
Construction of Visual Classifier
by Edge Crossing Minimization

Kazuya Haraguchi* Seok-Hee Hong \dagger Hiroshi Nagamochi \ddagger

Abstract

We consider a machine learning problem called classification. In this problem, we are given
a training set of examples, where each example is represented by a nominal-valued vector and
belongs to one of the pre-defined classes. We are asked to construct a classifier that predicts
the classes of future examples with high accuracy. We have worked on developing a new
visual classifier so far which can provide us with insights into data by its drawing beyond a
mathematical function. In this article, we review the visual classifier which was studied in our
previous works, in order to realize future directions of our research.

1 Introduction
In this paper, we consider a machine learning problem called classification, which is a fundamental
but a significant issue from classical statistics to modern fields on learning theory [7].

For a positive integer i , we denote $[i]=\{I, 2, \ldots, i\}$. In this problem, we are given a tmining set
X of examples. An example $x\in X$ is specified by entries on n attnbutes (and thus is represented
by an n dimensional vector), and belongs to one of the pre-defined classes. The set of classes is
denoted by C . For any $j\in[n]$, let D_{j} denote the domain of attribute j . In this paper, we assume
that each D_{j} is a finite set of discrete elements. We call the product $\mathcal{X}=D_{1}\cross\cdots\cross D_{n}$ the
example space. The aim of the problem is to construct a classifier, a function from the example
space \mathcal{X} to the class set C , that predicts the class of a “future“ example $y\in \mathcal{X}$ with high accuracy,
where y is possibly unseen, i.e., $y\not\in X$. In particular, when $|C|=2$ $($ resp., $|C|>2)$, the problem
is called binary classification (resp., multiclass classification).

In our previous research, we have worked on developing a new visual classifier, which can
provide us with insights into data by its drawing, inspired by many successes of visualization and
graph drawing. Given a good visualization of abstract data, one may expect that a hidden structure
has been revealed. Our main hypothesis is that good visualization (e.g., visual objects with low
visual complexity) itself can discover essential or hidden structure of data without relying on any
data analysis techniques, which can lead to a novel learning technique.

Our strategy for constructing a visual classifier consists of the following procedure.

1: Extract a graph structure that contains the features of X well. (The X is usually given as a
spreadsheet.)

2: Compute a “good“ visualization of the graph.

3: Determine the mechanism to utilize the well-drawn graph as a classifier.

’Faculty of Science and Engineering, Ishinomaki Senshu University, Japan (kazuyahQisenshu-u. ac. jp)
\dagger School of Information Technologies, University of Sydney, Australia (shhongQit. usyd. edu. au)
\ddagger Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University

(nagQamp. i . kyoto-u. ac. jp)

数理解析研究所講究録
第 1726巻 2011年 73-83 73

Table 1: An instance of training set $X=X^{+}\cup X^{-}$

After designing some prototypes [10, 11], we proposed our binary visual classffier [9, 12, 13] and
extended it for multiclass classification [14]. Our visual classifier is based on what we call entw-
example gmph (EX-graph), which is constructed from a set of decision tables and the training set
X.

In this article, we review our previous work on visual classffier so far and discuss future work
in order to realize directions of our research. The article is organized as follows: In Section 2,
we explain how to extract EX-graph from X and how to construct binary visual classffier from
EX-graph. Then in Section 3, we describe how to extend it for multiclass classification by using
edge crossing minimization technique. We then discuss our future work in Section 4. Note that
the discussions in Sections 2 and 3 are mainly from [9] and [14], respectively.

2 Visual Classifier for Binary Classification

2.1 Overview
We focus on binary classification in this section. Let us take $C=\{+, -\}$ where $(+)$ (resp.,
$(-))$ represents the positive (resp., negative) class. Table 1 shows an instance of training set
$X=X^{+}\cup X^{-}$ for binary classification, where X^{+} (resp., X^{-}) denotes the set of positive (resp.,
negative) examples in X . In this X , each example corresponds to a patient of some disease.
The three attributes represent headache, temperature, and blood pressure respectively, and their
domains are defined as $D_{1}=$ {yes, no}, $D_{2}=$ {high, med}, and $D_{3}=$ {high, med, low}.

