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Abstract
In this article, solutions to the homogeneous associated Laguerre’s
equations
@, z+@ (z+a+)+e-f=0 (z=0)
(p,=d"@/dz" for v>0,9, =@ =9(z) )

are discussed by means of N-fractional calculus operator (NFCO- Method).
By our method, some particular solutions to the above equations are
given as below for example, in fractional differintegrated forms.

Group L.
. z , _~{c+f+1} —
(1) g=(e "z e )-(1+/3) =P0i(aB) (denote)
and
- —(a+f+D) | = -
(11) ¢ =" ) i = P

And the familiar forms are

— (e A1) N .1
Pijesy =€ 2 L R(a+La+f+1 z)

and
i I'(a) ez )
z...B . 2 - —_ -—
Pr2ye.m = 7€ T(a+B+1)" e F(B+11-a; ~z)
respectively.

Where _F (---) is the generalized Gauss hypergeometric function.
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§ 0. Introduction ( Definition of Fractional Calculus )
(I) Definition. ( by K. Nishimoto ) ([1]Vol. 1)
Let D={D .D}, C={C,C},

C_ be a curve along the cut joining two points z and — % +ilm(z),

C, be a curve along the cut joining two points z and ®+ iIm(z),

D_be a domain surrounded by C_, D, be a domain surrounded by C, .
(Here D contains the points over the curve C ).

Moreover, let f = f(z) be a regular function in D(z €D),

e _fv+D . f@) ), (1)
fo=(fh=c(f), = o fC(C—z)”l g (vé )A
flm=lm (H, (m€Z), (2)
where ~% sarg(f ~z)sa for C., Osarg(l-2z)=2x for C, ,

=z, zEC, vER, T ;Gamma function,
then (f), is the fractional differintegration of arbitrary order v ( derivatives of

order v for v >0, and integrals of order —v for v <0 ), with respect to z , of
the function f , if l(f)vl <,

—--——————/ D D+. - -
-—w-{-f[m(z) 2 z O°+tl'm(¢)
“HN
o C,
Fig. 1. Fig. 2.

Notice that (1) is reduced to Goursat's integral for v =n(€2Z") and is
reduced to the famous Cauchy’s integral for v =0. Thatis, (1) is an
extention of Cauchy integral and of Goursat's one, conversely Cauchy
and Goursat's ones are spetial cases of (1).

(IT) On the fractional calculus operator N [3]
Theorem A. Let fractional calculus operator ( Nishimoto's O;}erator) N” be
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N=(P(V’?‘1)f dcg L\} (Ve-:z—)s [Referto(l)] (3)
\ 2ai Jo(g-z)"")
with N™=limN  (m€Z"), (4)

and define the binary operation © as

Nf oN®f=NPN®f=NO(N°f) (a.BER), (5)

then the set
j - _ I v ( 6 )
[N"}=IN]veER]
s an Abelian product group ( having continuous index v ) which has the irverse
transform operator (N*)™ = N™* to the fractional calculus operator N” , for the
function f suchthat f €F =1 f; O.ﬁ]fvl< °°7V€R}’ where f = f(2) and z&C.

(Vis. —® <v < ).

( For our convenience, we call N* o N* as product of N and N°.)
Theorem B. " F.O.G. {N"} " is an " Action product group which has continuous

index v " for the set of F .( F.O.G ; Fractional calculus operator group ) [ 3]

Theorem C. fet

§:=f NIU{0}={N"IUL{-N"IU{0} (vER). (7)
Then the set S is a commutative ring for the function f EF , when the identity
N®+NP=N" (N° N°,N" ES) . (8)
holds. [ 5]
(II1) Lemma. Wehave[]]
: b -iza r(a —b) - F<a _ b>
(1) ((z-0¢)°). = — o) {————-——-—<oo ,
z=C) ), =¢ s (z-0) T(-b)
(i1) (log(z~c)), == ¢ ™ T(a)(z-c)  ([T(e)]<»),
(iii) ((z=) ). =—e"" o log(z-c¢) ([F(a)f<°°),
where z—c=Q-for(i)and z~c=0,1 for(ii ), (iii) ,
- % I(a+]) (u=u2)
(1\’) (M'V = .
) ,Z, ET(x+1-k) e v ov(e))

