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Coincidences, Colourings and Similarities
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Abstract

This contribution is based on a talk given by the second author in
Kyoto at RIMS, June 2010. It gives an overview of some recent develop-
ments in the theory of coincidence site lattices (CSLs). In particular, the
connections between similar sublattices and CSLs, coincidences of lattice
colourings, and coincidences of shifted lattices are discussed.

1 Coincidence Site Lattices (CSLs)

1.1 Brief historical overview

1911: first ideas by Friedel [1]

mid sixties, seventies: CSLs are investigated to discribe grain boundaries in
crystals

Ranganathan, Bollmann, Grimmer, ...[2, 3, 4]...

mid ninties: generalization for quasicrystals: Coincidence Site Modules (CSMs)
Baake, Pleasants, Warrington, ...[5, 6]...

2002: Quantizing Using Lattice Intersections

Sloane, Beferull-Lozano [7]

20xy: Baake, Grimm, Heuer, Moody, Pleasants, Scharlau, Loquias, Glied,
Huck, PZ, Zou, ...

1.2 Commensurate Lattices

A key notion is the concept of commensurability. We call two lattices T'; and
I’y commensurate, it one of the following properties is satisfied.

Lemma 1.1. The following are equivalent:
o I'y NI’y is a sublattice of both T'y and T'5.
o 'y N1y is a sublattice of 1'y or 1's.
o There exists an m € N such that ml’; C 1y and ml'y C 1.

o There exists an m € N such that ml'; C 1y or ml's C 1.



1.3 Ordinary CSLs
Definition 1.1. LetI' C R? be a lattice, R € O(d). Then
I'(R) :=1'NRI
is called a (simple,ordinary) coincidence site lattice (CSL), if I' and RI' are
commensurate. The index
L(R):=[I':T(R)] < o0
18 called coincidence index.

For a concise introduction we refer to [8].

Figure 1: The figure shows a square lattice (black dots) and a copy (red cir-
cles) rotated by ¥ = g—f% (corresponding to a rotation through an angle
@ = arctan4/3). One clearly sees the CSL formed by the coinciding dots and
circles. The shaded areas indicate a fundamental domain for each of the lattices.

1.4 Coincidence isometries
Lemma 1.2. The set of all coincidence isometries
OC(1) := {R € O(d)|Z(R) < oo}
forms a group, a subgroup of O(d). Likewise
S0C(I') := 0C(I') N SO(d)

1S a group.
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The group of coincidence isometries is never empty. In particular, if P(1)
denotes the point group of I', we have

Lemma 1.3. The following are equivalent:
1. Re P(l')
2. ¥(R) =1
Corollary 1.4. P(I') = {R € OC(1')|X(R) = 1} C OC(1")

1.5 Some Properties of the Coincidence Index

Lemma 1.5. For any coincidence isometry R

S(R) = R(R ).

1.6 Coincidences of the dual lattice

Lemma 1.6. I' and its dual lattice 1™ have the same coincidence isometries,
i.e.

OC(1*) = OC(1).
SOC(I*) = SOC(I).

The coincidence index is the same for both lattices:
S(R)* = ¥(R).
1.7 Coincidences of Sublattices
Lemma 1.7. Let I'y C T with index m := [ : T'y]. Then
oC(l'1) =0C(l).
Let ¥1(R) be the coincidence index with respect to 1'y. Then

Y(R) | m2i(R)
X1 (R) | mX(R).

Compare [8, 9].

1.8 Example Z? ~ 7Z]i]

For more details on this example, see [8].
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1.8.1 Coincidence rotations

Let € € {£1, 7} be a unit of Z[7], and write any splitting prime p =1 (mod 4)
as p = wyi,. Then the coincidence rotations are all of the form

wa\ P
N )
el¥ — ¢ H <__i> ,
w.
p=1(4) P

where only finitely many n, # 0.

1.8.2 Coincidence index

(e’ = H el

p=1(4)

1.8.3 Spectrum

set of all integers that contain only prime factors p =1 (mod 4).

1.8.4 CSLs of Z[i]

Let
L np My
w(()‘j) - H wpl H o“pi
p=1(4) p=1(4)
np>0 1, <0

Then the CSL corresponding to the rotation e'¥ is given by

Z[i) N e Z[i] = w()Z[i]

1.8.5 Generating fuctions

The number f(m) of different CSLs can be nicely expressed in terms of the
Dirichlet series

m=1 p=1(4)
S A A R R R
C 5 13 17 25% 290 37% 418
2 2 4 2

+ o+

53 T e T ene T T

1.9 Example: Ammann-Beenker tiling

Coincidences of aperiodic tilings can be described via their underlying limit
translation module, giving rise to CSMs (coincidence site modules). For the
application to tilings an additional so-called acceptance factor has to be taken
into account. [6. §]



Figure 2: Amman Beenker tiling. The black dots indicate the coincidences
for a rotation R about the center by 6 = tan™? (—2\/5) ~ 109.5°, ¥(R) =9
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acceptance factor = 0.980572924. .. [9, 10]

1.10 Equal CSLs

Lemma 1.8.