Our visual classifier is based on EX-graph. In order to explain EX-graph, we need to introduce
decision table. Formally, a decision table $T=(A, \ell)$ is such a classifier that is defined by a subset
$A=\{j_{1}, \ldots,j_{q}\}\subseteq[n]$ of n attributes and a label function ℓ : $D_{j_{1}}\cross\cdots\cross D_{j_{q}}arrow\{+, -\}$. That
is, the label function ℓ assigns either $(+)$ or $(-)$ to each entry of A . Table 2 shows three decision
tables for the training set in Table 1. For a future example, a decision table infers its class as the
label of the matched entry. For example, (no, high, high) is classified into $(+)$ by T_{1} , $(-)$ by T_{2}

and $(+)$ by T_{3} .
In the sequel, we assume that a set $\mathcal{T}=\{T_{1}, T_{2}, \ldots, T_{K}\}$ of decision tables is given. We do not

focus on how to generate it here. This issue will be addressed in our future papers. Let $K=|\mathcal{T}|$

denote the number of decision tables in \mathcal{T} . We denote the k-th decision table by $T_{k}=(A_{k}, \ell_{k})$.
Following the procedure described in Section 1, we summarize how to construct binary visual
classffier as follows.

Extraction of EX-graph. To construct a visual classifier, we first extract EX-graph for training
set X and decision table set \mathcal{T} . Denoted by $G=(X, \mathcal{D}, E)$, EX-graph is a bipartite graph, where
one node set corresponds to the examples in X , the other node set corresponds to the entries \mathcal{D}

74

Table 2: Decision tables $T_{1}=(A_{1}, \ell_{1}),$ $T_{2}=(A_{2}, \ell_{2})$ and $T_{3}=(A_{3}, \ell_{3})$ with attribute sets
$A_{1}=\{1,2\},$ $A_{2}=\{1,3\}$ and $A_{3}=\{3\}$

$T_{1}=(A_{1}, \ell_{1})$ $T_{2}=(A_{2}, \ell_{2})$ $T_{3}=(A_{3}, P_{3})$

of the decision tables in \mathcal{T} , and E denotes the edge set. We denote by \mathcal{D}_{k} the set of entries of
decision table $T_{k}\in \mathcal{T}$, and then we have $\mathcal{D}=\mathcal{D}_{1}\cup\cdots\cup \mathcal{D}_{K}$. An example node and an entry node
are joined by edge if and only if the example matches the entry. Figure 1 (a) shows the EX-graph
for X in Table 1 and $\mathcal{T}=\{T_{1}, T_{2}, T_{3}\}$ in Table 2, where the entry values are abbreviated, e.g.,
$(nh$” of T_{1} stands for “no, high.”

Good visualization of EX-graph. We employ two-layered drawing to draw an EX-graph,
where the two node sets are laid on parallel layers. A drawing (σ, π) of the EX-graph is defined as
the ordering (i.e., bijection) σ : $Xarrow[|X|]$ on the example nodes and the ordering π : $\mathcal{D}arrow[|\mathcal{D}|]$

on the entry nodes. For π , we restrict ourselves to the permutations where the entries from the
same decision table are arranged consecutively. Then π is decomposed into $\pi_{1},$

$\ldots,$
π_{K} , where

π_{k} : $\mathcal{D}_{k}arrow[|\mathcal{D}_{k}|]$ for each $k\in[K]$.
As mentioned in the literature (e.g., [17, 24]), crossing minimization may improve readability

of EX-graph. Then we try to minimize the number of edge crossings in order to obtain a good
visualization of EX-graph. Let us describe the key idea as follows: Observe that some entry nodes
may be connected to positive example nodes more than negative ones, or vice versa. We decide the
ordering π on the entry nodes by positivity, i.e., the bias of the classes in the matching examples.
For example, see the upper layer of Figure 1(b). Among the entry nodes of $T_{1},$ $(nm$” is laid on
the left since it is not connected to any positive example nodes, while “ym“ and “nh” are laid on
the right since they are connected only to positive example nodes. For the fixed π , we perform
one-sided edge crossing minimization (lCM) to determine the ordering σ on the example nodes.
We expect lCM to reduce the “conflict“ of the two orderings, and thus to separate the positive
and negative example nodes, as shown in the lower layer of Figure 1(b). Since lCM is NP-hard
[6], we need to employ an approximation algorithm to solve it.