( Generalized Lejbniz rule ),



§ 1. Preliminary

(I) The theorem below is reported by the author already ( cf. JFC, Vol. 27, May
(2005), 83-88.).[31]

Theorem D. Let

P=P(a,ﬁ,y):= SinJ'KZ'Sinﬂ:(y "a""ﬁ) (lP(a,ﬁ,]/)l=M< 00)

and

Q=Q(a=ﬁvy):=P(ﬁra9Y)w

sinnt(a + ) sinx(y —a)

When o,B.,y €Z, . we have ;

(i) ((z=¢)*(z=0)f), =™ P(a,B.y)

(ii) (z-of - (z-0)%), =¢™™ Q(a.B.y)

(ii1)

where

I['(—a-p)
(Re(a+p+1)>0, (I+a-y)&Z, ),

[y —a-p) @
[(-a-B)

(Re(a+B+1)>0, (1+B-y)EZ, )‘

o na+fy  _ -imy I'(Y‘“a—ﬁ) o &6~y
((z—c)™7), =€ ——_——-F(—a~—[5) (z—0)

Ty -a - B
| T(-a-B) |

z-c=0, < .

Iy ~a —ﬁ)(z_

b

C

-C

Then the inequalities below are established from this theorem.

Corollary 1.
(1)
and
(i)

where

We have the inequalities

((z= 0" (z=¢)f), =((z=¢) (2= )%),,

((z= 0% (2= O)F), =((z~)*"),,

o B,y €Z;, a=p, z-c=0.

(1P(B.o, )= M <®)

)a+ﬁ—‘y

a+f-y

7

1

(1)

(2)

(5)

(6)

(7)

72
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Corollary 2.
(1) i;W‘xen a.B.y €Z, . and
Pla,fB.7)= QB o y)=1, (8)
we have
(2= O (2= ). =((z=F (-0, = (=", (9)
(Re(a+ pB+1)>0, (l+ox—7)&Zy , (1+B-VIEZLo)-
(ii) When vy =m€EZ, . we have ; |
(z= ) (z- "), = (2= 9" (2= )n =((z- ") (10)

52. Solutions to The Homogeneous Associated Laguerre's
Equations by N-Fractional Calculus Operator

Theorem 1. Let ¢ = o(z) EF ,then the homogeneous associated Laguerre’s
equation
[@:z;0,6]=@, z+¢ (-z+a+1)+g =0 (z2=0) (1)
(¢, =d"@/dz" for v>0,9,=¢=0(z) )

has particular solutions of the forms (fractional differintegrated form )

Group I.
(i) =€ ") 4 = Payes (o0 (2)
(i1) @ =(Z_(a+ﬁ+l) 'ez)-(na)Eq’[z}(a,ﬁ) (3)
Group II.
(1) §0=€z(e-z'2ﬂ)a+ﬁ’:‘¢[31<a.ﬂ) (4)
(11) g =€ (2" € )0p = Puyo.n (3)
Group 1L
. -, z  _-(B+ =
(1) =2 7" tiars) = Vst (6)
(i) 9 =2 ) _teaep = P611an) (7)
and
Group I'V.
(1) g=z"%" (" ‘zmﬁ)ﬁ =P 171(a.8) (8)
(11) @ =Z_aez(za+ﬂ'e—z)5 = D8 (@, ) (9)



