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The Fekete-Szego problem for p-valently
Janowski starlike and convex functions

Toshio Hayami and Shigeyoshi Owa

Abstract

For p-valently Janowski starlike and convex functions defined by applying subordination
for the generalized Janowski function, the sharp upper bounds of a functional |a.p+'2 - ua§+1l
related to the Fekete-Szegd problem are given.

1 Introduction

Let A, denote the family of functions f(z) normalized by

(1.1) @) =2+ 3 ae"  (p=1,23,)

n=p+1

which are analytic in the open unit disk U = {z € C : |2| < 1}. Furtheremore, let W be the class
of functions w(z) of the form

(1.2) w(z) = iwkz"’
k=1

which are analytic and satisfy |w(z)| < 1 in U. Then, a function w(z) € W is called the Schwarz
function. If f(z) € A, satisfies the following condition

[+ (ZL-))] 0 e

f(z)

for some complex number b (b # 0), then f(z) is said to be p-valently starlike function of complex
order b. We denote by S} (p) the subclass of A, consisting of all functions f(z) which are p-valently
starlike functions of complex order b. Similarly, we say that f(2) is a member of the class Ky(p) of
p-valently convex functions of complex order b in U if f(z) € A, satisfies the following inequality

Re[l—}-%(%%z—(p—l))} S0 (2€U)

for some complex number b (b # 0).
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z2f'(2)

Next, let F(2) = ) =u+ivand b= pe (p > 0,0 < ¢ < 2r). Then, the condition of
the definition of S;(p) is equivalent to
1 [/ 2f'(2) )] cos sing
1.3 Rel+—( - =14 —(u—-p)+—v>0.
() [ b\ f) ~F PR

We denote by d(l;,p) the distance between the boundary line l; : (cosp)u + (sinp)v + p —
pcosp = 0 of the half plane satisfying the condition (1.3) and the point F(0) = p. A simple
computation gives us that

cosp Xp+sinp X0+ p—pcosyp
(s, p) = 192 — -,
v cos? p +sin®p

that is, that d(l;,p) is always equal to |b] = p regardless of . Thus, if we consider the circle
C) with center at p and radius p, then we can know the definition of S;(p) means that F(U) is
covered by the half plane separated by a tangent line of C; and containing C;. For p = 1, the
same things are discussed by Hayami and Owa [3].

Then, we introduce the following function

1+ Az
" 14 Bz

(14) p(2) (-1SB<AL)
which has been investigated by Janowski [4]. Therefore, the function p(z) given by (1.4) is said
to be the Janowski function. Furthermore, as a generalization of the Janowski function, Kuroki,
Owa and Srivastava [6] have investigated the Janowski function for some complex parameters A
and B which satisfy one of the following conditions

(i) A# B, |B| <1, |A|£1 and Re(l1-AB)2|A- Bj
(1.5)
(i) A#B, |B|=1, |[A|£1 and 1-AB>0.

Here, we note that the Janowski function generalized by the conditions (1.5) is analytic and
univalent in U, and satisfies Re(p(z)) > 0 (z € U). Moreover, Kuroki and Owa (5] discussed
the fact that the condition |A| £ 1 can be omitted from among the conditions in (1.5)—(i) as the
conditions for A and B to satisfy Re(p(z)) > 0. In the present paper, we consider the more general
Janowski function p(z) as follows:

_p+Az -_— * s

for some complex parameter A and some real parameter B (A # pB, —1 £ B £ 0). Then, we
don’t need to discuss the other cases because for the function

(17) o(z) = LA

= A,B eC, A B, |Bi| £1),
1+ Biz (A1, B, € 1#pBy, |Bi| £1)
letting B; = |Bi|e?® and replacing z by —e~*z in (1.7), we see that

—if
o —if _p—Ae"z _p+Az
p(z)—q( € z)_ 1-|31|Z -1+BZ

(A= —Ae™, B=—|B))

maps U onto the same circular domain as ¢(U).



Remark 1.1 For the case B = —1 in (1.6), we know that p(z) maps U onto the following half
plane

2 A 2
Re (p + 4) p(2) > p—zl—l
and for the case —1 < B < 0 in (1.6), p(2) maps U onto the circular domain

p+ AB

|A+pB|
) - 555

1-B2 "~

Let p(z) and g(z) be analytic in U. Then we say that the function p(z) is subordinate to ¢(z)

in U, written by
p(z) < q(z) (z€D),

if there exists a function w(z) € W such that p(z) = g(w(2)) (2 € U). In particular, if g(2) is
univalent in U, then p(z) < ¢(2) if and only if

p(0) =¢(0) and p(U) c q(U).
We next define the subclasses of A, by applying the subordination as follows:

S8 = {10 e 4: LE 2L o)

and
K,(A, B) = {f(z) €A1+ zj{,((zz)) < ’1’:;’2 (2 eU)}

where A # pB, —1 £ B £ 0. We immediately know that

(1.8) £(2) € Kp(A,B) if and only if if—;—z—) € S;(4, B).

Then, we have the next theorem.

Theorem 1.2 If f(2) € S;(A,B) (=1 < B £0), then f(z) € S§(p) where

B(—pB + Re(A)) cosp + BIm(A)siny + |A — pB||
b= — 5 e’ (05 ¢ <2m).