Formally, we denote by ρ_{k} : $\mathcal{D}_{k}arrow[-1,1](\forall k\in[K])$ the above mentioned positivities of entry
nodes of decision table T_{k} . For an entry $v\in \mathcal{D}_{k}$, we denote by $\mu^{+}(v)$ (resp., $\mu^{-}(v)$) the number of
positive (resp., negative) examples in X that match v . We utilize the following definition of $\rho_{k}(v)$

which is called prectsion in the literature [18];

$\rho_{k}(v)=\{$ $\frac{02\mu^{+}(v)}{\mu^{+}(v)+\mu^{-}(v)}-1$

if $\mu^{+}(v)=\mu^{-}(v)=0$,

otherwise.
(1)

We then decide the ordering π_{k} as the non-decreasing order of ρ_{k} , i.e., we set $\pi_{k}(v_{1})=1,$ $\pi_{k}(v_{2})=2$,
. . . , $\pi_{k}(v_{\mathcal{D}_{k}})=|\mathcal{D}_{k}|$ so that $\rho_{k}(v_{1})\leq\rho_{k}(v_{2})\leq\cdots\leq\rho_{k}(v_{\mathcal{D}_{k}})$.

To solve lCM for fixed $\pi_{1},$
$\ldots,$

π_{K} , there are several approximation algorithms available. For
example, Eades and Wormald [6] proposed a median method, which produces a 3-approximate
solution. The barycenter heuristic by Sugiyama et al. [26] is an $O(\sqrt{m})$-approximation algorithm

75

T_{1}

$”’.\prime^{\prime------}\sim_{c}$.
nh nm ym yh

T_{2}

$’.-”\prime^{------}’--------$.
yl nh nm ym nl yh

T_{3}

$”’\prime^{---}\cdot\cdot.$,

1 mh

x_{4} x_{2} x_{6} x_{1} x_{5} x_{7} $x_{3}.$.
$——————————————–\wedge------\wedge-$

X

(a)

nm yh ym nh nh nl ym yl Y^{h} nm 1 mh

$-\ovalbox{\tt\small REJECT}_{+}$

θ^{*}

(b)

Figure 1: (a) A drawing of the EX-graph. (b) The drawing obtained by lCM and the classifying
threshold for SS model.

(where m denotes the number of nodes) [6]. Currently, the best known approximation algorithm
is given by Nagamochi [22] that delivers a drawing with a 1.4664 factor approximation, based on a
random key method. Among these, we utilize barycenter heuristic [26], which has been recognized
as an effective approximation algorithm in practice, e.g., [19]. Barycenter heuristic permutes the
examples x ’s in X in the non-decreasing order of barycenter $\beta(x)$, which is defined as follows;

$\beta(x)=\frac{1}{K}\sum_{k\in[K]}\rho_{k}(x|_{A_{k}})$ (2)

Use of EX-graph as a classifier. We developed three visual classifier models using EX-graph,
stnng split $(SS)[9]$, neighborhood majonty $(NM)[12]$ and example poset $(XP)[13]$. The SS splits
the example string which is computed by barycenter heuristic into positive and negative parts by
a suitably chosen threshold (see θ^{*} in Figure 1 (b)), and classifies a future example according to
which side of the threshold it falls on. The NM defines the neighborhood of an example as an
interval of the example string, by utilizing a partial order on X . The partial order is defined by
the component-wise order of the vectors whose components are positivities of the adjacent entry
nodes. Then NM classifies a future example into the majority class in its neighborhood. As an
extension of NM, XP extracts a partially ordered set of examples and partitions it into positive
and negative subsets. A future example is classffied according to which subset it should belong to.

