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ON 3-AMPLENESS IN ROSY THEORIES
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GENERAL EDUCATION, TOKUYAMA COLLEGE OF TECHNOLOGY

ABSTRACT. In rosy theories we introduce a geometric notion of independence,
strong non-3-ampleness. and we show that strong non-3-ampleness implies
non-3-ampleness, and non-2-ampleness(=CM-triviality) implies strong non-3-
ampleness.

1. INTRODUCTION

There is a simple characterization of CM-triviality. By using the characteriza-
tion, we could show that any rosy CM-trivial theory has weak canonical bases, and
CM-triviality in the real sort implies geometric elimination of imaginaries [Y]. We
want to know whether these results can be extended in case of non-3-ampleness or
not, so our first motivation is to find a simple characterization of non-3-ampleness
like in case of CM-triviality. This paper is organized as follows. In the second
section, we review the definiton of CM-triviality(=non-2-ampleness) and non-n-
ampleness for each n < w in rosy theories. In the third section, trying to find a
simple charactrization, we offer another geometric notion (we call it strong non-3-
ampleness). We show that strong non-3-ampleness implies non-3-ampleness, and
non-2-ampleness(=CM-triviality) implies strong non-3-ampleness. But, for now
there are no examples of non-3-ample and 2-ample structures. We also raise up
some problems on non-3-ampleness.

Our notation is standard. Let T be a rosy theory. (i.e. having a good inde-
pendence relation | ) We work in M*®9, the eqg-structure, consisting of imaginary
elements, where M is a sufficiently saturated model of T. @,b,... C,, M denote
finite sequences in M®4. A, B, ... denote small subsets of M®? and AB denotes
AU B. For a € M® and A C M®4, we write a € acl®1(A) if the orbit of a by au-
tomorphisms fixing A pointwise is finite. In rosy theories [A], we have that a | , ¢
implies acl®¥(ab) N acl®¥(bc) = acl®d(b).

2. REVIEW OF ROSY CM-TRIVIALITY AND NON-n-AMPLENESS

CM-triviality is a geometric notion of the nonforking independence relation. In
1988, it is introduced by Hrushovski where he disproves Zilber’s conjecture on
strongly minimal sets [H]. CM-triviality forbids a point-line-plane incident system.
Hrushovski also offered three characterizations of CM-triviality in stable theories.
The following is the simplest characterization for rosy CM-triviality.
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Definition 2.1. A rosy theory T is CM-trivial, if @ J/Aﬂacl“‘l(a.B) B holds for any
a,A, B C M*® such that a | 4 B and A, B are algebraically closed.

The Weak Caninical Base wcb(a/B) of tp(a/B) has the following properties,
where B is an algebraically closed subset of M®4:

°a \Lwcb((‘z/B) B

e wcb(a/B) is algebraically closed.

e a | ,B= wcb(@/B)C acl®(A) C M
The weak canocal base is the smallest algebraically closed subset C of B such that
a | »B. Asin [P2], rosy theories do not necessarily have weak canonical bases.
But any rosy CM-trivial theory has weak canonical bases, so we have the following
characterization [Y].

Fact 2.2. Let T be rosy. The following are equivalent.
(1) T is CM-trivial. :
(2) T has weak canonical bases and wcb(a/A)
a,A,B C M*® such that acl*i(a,A) N B =
B = acl®d(B).

C wcb(a/B) holds for any
A with A = acl®d(A) and

We use the following notations to briefly write the definition of n-ampleness.

a A b:= acl®(a) N acl®(b)

Qi i= Q05 A1y -, 851
Qe = 0
Definition 2.3. T is not n-ample, if a, \LC ap holds for any ¢, ag,aq,...,a, such

that cac;a; Acacia;41 = acl®¥cac,), a; | L a<i for 1 = 1,2,...n, where ¢ looks

@1

like constants.
The following is proved in [P1].

Remark 2.4. (1) one-basedness (a | ,, b for any a,b) is equivalent to non-
1-ampleness: cag A ca; = acl®d(c) (a4 \La“ ag) implies a; J/c ag.
(2) CM-triviality (a | ,c=al brae ©) 18 equivalent to non-2-ampleness: cag A
ca; = acl®¥(c), capaq A cagas = acl®(cag)
as \I/a,l ag, a1 _J_/a“ ap imply ao \Lc aop.
(3) Non-n-ampleness implies non-(n + 1)-ampleness for each n < w.

3. STRONG NON-3-AMPLENESS

Definition 3.1. A rosy theory T is not 3-ample, if a3 \LC ap holds for any ¢, ap, a1, az2,a3 C
M such that age A aje = acl®d(c), apaic A agaze = acl®d(apc) apaiazc A agajase =
aelea . .
acl®d(apa;c), a3 \Lazcaoal,az \Lalcao.

The following remark is a non-3-ample’s version of Fact 2.2 under assuming the
existence of weak canonical bases.
Remark 3.2. If T" has weak canonical bases, then the following are equivalent.

(1) T is not 3-ample.