Proof of Group I.
Operate N-fractional calculus (NFC) operator N to the both sides of equation’( 1),

we have then

(@,°2), +(p, (-z+a+D), +(@ B), =0 (V&Z'). (10)
Now we have
R I(v+1) (11)
(9, 2), = ; KIT(v +1- k) (@2)y (2
G Tt B (12)
(@ (-z+a+1), =@, (-z+a+l) -@, v (13)
and
(@ B), =9, B . (14)
respectively, by Lemmas (i) and (iv).
Therefore, we have
@, z2+@,, (z+a+l+V)+ 9, (B-v)=0 (15)
from ( 10 ), applyimg (12), (13 ) and ( 14 ).
Choosing v such that
v=p (16)
we obtain
Prp 2+ @ (Czra+f+1)=0 . (17)
Set
Prp =9 =0() (p= ¢_(l+ﬁ)) ’ (18)
we have then
¢1+¢.(Mﬂ_1)=0 (19)
zZ

from ( 17 ). A particular solution to this ( variable separable form) equation is given
by
¢=ez @ (20)

Therefore, we obtain

g=( 2

from (20 ) and ( 18).

74

D _ |
)-a+p) = Pa)(a. (2)
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Inversely (20 ) satisfies equation ( 19 ). then ( 2 ) satisfies equation ( 1 ).
Next, changing the order
¢’ and 27" jn parenthesis ( )_g, 5

we obtain other solution @3, 5 Which is different from ( 2) for (L +8)€Z ;.

that is,
@ =" ) s = Pasen )
( Refer to Theorem D. )
Proof of Group II.
Set
p=e"Y (v =v(2)), e
we have then
@, =€y +¢,) -
and
@, =& (Y +2ry, +P,) )
We have then

Y, z+yY {22y ~D+a+1h+¢ fzy(y ~D +y(a +)+ B} =0 (24)

from (1), applying ( 21), (22 ) and ( 23).
Here we choose y such that

}’(Y _1) =0 s
that is,
y=0,1. (25)
When y =0, (24 ) is reduced to ( 1), therefore, we have the same solutions qs
Group I.
When y =1 we have
Y, z+y, fz+ra+li+y-(a+f+1)=0 (26)
from (24)
Operate N to the both sides of equation ( 26 ), we have then
W, 2), +@, (z+a+D), + @ (a+f+1), =0 (V&Z'). (27)
hence '

Yoo 2+Y, - ra+l+Vv)+y (v+a+ f+1)=0. (28)



Choosing v such that
v=—(a+f+1)

we obtain
wl-(a«!-ﬁ) Z+ w-(a+ﬂ) ) (z -ﬁ) = 0

Set
VY p=0=0(2) @ =%,.5 -

we have then

¢1+¢-(1~—{z)=0

£
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(29)
(30)

(31)

(32)

from (30 ). A particular solution to this ( variable separable form) equation is given

by
p=e'z £
Hence we obtain
-z B
p=0€"2"),4
from (31 ) and ( 33).
Therefore, we obtain
@ =e(e”” -Zﬁ)a+ﬂ = 913)(a,8)

from (21) and ( 34), having y =1.

Inversely , ( 33) satisfies ( 32 ), then ( 4 ) satisfies equation ( 1 ).

Next, changing the order

e”* and z° in parenthesis (  ),,, in(4)

we obtain other solution
2, B, -z =
Y =e (“' € )a+ﬂ=¢[4](a,ﬁ)

which is different from (4) for (g + g)€Z
( Refer to Theorem D. )
Proof of Group III.
. Set
o=y (w=9(),

we have then
@, =AY+,
and

(pz - /1(/-\' _l)z;t-zw + 2/121'1-1 wl +Ziw2-

respectively.