76

Among the three models, SS is the most successful one in terms of prediction accuracy. In
SS, we compute the barycenter $\beta(y)$ in (2) of a future example $y\in \mathcal{X}$ and classify it into positive
(resp., negative) if $\beta(y)>\theta^{*}$ $($ resp., $\beta(y)\leq\theta^{*})$, where θ^{*} is determined from the example string
of X as follows:

$\theta^{*}=\arg\min_{\theta\in[-1,1]}\frac{1}{|X|}(|\{x^{+}\in X^{+}|\beta(x^{+})\leq\theta\}|+|\{x^{-}\in X^{-}|\beta(x^{-})>\theta\}|)$. (3)

That is, the above θ^{*} minimizes the training error. The paper [9] discusses the computational
complexity for constructing SS model, and we omit the detail here.

2.2 Experimental Results
To observe prediction accuracy, we compare SS with C4.5 [25] and LibSVM [2] in terms of error
rate. We take 14 data sets from UCI Repository [1] for benchmark instances. Table 3 shows the
names of the taken data sets, along with the error rates of the three classifiers. These data sets
have numerical and/or categorical attributes, and in order to treat them in our formulation, we
transform example vectors into binary vectors by the method proposed in [15]. The error rates
are estimated by 10-fold cmss validation [27] except IONO, MONKS-I, MONKS-2 and MONKS-3
data sets which have their own test sets. Let us mention the used parameter values for the three
classifiers as follows.

SS: To generate set \mathcal{T} of decision tables, we use DECISIONTABLE package of Weka [20, 28]. This
package generates a “good” attribute set by local search. By choosing the initial solution at
random, we can generate different attribute sets, which results in different decision tables.
We set all parameters to the default values except initial solution. We fix $K=|\mathcal{T}|=30$, and
take the minimum of 10 error rates over 10 different \mathcal{T}’s for evaluation.

C4.5: We test 8 combinations of parameter values: we set confidence rate to 1%, 25% (default),
50% or 99%, binary split option to true or false (default), and the other parameters to
the default values. We take the minimum of 8 error rates for evaluation.

LibSVM: We test 32 combinations of parameter values: we use binary C-SVM and RBF kernel,
and set $C=0.5,1.0$ (default), 2.0 or 4.0, $\gamma=0.0$ (default), 0.5, 1.0 or 2.0, normalization
option to on or off (default), and the other parameters to the default values. We take the
minimum of 32 error rates for evaluation.

As shown in Table 3, our visual classifier based on SS model achieves competitive error rates
with C4.5 and LibSVM, standard classifiers in the literature, although parameter values are hardly
tuned for SS but are tuned for C4.5 and LibSVM. In this table, bold face represents the smallest
error rate for each data set.

For computation time, C4.5 is the fastest among all, SS is the second, and LibSVM is the worst
in general. (We omit the details due to space limitation.) For SS, more than 95% of computation
time is devoted to construction of \mathcal{T} , for which we use Weka. This encourages us to develop an
effective and efficient algorithm to construct \mathcal{T} .

3 Visual Classifier for Multiclass Classification

3.1 Overview
Let us refer to binary visual classifier introduced in Section 2 as 2-SS. The 2-SS can be extended to
N-SS $(N>2)$ naturally. In 2-SS, a future example $y\in \mathcal{X}$ is classified according to its barycenter
$\beta(y)$ in (2) (which is the average of positivities in (1) of the matched entries) is larger than the

77

Table 3: Error rates $($% $)$ of SS, C4.5 and LibSVM for 2 class data sets

$\overline{\frac{DataSSC4.\cdot 5LibSVM}{BCW4.005003.43}}$

CHESS 1.78 0.44 0.59
HABERMAN 27.08 26.44 26.45
HEART 15.19 18.52 14.07
HEPATITIS 20.13 19.96 19.42
IONO 5.30 4.64 3.31
MONKS-I 0.00 0.00 8.56
MONKS-2 22.69 29.63 lS.75
MONKS-3 3.47 0.00 2.31
MUSHROOM 0.00 0.00 0.00
PIMA 23.83 26.43 23.57
TICTACTOE 17.96 5.85 2.71
VOTING 4.58 4.36 3.67
WDBC 4.56 5.62 4.56

threshold θ^{*} in (3) or not. This is equivalent to classifying y by similanty function as follows; we
define the similarity function with positive (resp., negative) class as $\beta(y)-\theta^{*}$ $($ resp., $\theta^{*}-\beta(y))$,
and classify y into the class having the largest similarity. This idea is easily extended to multiclass
cases by determining similarity functions for all classes.

