A note on lowness for Robinson theories

Yuki Anbo (安保 勇希)
Graduate School of Pure and Applied Sciences,
Tsukuba University
(筑波大学大学院数理物質科学研究科)

Abstract

We show following two theorems. Theorem A: for thick simple existentially universal domain, the equality of Lascar strong types is definable by an existential type. Theorem B: for thick low existentially universal domain, Lascar strong types equal strong types. Theorem A is already proved by Ben-Yaacov [2].

1 Preliminaries

Definition 1.1 We say that an L-structure M is κ -existentially universal domain (e.u.domain) if

- if $\Sigma(x)$ is a partial existential type over A ($|A| < \kappa$) which is finitely satisfiable in M, then Σ is satisfiable in M, and
- for $|A|, |B| < \kappa$, and $f: A \to B$: a bijection such that $\exp(a) \subset \exp(f(a))$ for all tuples a from A, f extends to an automorphism of M.

Remark 1.1 An e.u.domain M is an existentially closed model for the universal theory of M, $\operatorname{Th}(M)_{\forall}$.

Let \mathcal{M} be a κ -e.u.domain for a enoughly big cardinal κ . Put $T = \operatorname{Th}_{\forall}(\mathcal{M})$. M, N, \ldots denote existentially closed models of T, a, b, \ldots denote finite tuples in \mathcal{M} , and A, B, \ldots denote small subsets of \mathcal{M} .

Definition 1.2 Let $\Sigma(x, B)$ be an existential type over B.

1. We sat that $\Sigma(x, B)$ divides over A if there exists an existentially indiscernible sequence $(B_i : i < \omega)$ over A with $B_0 = B$ such that $\bigcup_{i < \omega} \Sigma(x, B_i)$ is not realized in \mathcal{M} .

- 2. We say that $\Sigma(x)$ forks over A if there exists a small set of dividing (/A) existential formulas Ψ (with parameters) such that $\mathcal{M} \models \Sigma \to \bigvee \Psi$.
- **Remark 1.2** If $\Sigma(x)$ divides over A, then there is an existential formula $\varphi(x)$ such that $\Sigma \vdash \varphi(x)$ and $\varphi(x)$ divides over A.
 - It is not known whether that if Σ forks over A, then there are an existential formula θ where $\Sigma \vdash \theta$ and dividing (/A) existential formulas ψ_1, \ldots, ψ_n such that $\mathcal{M} \models \theta \to \bigvee_{i=1}^n \psi_i$.

Definition 1.3 We say that \mathcal{M} is simple if for all $a \in \mathcal{M}$, $A \subset \mathcal{M}$, there exists $B \subset A$ with $|B| \leq |T| + \aleph_0$ such that $\exp(a/A)$ does not fork over B.

Fact 1.1 [3] Suppose that \mathcal{M} is simple. Then, Σ forks over A if and only if Σ divides over A.

- **Definition 1.4** 1. We say that lstp(a) = lstp(b) if for any bounded \emptyset invariant equivalence relation E(x, y), E(a, b) holds.
 - 2. We say that $d(a,b) \leq 1$ if there is an existentially indiscernible sequence I such that $a,b \in I$.
 - 3. We say that $d(a, b) \leq n$ if there exist a_0, \ldots, a_n with $a_0 = a, a_n = b$ such that $d(a_i, a_{i+1}) \leq 1$ for any i < n.
 - 4. We say that $d(a,b) < \omega$ if $d(a,b) \le n$ for some $n < \omega$.

Fact 1.2 $/3/\operatorname{lstp}(a) = \operatorname{lstp}(b)$ if and only if $d(a, b) < \omega$.

Fact 1.3 [3] If $(a_i : i < \lambda)$ is an enoughly long sequence and $A \subset \mathcal{M}$, then there is an existentially indiscernible sequence $(b_i : i < \omega)$ such that for any $n < \omega$, there are $i_0 < \cdots < i_{n-1} < \lambda$ such that $\exp(b_0, \ldots, b_{n-1}/A) = \exp(a_{i_0}, \ldots, a_{i_{n-1}}/A)$.

Fact 1.4 [3] Suppose that \mathcal{M} is simple. Then, for all $a, A \subset B$, there exists a' such that

- lstp(a'/A) = lstp(a/A) and
- etp(a'/B) does not fork over A.

We write $a \downarrow b$ to mean that etp(a/b) does not fork over \emptyset .