(33)

(34)

(4)

(5)

(35)
(36)

(37)
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Hence we obtain
w, 2y M 2A ra 1)}
+y- (B-A)+2 AR +a)} =0 (38)

from ( 1), applying (35 ), (36 ) and (37).
Here we choose A such that

A(A+a)=0,
that is,
A=0 , — & . : ( 39 )
When A =0 , (38 ) is reduced to ( 1), therefore, we have the same solutions as
Group I.
When A =—a we have
¥, 2+, oz +1- o)+ (o +B) =0 (40)

from ( 38)
Operate N” to the both sides of equation ( 40 ), we have then

Vo 2ty (Cztl-a s V) 4y, @@+ f-9) =0 (v€Z) . (41)

Choosing v such that

v=a+f (42)
we obtain
w2+a+ﬂ'z +wl+c+ﬂ ‘(*Z+ﬁ+1)=0 ) (43)
from (43 ), applying ( 42).
Set
Yiars = ¢ =¢(z) W = ¢-(1+a+,3)) ’ (44)
we have then
(B+1 1\ |
. -1;=0 (45)
hro Y

from (43 ). A particular solution to this ( variable separable form) equation is given
by ‘
p=e’z" P . (46)
Hence we obtain
z . -(B+1 ‘
p=( -z ( ))_(1+a+,3) (47)

from ( 44 ),applying ( 46).



Therefore, we obtain
p=z"° 'Z-(ﬁq))-am.&p) = P51 (a.8) (6)
from (35) and (47 ), having A =-a .
Inversely , ( 46 ) satisfies (equation ( 45 ), then ( 47 ) satisfies equation ( 43 ).
Therefore, ( 6) satisfies equation ( 1)
Next, changing the order
¢’ and z~®*V in parenthesis ( )_j,q.5 I (6)
we obtain other solution

= z—a(z—(ﬁ+1)

"€) earsy = Poi(@n (7)
which is different from ( 6 ) for ~Q+a+B)EZ;,
( Refer to Theorem D. )
Proof of Group IV.

First set

g=2'y  (¥=9(2)), (35)

and substitute ( 35 ) into equation ( 1), we have then ( 38 ).

Hence we obtain

Y, z+y,{-z +1-ap+y-(a+f)=0 (40)
from ( 38 ), choosing
;L == .
Next set
Y=€e’9p (9=0@), (48)
We have then

¢, z+ @ {z(20 1) +1-a}
+¢-{z(6>-0)+d(l-a)+a+ =0 (49)
trom ( 40 ), applying ( 48).
Choose & such that

8" -6=0,
that 1s,
6=0,1. (50)
When J =0 , we obtain ( 40 ) from ( 49 ). Then we have the same solutions as
Group III .

When J =1 we have
¢, z+0 (z+1~-a)+¢-(1+5)=0 (51)

78
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from (49).
Operate N to the both sides of equation ( 51 ), we have then

b, z+0, ., (z+l-a+v)+¢, (v+1+5)=0 (VEZT) . (52)

2LV

Choosing v such that

v==1-8 (53)
we obtain
b 52+, (z—a-B)=0 . (54)
from (52).
Therefore, setting
6, =u=uz) ($=u,), (55)
we have
w +u- Kl-“*/”} 0 (56)
from ( 54 ). A particular solution to this equation is given by
u=ezf . (57)
Hence we obtain
g=(e -2, (58)
from (55 ) and ( 57).
Therefore, we have
Y=e(e” 'z‘”ﬁ)ﬁ (59)

from ( 58 ) and ( 48 ), having 6 =1.

We have then

9=z (" 2", = By (8)

from (59 ) and (35), having A =-a .

Inversely , the function shown by ( 57 ) satisfies equation ( 56 ), then ( 55 )
satisfies equation ( 54 ), and hence ( 48 )which have ( 55 ) satisfies (-40).

Therefore, the function given by ( 8 ) satisfies equation ( 1), by ( 35 ) wnere

-—a .

Next, changing the order

e"* and z°** in parenthesis( ), in(8)

we obtain other solution

a+ff -z —
¢)s = Psja.p

(9)

_~a_z

=z "€z

which is different from Pir50a.6) for B GEZS
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§3. Familiar Forms of The Solutions
In the below, the translated ( more familiar ) forms of the solutions obtained in § 2.

are presented.