Furthermore, we can use some general frameworks to extend any binary classifier to multiclass
one. One may find the following three methods in the literature: one-to-all [23], one-to-one [16]
and error correcting output codes [5]. However, these frameworks hardly take into account the
structural relationships of classes, although it must be smarter to decompose the entire problem
into subproblems for fewer classes in some application domains. For example, Figure 2 shows the
hierarchical structure of classes in GLASS data set from UCI Repository [1].

There are some studies that attempt to extract hierarchical structure of classes, which we call
a class tree. In a class tree, there are N leaves, and each leaf corresponds to one of the N classes.
Each inner node corresponds to a meta-class, representing the set of its descendant classes (i.e.,
leaves). Let $N’\leq N$ denote the number of children of an inner node. For this inner node, N’-class
classffier is constructed, where each child constitutes one class. Starting from the root, a future
example is passed to one of the $N’$ children, which is decided by the N’-class classifier of the current
node. This procedure is repeated until the example reaches a leaf. Finally, the example is classffied
into the class of the reached leaf. Most of the previous works concentrate on extracting a binary
tree as the class tree to decompose an N-class problem into binary subproblems (e.g., [3, 21]).

Note that one should extract a nice class tree and decompose the given N-class problem into
easier subproblems. In the context of class tree, N-SS can be regarded as a star (i.e., a tree consists
only of the root and the N leaves), where no decomposition is made, in the sense that N classes
are treated homogeneously in classifier construction. However, N-SS does not seem to work well
on such data sets that have structural relationships between classes. On the other hand, binary
tree based approaches do not always work well because binary tree is not the universal structure
of classes.

Then in [14], we proposed a new multiclass visual classffier, named SS-TREE, that can extract
any tree as a class tree. To extract a class tree, we employ edge crossing minimization on two-
layered drawing of EX-graph again, but in this case, we contract example nodes from the same
class into one node. We can control the structure of the resulting class tree by tuning the newly
introduced parameter. In the extracted class tree, we use N’-SS as the classffier for an inner node

78

Figure 2: Hierarchical structure of classes in GLASS data set from UCI Repository [1]

v_{1} v_{4} v_{2} v_{3} v_{1} v_{2} v_{3} v_{4}

c_{5} c_{2} c_{4} c_{3} c_{1}
$:c_{1}\ldots\ldots\ldots.c_{2}\ldots..::.\ldots..\ldots\cdot$

c_{3} c_{4} c_{5}

Figure 3: Two-sided edge crossing minimization $(2CM)$ on EC-graphs

with $N’$ children.

Algorithm to construct SS-tree. Let us denote by $C=\{c_{1}, c_{2}, \ldots, c_{N}\}$ the set of N classes.
To construct a class tree from the given N-class training set X , we compute a laminar family
$C\subseteq 2^{C}$ of subsets of the class set C , and utilize C as the class tree. We include a subset $S\subseteq C$ in
C if our criteria say that S should be treated as a meta-class in a binary (or at least fewer-class)
subproblem. For this, we test if the examples from S and the examples from $\overline{S}=C\backslash S$ can be
separated ”effectively“ by 2-SS.

To test the separability, we introduce entry-class graph (EC-graph), $\hat{G}=(C, \mathcal{D},\hat{E})$, which is
obtained from EX-graph $G=(X, \mathcal{D}, E)$ by contracting examples from the same class into one node
$c_{j}\in C$. We define a layout of EC-graph by $(\hat{\sigma}, \pi_{1}, \ldots, \pi_{K})$, where $\hat{\sigma}$: $Carrow[N]$ is an ordering on
the class set C and π_{k} : $\mathcal{D}_{k}arrow[|\mathcal{D}_{k}|](k\in[K])$ is an ordering on the entry set \mathcal{D}_{k} .

Recall that 2-SS is obtained as a result of performing lCM on EX-graph. We consider two-sided
edge crossing minimization $(2CM)$ on EC-graph that asks to compute the layout $(\hat{\sigma}, \pi_{1}, \ldots, \pi_{K})$

to minimize the edge crossings. See Figure 3. In this simple example, we assume $N=5$ and focus
on one decision table with 4 entries. However, the discussion can be generalized easily.

