/5346716661) x Eo® Eyxsa” + (1029897329520
24139/146356200445254912) * Ey" E;* — (96923094941/2727060276096) * E," E4Eg” + (27
583081580,/203833773)% Ey” EeXsa? — (92968372638167/321897999513024) x E,° E4® Eg+ (65
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651791909/36815313727296) » E,°Ee® + (3387092572918/411285897) * Ex® E4*xsa> — (730
4217732454747 /24392715074209152) * E,° E,® + (30622846693 /629321602176)  F,° E,” E”
— (256204744/505791) % Ey® E4 Eg X502 — (10936889634816 /19651489) % Ez° x50 * + (149449420
65833/107299333171008)* E,* E,* Eg— (27494911499/6135885621216) * o * E4 Eg* — (117660
7216174/137095299) * Ey* EXsa + (10349644/597753) * Ex* Eg*xs4” + (36987323269/710
702030016) * E,*E,8 — (49717185583/1887964806528) * Eo’ E*Es” + (1709446981/88629
45897312) x E,3 Eg* + (773604236/1206117) * E;® B4® Egxsq® + (2503569715200/1511653)*
E5® Eyxsa®—(26102557/1042085088) + B, E,5 Eg + (2820958987 /943982403264) x E,” E,” Eg®
+ (509138188/116281) * Ey?Es*xsq? — (2420960/45981) * Eo’ E4Eg*xsa” — (31993344000
/57629) % Ey? Egxso* +(18421/4583952) + By Ey* Eg? — (159653813 /681765069024) + Ey E E*
— (843440/3069) % F, 43 Esxsq? — (136400/66417) * Ey Es®xs,2 — (137631744000/116281)
E2E®ysat — (4433/20627784) x EEs® + (39651821/4431472948656) * Eg° — (301621736
/348843)x E4®x 542 +(1100/27)% E4® Eg* X542 +(3018240000/4433) * E4 Es 50" +(40993977139
200000/19651489) * X5.°.
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