Corollary 1. We have

Group 1.
(1) Ve =€ 2 VB (B+La+f 1) (1)
.. ; I'(a) : -
_ inB z_-~a c1_ .
(i) N F@;;:ﬁeziﬁw+L1a,4) (2)
Group II.
(1) Ve =€ P2 F(~a - f, - ;- 1) (3)
.. ineep L(Q)
(11) P 4ita =€“°(“'m———-z“F(—a—ﬁ;l—a;z) (4)
(4i(a,B) r(_ﬁ) i*1
Group III.
(1) Psiopy =€ 2 PV BB+, +B+1:3) (5)
11 iz(a+ r("a) z A . v~
(ii) Prsiiany =€ m?ﬂ;;561ﬁ0z+ﬁ+L1+a,—4) (6)
Group IV.
() oy =€ 2P F(-B—a -Bi-1) (7)
. s . =g L(-a@)
1 el F(-B;lta; 8
(i1) Prsiae) =€ TCa-p)’ (=B z) (8)

where | F (- ) is the generalized Gausss hypergeometric function, (See§5.)

Proof of Group I.

(1) Prajasy = (€ 'z~(c+ﬂ+l))-u+ﬂ) (9)
< r — z -(a+fB+1
e L S ) (10)

& kIT(-B-k)



zz—(a+ﬁ+1)§ [B+1][a+B+1], e
k=0 k!

=€

=’ 7@ FE(B+1,a oy +1;Jz=
by Lemma (iv), since

TAITA-4)

Tk +1-A) (kS2o)

L(A-k)=(-1)y

€), =¢

~izk r(k - A’)zk—k

(ZA)k =€ T(-1)

?

and
_ LA +Ek)
[A], =AA +D)---(A +k-1) T

( Notation of Pochhammer ).

-(a+/.‘i+‘l-l) .

(i1) ®121(a. 8 =(z e’ )—(1+ﬂ)

= r(_ﬁ) -{c+8+1 z
=ch1 M(Z (axs ))—(1+/3)—Ic(e B

eiz(l+ﬁ)z-aéz [ﬁ".‘(‘]kr(a _k) Zk
= klI'(a+B+1)

- _piaB _-a z r(a) c [/5+1]L _ Ak
© e F(a+ﬁ+1),§;k![1—a]k 2
I'(a)

inf -a _z
— —_— F +1;1_a;__
e (@ ~!_1)2 e F(B z)

since

~(a+p+1) -
(z )-gep-k = € T(a+p+1)

with [A], =1 -

in(uwpek) _L(2 —K) o
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(11)

(1)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(2)

(19)



Proof of Group II.
(1) Piyesy =€ € 2%)5

= a+pB+1 .
( ﬁ ) (e )a+5—k(zﬂ)k
k=0 k!r(a ‘f‘ﬁ +1_k)

gireen o3 0= OLIPL( 1)*

k=0 k! z

_ e-;z(mﬁ)zﬁzﬁ(_a -B,-B; ’%)

since
(e—Z)r =e—i:r'/ez .

. . z ,_ﬂ . -z
(11) ¢[4](a,ﬁ) =€ (‘6 € )(z+/3

v a+p+1) , .

—i:r(c+ﬁ)z-—a - (—l)k[—a_ ﬁ]Lr(a —k) Zk
k=0 k!r('ﬂ)

k
VA

T(-B)" & K[l-a],

eriren 1@ 0§ e p)

izg L
=e“”—iélz”1ﬁcﬂz—ﬁ;l-a;2)-
(-p)
-Proof of Group III.

2, -8

3 .-G 1)
(1) Pisien =7 (e )-(1+a+a>

- S - r —a—ﬁ (% -(B+
=z 2; kyr((_a ‘ﬁzk)\e ) - ecey-i(Z 1y

=Z—(a+ﬂ+l)ez i [1 +a+ ﬁ]}‘[' +ﬁk Z—k
k=0 k

!