Assume that 2CM has been performed on given EC-graph (see the right drawing of Figure 3).
For convenience, let $\hat{\sigma}(c_{1})=1,$ $\ldots\hat{\sigma}(c_{N})=N$. In the figure, we can expect that the examples
from $S=\{c_{1}, c_{2}\}$ and those from $\overline{S}=\{c_{3}, c_{4}, c_{5}\}$ can be separated by an appropriate construction
of 2-SS. This expectation comes from the observation that there are few crossings between edges
from S and \overline{S} , which may suggest the separability between S and \overline{S} , and that there are more edge
crossings in inside of S , which may suggest that the examples of the classes in S match the similar
entries (and thus take close values for barycenter).

Now let us formalize our criteria to decide whether $S\subseteq C$ should be included as a node in the

79

class tree. For $j\in[N]$ and $t\in[N-j]\cup\{0\}$, let $S_{j,t}=\{c_{j}, c_{j+1}, \ldots, c_{j+t}\}$ denote a consecutive
subset of C . We define $\chi(j, t)$ to be the number of crossings between edges $homS_{j,t}$ and $\overline{S}_{j,t}$, and
define $\eta(j, t)$ as follows;

$\eta(j, t)=\{\begin{array}{ll}0 if t=0,\max_{[j’,t’]\subsetarrow[j,t]}\frac{\chi(j,t)}{\chi(j" t)} otherwise.\end{array}$ (4)

One can see that, if $\eta(j, t)$ is small, then the crossings between edges from $S_{j,t}$ and those hom its
outside, i.e., $\overline{S}_{j,t}$, are relatively fewer than the edge crossings inside $S_{j,t}$.

Our algorithm to construct a class tree is described in Algorithm 1. Whether $\eta(j, t)$ is “small“
or not is decided by a positive parameter $\delta>0$. In line 1, since the 2CM problem is NP-hard [8],
we employ iterative application of barycenter heuristic in the experiments of the next subsection,
i.e., repeat fixing one side and permuting the other side by barycenter heuristic until no change is
made on both sides. In line 2, we can compute all $\eta(j, t)$ ’s efficiently by dynamic programming.
However, the details are omitted due to space limitation.

$\frac{A1gorithm1C\circ NSTRUCT-CLASS-TREE}{1:Computethe1ayout(\hat{\sigma},\pi_{1},\ldots,\pi_{K})ofEC-graphby2CM}$

2: For each $j\in[N]$ and $t\in[N-j]\cup\{0\}$, compute $\eta(j, t)$ by (4).
3: $\mathcal{I}arrow\{S_{j,t}\subseteq C|j\in[N], t\in[N-j]\cup\{0\}, \eta(j, t)<\delta\}$.

We denote $\mathcal{I}=\{S_{j_{1},t_{1}}, \ldots, S_{j_{b},t_{b}}\}$, where $\eta(j_{a}, t_{a})\leq\eta(j_{a+1},j_{a+1})(\forall a\in[b-1])$.
4: $Carrow\emptyset$.
5: for $aarrow 1,2,$

$\ldots,$
b do

6: if $C\cup\{S_{j.,t}.\}$ is laminar then
7: $Carrow C\cup\{S_{j_{a},t_{a}}\}$.
8: end if
9: end for

10: Output C .

SS-TREE is the visual classifier consisting of the class tree C and the N’-SS s for the inner
nodes. Let us emphasize that our class tree is constructed based on edge crossing minimization on
EC-graph. We describe some details as follows:. The output C exactly includes singletons $S_{1,0}=\{c_{1}\},$

$\ldots,$
$S_{N,0}=\{c_{N}\}$ for any $\delta>0$ since

$\eta(j, 0)=0<\delta$ by (4). These N singletons serve as the leaves of the class tree.. The parameter δ eventually controls the structure of the output class tree. Intuitively, if
$\deltaarrow 0$ (resp., $+\infty$), then less (resp., more) subsets are likely to be included in C , and thus
the class tree is close to a star (resp., a binary tree). Hence it is expected that a larger δ

decomposes the given N-class problem into more subproblems for fewer classes.. It is possible that C contains more than one maximal subset, i.e., more than one class tree.
In such a case, we have to choose the class tree used for classifying a future example, but we
omit the details due to space limitation. (In our preliminary experiments, we hardly observed
such a case.)