Fact 1.5 (Independence theorem for simple e.u.domain, [3]) Suppose that \mathcal{M} is simple and a_1, a_2, b_1, b_2 satisfy the following:

- $lstp(a_1) = lstp(a_2),$
- $a_1 \downarrow b_1$, $a_2 \downarrow b_2$, $b_1 \downarrow b_2$.

Then, there exists a such that

- $a \models \exp(a_1/b_1) \cup \exp(a_2/b_2)$
- $a \downarrow b_1b_2$.

2 Proof of Thorem A

In this section, we prove Tehorem A. For simplicity, we show over \emptyset .

Definition 2.1 We say that \mathcal{M} is thick if " $d(x,y) \leq 1$ " is definable by an existential type. If \mathcal{M} is thick, then we assume that $q_1(x,y)$ defines " $d(x,y) \leq 1$ ".

Lemma 2.1 Suppose that \mathcal{M} is thick. Then, " $d(x,y) \leq 2$ " is definable by an existential type.

Proof: It is defined by $\{\exists z \varphi(x, z) \land \varphi(z, y) | \varphi(x, y) \in q_1(x, y)\}.$

Lemma 2.2 Suppose that \mathcal{M} is thick and simple. Then, the following are equivalent:

- 1. lstp(a) = lstp(b)
- 2. $d(a,b) \leq 2$
- 3. $q_1(x,a) \cup q_1(x,b)$ does not fork over \emptyset

Proof: $(3 \to 2 \to 1)$ is trivial. $(1 \to 2)$ Let c be a tuple such that lstp(c) = lstp(a) = lstp(b) and $c \downarrow ab$. Take a' such that etp(a'a) = etp(ac). Then lstp(a') = lstp(a) and $a' \downarrow a$. So, by independence theorem, we can get a_2 such that $a_2 \models etp(a/c) \cup etp(a'/a)$ and $a_2 \downarrow ac$.

Iterating this, we can get a sequence $(a_i : i < \omega)$ such that $\exp(a_i a_j) = \exp(ac)$ for each $j < i < \omega$. By compactness and Fact 1.3, we can assume this sequence is existentially indiscernible. So, we get existentially indiscernible sequences I, J such that $a, c \in I$ and $b, c \in J$.

Theorem A [2] Suppose that \mathcal{M} is thick and simple. Then, "lstp(x) = lstp(y)" is definable by an existential type.

Proof: By above lemmas.

3 Proof of Theorem B

In this section, we prove Tehorem B. Again for simplicity, we show over \emptyset .

Definition 3.1 We say that stp(a) = stp(b) if for any definable (by an existential formula over \emptyset) finite equivalence relation E(x, y), E(a, b) holds.

- **Definition 3.2** 1. Let $\varphi(x,y)$ be an existential formula. An existential formula $\psi(y_0,\ldots,y_{k-1})$ where $\mathrm{lh}(y_i)=\mathrm{lh}(y)$ for each i< k is said to be a k-inconsistency witness for φ if $\mathcal{M}\models\forall y_0\ldots y_{k-1}(\psi(y_0,\ldots,y_{k-1})\to \neg\exists x\bigwedge_{i\leq k}\varphi(x,y_i)).$
 - 2. Let $\Sigma(x)$ be an existential type and $\varphi(x,y)$ be an existential formula.
 - We say that $D(\Sigma, \varphi) \geq 0$ if Σ is satisfiable.
 - We say that $D(\Sigma, \varphi) \geq n + 1$ if there is a natural number k, a k-inconsistency witness ψ , and an existentially indiscernible sequence $(b_i : i < \omega)$ such that $D(\Sigma(x) \cup \{\varphi(x, b_i)\}, \varphi) \geq n$ for each $i < \omega$ and $\mathcal{M} \models \psi(b_{i_0}, \dots b_{i_{k-1}})$ for all $i_0, \dots, i_{k-1} < \omega$.
 - 3. We say that \mathcal{M} is low if
 - \mathcal{M} is simple and
 - $D(x = x, \varphi) < \omega$ for any existentiall formula φ .