=2 @D Erar f,1+6 ;%)
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(20)
(21)
(22)

(3)
(23)

(24)

(25)
(26)
(27)

(4)
(28)
(29)

(30)

(5)



(Z (B+D) .

(1 1) Pis1a.n) = z e’ )-(1+<:+ﬂ)

]

e L(a-p) (=@
z E kT(-a -B-k) )-geaepc

=0

o pir(+a+h) r(-a) < 1 a+/3k —_ Nk
© Teen” “ % diea, 7

= e--(a+ﬂ)r12(/5 0!1)) * E(lva+p;l+ra;-z) -

Proof of Group IV.

. o z, -~z __&a:f8
(1> ¢[7](a,ﬂ) =< G‘-e (e z° )ﬂ

_-a z & r(ﬂ+1) - .
) 1;20 kT(B +1-.-.~-k)\e )a-(Z

-in = "ﬁk— —ﬁk lk
e ﬁzﬁgo[ ”,: ](__Z_)

=" R(-B,-a-PB;- l)

. -a _z Jij -z
(ii) Psjiasy =2 € @ -e7),

[~}

a2 I(f+1) (2°**
€ & I (B +1- k) )ﬁ (e )k

oni7b I'(-a) = ﬁ]k k
T(a- ﬁ)kzok'[l*a ‘

- ~inp r(a)

e g iCPitres)
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(31)

(32)

(33)

(6)

(34)

(35)

(36)

(7)

(37)

(38)

(39)

(8)



§ 4. Commentary
( 1) All solutions shown by (2)~(9)in § 2 have a fractional differintegrated form
(+++),@.5 » Where the index g(a,B) is the order of differintegration.

Then notice that only the constants o and S in the equation (1)
in § 2 contribute to the order g(a,f) .
And notice that we have the identities below.

. €2 gy =277 ) ey (1)
from§ 3. (1)and§ 3. (5), and ,
| (€7 2)u = (-2) " (€7 2"7), (2)
from§ 3. (3)and § 3. (7).
And we have

(1) Puies) = Py for —(A+BEZ, .

(ii) Paxe,s) = Prasasy 101 (2 +B)EZg .

(iii) Pisias) = Pajasy for —(+a+BEZg.

and

(iv) Prie.p) = Pryapy TOF PEZg-

(III)  Generalized Associated Laguerre's function of order f and degree a is

denoted by L'$’(z) and is defined as
[a+B+1)

[(a+DI(B+])

Ly(z) = E(-Bia+liz), (3)

where
B(-Fia+15z)
is the Kummer's confluent hypergeometric function.
Now we have

Pis)(a. 5 =2 %" (2** €%, (4)
_ ~izf r(—a) R - .
=€ r(_a_ﬁ)lfi(ﬂaa"'l:z)‘ (5)

Therefore, we have the presentation below.

sizpg L(ma) T@+)I(B+1) (a
Pi8xa.8) = ? ' L

[(-a-f) T@+p+1) °*

(@) (6)
and

[(-—a) nll(a+]) 19 (2) (7)
[(-a-n) T(a+n+1) "

Prsyan = (-1
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for B =nE€Z, . using the Laguerre's function.

Where

a ez’ % d oz
LP(z) === (") (8)

_T(a+n+1)

F(-n;a+1;2). (9)
n!T(c+1) A0 )

1s the polynomial of Laguerre.
( IV ) Hitherto, to the homogeneous associated Laguerre's equation, mainly the
function L§’(z) ( which is can be derived from our solution @g;., ) is discussed

as its solution.
However, we must notice that there exists many other particular solutions such as

Puie.sy P2iew.6y Dal@sy Paesr Peie.s
which are different from L¢’(z) , and they are obtained by our NFCO-Method.

( V') The solutions obtained by means of NFCO to the nonhomogeneous associated
Laguerre's equation shall be reported in a next paper of the author, in a near future.
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