3.2 Experimental Results

We compare SS-TREE with other classifiers, C4.5 [25], LibSVM [2] and MCSVM [4], in terms of
error rate on test sets. All the classffiers have some tunable parameters. We try some combinations
of parameter values for each classifier, and evaluate it by the smallest error rate.

80

Table 4: Error rates $($% $)$ of SS-TREE, C4.5, LibSVM and MCSVM

SS-TREE: We set δ to $\epsilon,$ $1.0,1.1,1.2,1.5,2.0,3.0$ and $+\infty$, where ϵ is a sufficiently small positive
number. We use DECISIONTABLE package of Weka [28] to generate a set \mathcal{T} of decision tables.
We set $K=|\mathcal{T}|$ to 10, 20 and 30.

C4.5: We test 8 combinations of parameter values: we set confidence rate to 1%, 25% (default),
50% or 99%, binary split option to true or false (default), and the other parameters to
the default values.

LibSVM: We test 16 combinations: we use 2-class C-SVM and RBF kernel, and set $C=0.5$,
1.0 (default), 2.0 or 4.0, $\gamma=0.0$ (default), 0.5, 1.0 or 2.0, and the other parameters to the
default values. Note that LibSVM employs one-to-one framework to extend binary C-SVM
to multiclass one.

MCSVM: As it is an extension of binary C-SVM, LibSVM and MCSVM have similar parameters
in common. For MCSVM, we test the same 16 combinations as LibSVM.

We show the results in Table 4. Boldface for each data set shows the smallest (i.e., best) error
rate among all classifiers. A sign $*$ on SS-TREE indicates that the error rate is smaller than C4.5.
The effectiveness of SS-TREE is outstanding when N is large; for $N\geq 7$, SS-TREE outperforms
C4.5 for all data sets and becomes more competitive with SVMs. In particular, SS-TREE is much
better than the other classifiers for AUDIOLOGY, which has the largest N among the used data
sets. For larger N , we may have to decompose N-class problem more carefully. The experimental
results indicate that SS-TREE succeeds in extracting class trees which are effective in decreasing
error rates.

4 Riture Work
In this article, we have reviewed our visual classifier constructed by edge crossing minimization on
bipartite graph. Our main future work is summarized as follows.

81

0 We have assumed that a set \mathcal{T} of decision tables is given and generated it by Weka in the
experiments. We need to develop a faster algorithm to generate an effective set T of decision
tables.. In the experiments, we used a binarization algorithm to deal with a data set with numerical
attributes since our formulation is limited to nominal data sets. We should consider an
extended formulation that can treat numerical attributes directly.. We also have to find application areas where our visual classifier is effective for data analysis
and knowledge discovery.. We need to work on the most essential question: Does edge crossing minimization on graphs
really leads to success of learning?

References
[1] A. Asuncion and D.J. Newman. UCI Machine Leaming Repository. Univer-

sity of California, Irvine, School of Information and Computer Sciences, 2007.
http: $//www$. ics. uci. edu$/\sim m1$earn$/MLRepository$. html (accessed on Nov. 30th, 2010).

[2] C. C. Chang and C. J. Lin. LIBSVM: a libmry for support vector machines, 2001. Software
available at http: $//www$. csie. ntu. edu. tw/\simcjlin/libsvm (accessed on Nov. 30th, 2010).

[3] L. Cheng, J. Zhang, J. Yang, and J. Ma. An improved hierarchical multi-class support vector
machine with binary tree architecture. Intemational Conference on Intemet Computing in
Science and Engineenng, pp. 106-109, 2008.

[4] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Joumal of Machine Leaming Research, Vol. 2, pp. 265-292, 2001.

[5] T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output
codes. Joumal of Artificial Intelligence Research, Vol. 2, pp. 263-286, 1995.

[6] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica,
Vol. 11, pp. 379-403, 1994.

[7] J. H. Riedman. Recent advances in predictive (machine) learning. Joumal of Classification,
Vol. 23, pp. 175-197, 2006.