Though the converse is true for several lattices, like the square and triangle
lattice in d = 2 and the cubic lattices in d = 3, it does not hold in general.
In particular, there are rotations S € P(1") such that I'(R) = I'(RS) for the

Se P(I)

following lattices: 1' = (2Z)? x Z, Z*, Dy, A4
Open question: When does ['(R) = I'(RS) imply S € P(I')?

1.10.1 Example: Root lattice A4

Let f(m) be the number of CSLs and |P(A4)|f"°'(m) the number of coincidence
isometries of the root lattice Ay of index m, where |P(A4)| denotes the order
of the point group P(Ay). Clearly f™*(m) > f(m). The following generating
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functions show that they are not equal in general.
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2a,(5)= Y L
m=1
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For more details, see [11, 12, 13]

1.11 Multiple CSLs
Definition 1.2. Let I' C R? be a lattice, R; € OC(1'). Then

I'(Ri,...,R,) =UNRI'N...NR,I'=I'(R)N...0 I'(Ry)

is called a multiple coincidence site lattice (MCSL).
The index

E2(Ri,...,R,) = :T(Ry,..., R,))] < oc
is called coincidence index.

For more information, see [14, 15, 16].

1.12 Known CSLs (and similar sublattices)

® Square lattice, hexagonal lattice [8, 17

e certain planar modules with N-fold symmetry [6, 17]
e cubic lattices and related modules (4, 18, 8, 19, 20]

e hypercubic lattices [8, 21]

e Ay-lattice, ring of icosians [11, 12, 13]

2 Similar Sublattices

For more details see [22, 23, 24, 25].

2.1 Similarity Transformations
Definition 2.1. Let « € R* and R € O(d). Then

A: R 5 RY
z — aRx

is called a linear similarity transformation.
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Figure 3: A square lattice and two copies of it rotated by e'¥ = %:% (red circles)
and e™% = %;—f (green circles). respectively. The MCSL I'(e”, e %) consists
of all points where the black dots and the red and green circles coincide, a
fundamental domain of it is given by the yellow area.

2.2 Similar Sublattice

Definition 2.2. Let A = aR be a linear similarity transformation and I' C R¢
a lattice. Then A is called a similarity transformation of I' if

Al'=aRl' CT.

In this case AT' = o RI" is called a similar sublattice (similarity sublattice).

2.3 Index of a Similar Sublattice

Lemma 2.1. For any similar sublattice of the lattice I' C RY:

[:aRT) =a%eN.

2.4 Similarity Isometries

Definition 2.3. An isometry R € O(d) is called a similarity isometry of T',
if there exists an o« € RT such that o R is a similarity transformation of T".
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Figure 4: Similar sublattices of a square lattice of index 2 and 5, the latter also
occuring as CSL, see above.

Lemma 2.2. The set of all similarity isometries of I forms a group, called
OS(T'). In particular OS(T) is a countable subgroup of O(d). Likewise SOS(T") :=
OS(I') N SO(d) is a countable subgroup of SO(d).

3 Coincidence Isometries versus Similarity Isome-
tries

Theorem 3.1. For any d-dirnensional lattice I' we have
oCc(I"y COS(T)

OS(T)/OC(T) is abelian.

Moreover gt = e for any g € OS(1')/OC(1).

In particular. if d = p for some prime p, then OS(1')/OC(1'} is a p--group.
See 26, 27].

3.1 Coincidence Isometries versus Similarity Isometries

Lemma 3.2.

OC(I') = {R € OS(I')| den(R) € N} C 0S(I') € O(d)

3.2 Denominator (“Minimal Blow—up factor”)
Definition 3.1. Let R € OS(I'). Then

denp(R) := min{n € RT|aRT C I'}.
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Lemma 3.3. Let R € OS(1'). Then
{a € R|aRI C I'} = denr(R)Z.
Lemma 3.4. denp(R) =1 if and only if R € P(I').
Lemma 3.5. Let R € OS(I'). Then
denp(R)? € N

3.3 Coincidence Index and Denominator

Lemma 3.6. Letm := lem(denp(R),denp(R™!)) andn := ged(denp(R),denp(R™1)).
Then

m | Z(R) | n and E(R)? | m?
Remark 3.1. Ifd =2 then

3(R) = den; (R) = denp(R™1).

3.4 Primitive Similar Sublattices

Definition 3.2. A similar sublattice 1'y of ' is called primitive, if %1‘1 Z 1 for
alln > 1.

Lemma 3.7. A similar sublattice I'y of I' is primitive if and only if there exists
an R € OS(I") such that
I'1 =denp(R)RI.