Lemma 3.1 Suppose that \mathcal{M} is thick and low. Then,

- 1. $\{a: \varphi(x,a) \text{ divides over } \emptyset\}$ is definable by an existential type.
- 2. $\{(a,b): \varphi(x,a) \land \varphi(x,b) \text{ does not divide over } \emptyset\}$ is definable by an existential type if it is restricted to $(p \otimes p)^{\mathcal{M}} = \{(a,b): a,b \models p,a \downarrow b\}$. So, it is definable by an existential universal formula if it is restricted to $(p \otimes p)^{\mathcal{M}}$
- *Proof:* (1) Note that by lowness, for any $\varphi(x,y)$ there is an existentiall formula ψ such that for all a, if $\varphi(x,a)$ divides over \emptyset , then φ devides by an existentially indiscernible sequence in which any k-elements satisfies ψ .
 - (2) For $a, b \models p$ where $a \downarrow b$, the following are equivalent:

- 1. $\varphi(x,a) \wedge \varphi(x,b)$ does not divide over \emptyset
- 2. there exist a^* and b^* such that
 - $\mathcal{M} \models \varphi(a^*, a)$ and $a^* \downarrow a$;
 - $\mathcal{M} \models \varphi(b^*, b)$ and $b^* \downarrow b$;
 - $lstp(a^*) = lstp(b^*)$

By Theorem A, "lstp(a^*) = lstp(b^*)" is expressible by an existential type. " $a^* \downarrow a$ " is expressible by " $D(\text{etp}(a/a^*), \varphi, \psi) \geq D(p, \varphi, \psi)$ " for any φ, ψ .

We sat that $E_{p(x),\varphi(x,y)}(b,c)$ if for all $a \models p$ with $a \stackrel{\downarrow}{\smile} bc$, $\varphi(x,a) \land \varphi(x,b)$ does not divide over \emptyset if and only if $\varphi(x,a) \land \varphi(x,c)$ does not divide over \emptyset .

Lemma 3.2 Suppose that \mathcal{M} is thick and low. For any $a \models p$ where $\varphi(x, a)$ does not divide over \emptyset , $E_{p(x),\varphi(x,y)}$ is a definable (by an existential formula) finite equivalence relation on $(p^2)^{\mathcal{M}}$.

Proof: We can check that $E_{p,\varphi}$ is a bounded equivalence relation boundedness is by " $lstp(x) = lstp(y) \Rightarrow E_{p,\varphi}(x,y)$ ". On the other hand, by the above lemma $\neg E_{p,\varphi}$ is definable by an existential type. So, $E_{p,\varphi}$ is a finite equivalence relation. Let a_1, \ldots, a_n be representations of classes. Then $\bigcup \{\neg E(x,a_i) : i \leq n\}$ is not satisfiable. For simplicity, we assume n=3. There exists an eixistential formula $\varphi(x,y)$ such that

- 1. $\neg E(x, a_i) \vdash \varphi(x, a_i)$ for each $i \leq 3$
- 2. $\mathcal{M} \models \neg \exists x \varphi(x, a_1) \land \varphi(x, a_2) \land \varphi(x, a_3)$.

Put $\psi(x,y) = \neg \varphi(x,y)$. Note that $\mathcal{M} \models \forall x(\psi(x,a_1) \leftrightarrow \varphi(x,a_2) \land \varphi(x,a_3))$. So, $\psi(x,a_1)$ is also existential. By a symmetric argument, $\psi(x,a_2), \psi(x,a_3)$ are all existential. Then we have

$$E(x,y) \leftrightarrow \bigwedge_{i < 3} (\psi(x,a_i) \leftrightarrow \psi(y,a_i)).$$

We can omit parameters a_i 's because this does not depend on a choice of representations and $\psi(x, a_i)$ is existential universal.

Theorem B Suppose that \mathcal{M} is thick and low. Then, stp = lstp

Proof: If stp(a) = stp(b), then by the above lemma $a, b \models E_{p,\varphi}$ for any φ . Take c such that lstp(c) = lstp(a) and $c \downarrow ab$. Then, $q_1(x,a) \cup q_1(x,c)$ does not divide by Lemma 3. Then, $q_1(x,b) \cup q_1(x,c)$ does not divide by $E_{p,\varphi}(a,b)$. Again by Lemma 3, we have lstp(b) = lstp(c).

References

- [1] Itai Ben-Yaacov, Simplicity in compact abstract theories, Journal of Mathematical Logic 3 (2003), no. 2, 163-191
- [2] Itai Ben-Yaacov, Thickness, and a categorical view of type space functors, Fundamenta Mathematicae 179, 2003, 199-224.
- [3] Anand Pillay, Forking in the category of existentially closed structures. Connections between model theory and algebraic and analytic geometry, 23-42, Quad. Mat., 6, Dept. Math., Seconda Univ. Napoli, Caserta, 2000.
- [4] Ziv Shami, Definability in Low Simple Theories, J. Symbolic Logic 65, No. 4 (2000), 1481-1490.
- [5] Akito Tsuboi, Some consideration for Shami's paper on simplicity, unpublished note.