[8] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Joumal on Algebmic
and Discrete Methods, Vol. 4, pp. 312-316, 1983.

[9] K. Haraguchi, S.H. Hong, and H. Nagamochi. Bipartite graph representation of multiple
decision table classffiers. In Proc. SAGA 2009, Vol. 5792 of LNCS, pp. 46-60. Springer, 2009.

[10] K. Haraguchi, S.H. Hong, and H. Nagamochi. Classification by ordering data samples. RIMS
Kokyuroku, Vol. 1644, pp. 20-34, 2009. ISSN 1880-2818.

[11] K. Haraguchi, S.H. Hong, and H. Nagamochi. Classification via visualization of sample-
feature bipartite graphs. Technical Report 2009-011, Department of Applied Mathematics
and Physics, Graduate School of Informatics, Kyoto University, Japan, 2009.

[12] K. Haraguchi, S.H. Hong, and H. Nagamochi. Visualization can improve multiple decision
table classffiers. In Proc. MDAI 2009 (ISBN: 978-84-00-08851-4), pp. 41-52, 2009.

82

[13] K. Haraguchi, S.H. Hong, and H. Nagamochi. Effectiveness of sample poset based visual
classifier for data sets conceptualized by the number of attributes. In Proc. WAAC 2010, pp.
26-33, 2010.

[14] K. Haraguchi, S.H. Hong, and H. Nagamochi. Multiclass visual classffier based on bipartite
graph representation of decision tables. In Proc. LION4, Vol. 6073 of LNCS, pp. 169-183.
Springer, 2010.

[15] K. Haraguchi and H. Nagamochi. Extension of ICF classifiers to real world data sets. In
Proc. 20th IEA/AIE, Vol. 4570 of LNAI, pp. 776-785. Springer, 2007.

[16] T. Hastie and R. Tibshirani. Classffication by pairwise coupling. In Advances in Neuml
Information Processing Systems, Vol. 10. MIT Press, 1998.

[17] W. Huang, S.H. Hong, and P. Eades. Layout effects on sociogram perception. In Graph
Drawing, Vol. 3843 of LNCS, pp. 262-273. Springer, 2006.

[18] F. Janssen and J. F\"urnkranz. On the quest for optimal rule learning heuristics. Machine
Leaming, Vol. 78, pp. 343-379, 2010.

[19] M. J\"unger and P. Mutzel. 2-layer straightline crossing minimization: Performance of exact
and heuristic algorithms. Joumal of Graph Algorithms and Applications, Vol. 1, No. 1, pp.
1-25, 1997.

[20] R. Kohavi. The power of decision tables. In ECML, Vol. 912 of LNAI, pp. 174-189. Springer,
1995.

[21] S. Kumar, J. Ghosh, and M.M. Crawford. Hierarchical fusion of multiple classifiers for hy-
perspectral data analysis. Pattem Analysis and Applications, Vol. 5, No. 2, pp. 210-220,
2002.

[22] H. Nagamochi. An improved bound on the one-sided minimum crossing number in two-layered
drawings. Discrete and Computational Geometry, Vol. 33, No. 4, pp. 569-591, 2005.

[23] N. J. Nilsson. Leaming machines. McGraw-Hill, 1965.

[24] H. Purchase. Which aesthetic has the greatest effect on human understanding? In Gmph
Drawing, Vol. 1353 of LNCS, pp. 248-26I. Springer, 1997.

[25] J. R. Quinlan. C4.5: Programs for Machine Leaming. Morgan Kaufmann, 1993.

[26] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical
system structures. IEEE Tmnsactions on Systems, Man, and Cybemetics, Vol. SMC-II,
No. 2, pp. 109-125, 1981.

[27] S. M. Weiss and C. A. Kulikowski. Computer Systems that Leam: Classification and Predic-
tion Methods from Statistics, Neuml Nets, Machine Leaming, and Expert Systems. Morgan
Kaufmann, 1991.

[28] I. H. Witten and E. Frank. Data Mining: Pmctical machine leaming tools and techniques. Mor-
gan Kaufmann, San Francisco, 2nd edition, 2005. http: $//www$. cs. waikato. ac. nz$/ml/weka/$

(accessed on Nov. 30th, 2010).

83