(2) web(as/cag) C acl®d(wceb(as/capaiaz)c) holds for any ag,a;,az2,a3,¢ C
M®4 such that age A ajc = acl®(c), agaic A apazc = acl®d(agc),

agaiazc A aparazc = acl®(agarc) az L aoaraz L ao

Proof. (1) = (2): Clear.

(1) < (2): We may assume c = (). Asag J/az apa; and web(az/ag) C web(as/apa;az),

we have wcb(as/ag) C ag Aag. On the other hand, as a \Lal ag, we have ag Aag C
apa; A ajaz C acl®(a;). As ag A a; = acl®d(0), we have web(as/ag) C ag Aag C
ap A ay = acl®d(p). O

Now we consider the following notion.

Definition 3.3. We say that T is strongly non-3-ample, if a3 \La asnarashanaas

holds for any ag, a;, as, a3 such that ag J/az apay, as \Lal Qg

The definition of non-3-ampleness has three condition algebraically closed set and
two conditions on independency. On the other hand, the definition of strong non-
3-ampleness has only one condition on algebraically closed set and two conditions
on independency, so it is simpler than that of non-3-ainpleness.

Proposition 3.4. Strong non-3-ampleness implies non-3-ampleness.

Proof. Suppose that ag A a1 = acl®¥(0), apa; A apaz = acl®(ap), apa as A agaaz =
eq — ;
acl®¥(aga), a3 Laz apay, as \Lal ag, and let b := agag A ajas A agajas.
We need to show b = acl®(0).
Claim 1 b C acl®(a;) : As as \Lal ap, we have apa; A ajas = acl®(a;). Then
we have

b = agax Aajaz Aapaias

N

agai1az N\ ayaz N\ agaias

(a0a1a2 N a0a1a3) Najaq

fl

= apa1 A aiaz = acl®¥(a;)
Claim 2 b C acl®¥(ag) : As b C acl®i(ay),
b C ajAagaz Aajaz Aagayas
C a1 Aapaz C apay A apaz = acl®(ayp)
By two claims, we have b C ag A a1 = acl®(0).
O

Remark 3.5. Assume that acl®*¥(A(B A C)) = AB A AC for any A, B,C C M®q,
(We usually have that acl®¥(A(B A C)) C AB A AC.) Then non-3-ampleness coin-
cides with strong non-3-ampleness.

Proof. Let b = agay A ajaz Aagaras. As b C agas A ajaz, we have
as \_L apgay, ag \L ag.
azb a1b
So we need to show
(1) aob A a1b = acl®9(b)
(2) apaib A apazb = acl®¥(agpb)
(3) aoalagb N a0a1a3b = acle“(agalb)
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The proof of agh A a1b = acl®¥(b):

agb Na1b C (a0a2 N apaiaz A a0a1a3) A (a0a1a2 A arag A aoalag)
-

apas A\ ajaz A apayag = acl®d(b)
The proof of agaib A apazb = acl®¥(agh): We use our assumption in the last
equation.
agarb A aoaigb C (apaiaz A agaqas) A (agasz A agajaz A apaasas)
C  apaz A apaiaz = acl®¥(apb)
The proof of agajasb A agaiazb = acl®¥(apa b): We also use our assumption in
the last equation.
apaiazb A aparazb C  (apaiaz A apajazas) A (apaiazas A agaias)
C  agajaz A agayas = acl®¥(agab)

O

Remark 3.6. Non-2-ampleness(=CM-triviality) implies strong non-3-ampleness.

Proof. We will show that a3 \LM aga; implies ag \La“ag/\alaz/\aualag agai. Put A =
acl®(apaz) and B = acl®¥(ajaz). Clearly we have a3 \]/(12 AB. As acl®(a3) C
AN B C AB, we have a3 \LAnB AB. In particular, we have a3z |
CM-triviality, we get as |

Anp 001 By

s nayasAanaya, 10015 B8 desired.

O

We have the following implications.
non-1-ampleness(< one-basedness) = non-2-ampleness(< CM-triviality) =
strong non-3-ampleness = non-3-ampleness = non-4-ampleness = - - -

In [E] an n-ample (relational) structure M, is constructed for each n < w, but it
is unknown whether A, is not (n + 1)-ample. For now, n-ample and non-(n + 1)-
ample structure is not discoverd for each n > 2. (Generic relational structures are
l-ample and non-2-ample.)

Problem 3.7. It is shown that free group is 2-ample [P3]. Is free group non-3-
ample? (We need the characterization of non-forking in the free group to check
non-3-ampleness. )

Problem 3.8. Does non-3-ample theory have weak canonical bases? (I think No.)
We need to check Adler’s criterion [A] : a | ;Cia | B =a | 5. .BC for any
a,B,C such that B and C are algebraically closed subsets of M*®9.

Problem 3.9. Is strong non-3-ampleness with weak canonical bases equivalent to
CM-triviality?

Let T = Th(R, +, <,7|(-1.1)(*)), where 7|_11)(z) ;= m-x for z € (-1,1). T
is an o-minimal theory with elimination of imaginaries. As T does not have weak
canonical bases, T is 2-ample. And T does not interpret fields by [LP][PS], so it is
possible that T is not n-ample for some n < w

Problem 3.10. Is T non-3-ample? (We need the charactrization of non-forking
inT.) :
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