3.5 Example: square lattice

Let a(m) and a”"(m) denote the number of similar and primitive similar sub-
lattices of the square lattice. These functions are multiplicative and have the
following generating function. See [23].

Dm@%:E:dﬁ)=%m@%=r%;;Il( 1

— mn—s)2
m=1 p=1(4) 1-p )

1,12 1 1 2 2
2° 4 T 5s 8 90 10° ' 130 160

+ ...

1,2 02,2 2 2 2
2° "5 10° | 13° ' 17%  25° | 26°

+ ...



4 Colourings

Here we consider special colourings of lattices. For a fixed sublattice 1'y of 1"} we
assign all points of a coset the same colour, with different colours for different
cosets. [28, 29, 30, 9]

4.1 Colour symmetries

symmetry operation leaves lattice and colours fixed

colour symmetry leaves lattice fixed but permutes colors

In our case:
e all lattice translations are colour symmetries
e there is a bijection between colours and cosets
e to each colouring (up to colour permutations) there corresponds a unique

coset decomposition I'1 = [J,(c¢ + I'2) and vice versa

4.2 Coincidences and colourings

Idea: use colourings of lattices to find out more about coincidence indices of
sublattices [10, 9]

Let I'z a sublattice of 'y of index m, aud let ¥, (R) be the coincidence index
of R with respeet to T; for i € {1,2}.

Theorem 4.1. ,
_ tuEl(R) _ S"U'LH(R)

22(R)

m m

and s,t,u,v | m. Here s and t are the number of colours in the induced coulour-
ing of T1(R™') and T'1(R), respectively. u is the number of colours c; with the
property that some point of T'1(R™!) coloured c; is mapped under R onto a point
coloured cy = 0 in 'y (R); v is the number of colours in the colouring of I'1(R)
that are intersected by the images under R of those points of I')(R™1) coloured
Cp.

4.3 Colour coincidences

Definition 4.1. We call R a colour coincidence, if one of the following two
equivalent conditions is satisfied

1. colouring of I'1(R) is a rotated copy of the colouring of ')(R™!) (up to
colour permutations)

2. R leaves colour ¢y fized
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Theorem 4.2. If R is a colour coincidence, then ¥3(R) divides ¥;(R).

Open question: Do colour coincidences form a group?

What is known:
e R colour coincidence <= R~! colour coincidence

e RS colour coincidences and ¥;(R), X1(S) coprime <= RS colour coin-
cidence

5 Shifted lattices

5.1 Coincidence isometries

Here we consider linear isometries of lattices shifted by some vector « € R?, i.e.
sets x + I'. One extends all the definitions in the natural way. One gets

Theorem 5.1. OC(x+ 1) ={ReOC(I"): R —x €'+ RIl'}
e In general, OC(x + I') is not a group.
For further details and applications to multilattices and sublattices see [31,

9].

5.2 Coincidence isometries of Z]i]
Theorem 5.2. Let I' = Z[i] and z € C.
1. SOC(x +T) is a subgroup of SOC(I")

2. OC(z + 1) is a subgroup of OC(T') if and only if T'T> € SOC(x + 1) for
any Ty, To € OC(z +I')\ SOC(z + 1),

Lemma 5.3. Let x = L where p,q € Z[i], p and q relatively prime. Then
q

SOC(z +T) = SOC (% + 1")

Lemma 5.4. If p and q are relatively prime, then

SOC (i + r) ~ SOC (1 + 1") A SOC (1 + 1“)
Pq D q
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5.3 Example Z[i]: specific shift vectors (1)

. . 1
. xozé,éandw] =;§;+%i, §+§i=>q=5
e SOC(xy+ 1) =S0OC(x; + 1)
e OC(xy+I') and OC(x; + I') are groups

The generating function ®,(s) of the shifted CSLs reads as follows (the
generating function ®(s) of the CSLs of Z[¢] is repeated for easier comparison)

P(8)=lt it ettt tartor g+
Ps)=l+E+ it ettt o T 507
‘ot gt t
The rotations and the orientation reversing isometries both generate the same

CSLs.

5.4 Example: Z[i]: specific shift vectors (2)

1
=21, i 5= ; 3
e r=f+gi=115=>9=1+2 2

e SOC(x+T) =S0C (% +T)

e OC(x +I') is NOT a group!

Here rotations and orientation reversing isometries generate different CSLs.
¢, (s) generates the counting function of shifted CSLs that are generated by

rotations only, whereas W, (s) generates the counting function of all shifted
CSLs. Again, ®(s) of the unshifted Z[7] is included for comparison.

Cu(s) =1+ EtEt ottt te Tt

Ps)=l+E2+ E+F+tomtomti =t
et et At

Vo()=l+Ad+Ftmtamtomtimt e ts

2 8 2
toir teer Tt

For further examples see [9].
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6 Conclusions
There are a lot of connections ...

e colourings > similar sublattices
e similar sublattices < CSLs

e CSLs > colourings
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