Espesially, f(z) € S;(A,—1) if and only if f(z) € S;(p) where b= pt+4 A

z2f'(z) < bt Az

f(z) 1-2z" it follows from Remark 1.1 that

Proof.  Supposing that

Re i+ L] > P8

f(2) 2
that is, that

[2( + A) f(/())} > Re [2p(p + 4)] — [p+ A]*.



This means that

[ (7)) >

Re [%@im (F5 "’): >t

Therefore, f(z) € S; where b = ]Lg—é The converse is also completed.

which implies that

Next, for the case —1 < B £ 0, by the definition of the class S; (A, B), if a tangent line I,

of the circle Cy containing the point p is parallel to the straight line L : (cos@)u + (sinf)v =

0 (-7 <30 < 7), and the image F(U) by F(z) = széf:;)

exists a non-zero complex number b with arg(b) = 8 + 7 and |b| = d(lz, p) such that f(2) € S;(p),
where d(l,, p) is the distance between the tangent line l; and the point p. Now, for the function

is covered by the circle Cs, then there

p(z)=117 :gz (A # pB, —1 < B £0), the image p(U) is equivalent to
_ p—AB| _|A-pB|
Cg={weC.|w—1_B2 152
and the point £ on 0C; = {w eC: lw - 1;:?5 = I?:Zgjl} can be written by
— _|A-pB| » p—AB <3
£:=¢€(0)= T gz ¢ +1—B2 (- £760 < m).

Further, the tangent line l; of the circle C; through each point £(6) is parallel to the straight line
L (cos@)u + (sinf)v = 0. Namely, l» can be represented by

l: (cosf) (u— |A - pB| colsizf— BRe(A)) + (sinf) (v _ |A—pB|181E0B-2— BIm(A)) _0

which implies that

_ |A—pB| +{p— BRe(A)} cosf — BIm(A)sinf _

1- B2 B
Then, we see that the distance d(lz,p) between the point p and the above tangent line l; of the
circle C, is

0.

Iy : (cos@)u+ (sinf)v

|A — pB| + {p — BRe(A)} cos§ — BIm(A)siné
1- B2

cos@ X p+sinf x 0 —

]—B(—pB + Re(A)) cosf — BIm(A)sin6 + |A — pB|
1- B2 B

Therefore, if the subordination

z2f'(z) p+ Az
f(z) 1+Bz
holds true, then f(z) € S; where

(A#pBy —1<B§0)

—B(—pB + Re(A)) cos@ — Blm(A)sin6 + |A — pB|
1- B2
Finally, setting ¢ =0+ 7 (0 £ ¢ < 27), the proof of the theorem is completed. O

6"Z(6+7r) .




Noonan and Thomas [8], [9] have stated the g-th Hankel determinant as

(2 Ant1 *°° Gpig-1
Qni1 Qpy2 ° - Ontq
Hy(n) = det _ A i (n,g e N={1,2,3,---}).
An4g-1 Onig *°° On42g-2

This determinant is discussed by several authors with ¢ = 2. For example, we can know that
the functional |H2(1)| = |az — a?| is known as the Fekete-Szego problem and they consider the

further generalized functional a3 — pa2| where a; = 1 and p is some real number (see, [1]). The

purpose of this investigation is to find the sharp upper bounds of the functional |ap+2 - ,uaf, +1|

for functions f(z) € S;(A, B) or K,(A, B).

2 Preliminary results

We need some lemmas to establish our results. Applying the Schwarz lemma or subordination
principle.

Lemma 2.1 If a function w(z) € W, then
|lwp] £ 1.
Equality is attained for w(z) = ez fof any 0 € R.
The following lemma is obtained by applying the Schwarz-Pick lemma (see, for example, [7]).
Lemma 2.2 For any functions w(z) € W, the inequality
|wa| £ 1 — |wn|?
holds true. Namely, this gives us the following representation
wy = (1 —|wi]?) ¢

for some ¢ ([¢] < 1).

3 p-valently Janowski starlike functions

Our first main result is contained in
Theorem 3.1 If f(z) € S}(A, B), then |apys — paZ,,| <

[(A-pB){(1 - 2M)A2— (p+D =2 BN 11 _9u)A—((p+1)— 2pu) B| 2 1)

|A - pB|
2

(11 —2w)A~((p+1)—2pu) Bl £1)



with equality for

———(1 N Bz:) s— or zPe’* (B=0) (1 -2u)A-((p+1)—2pp)B| 2 1)
f(z) = , |
(1+ BzzZ)’%;—‘ or et (B=0) ((1-2mA-((p+1)~2pw)B|<1).

Proof.  Let f(z) € 5;(A, B). Then, there exists the function w(z) € W such that

2f'(z) _ p+ Aw(z)
f(z) 14 Bw(z)

which means that

n-1

(n—plan = Z(A —kB)aywax (n2p+1)

k=p
where a, = 1. Thus, by the help of the relation in Lemma, 2.2, we see that

1
|ap2 — pagys| = |5(A —pB) {wa + (A - (p+ 1)B)wi} — u(A - pB)*wi

_ iA —ZPBI I(l _ w%)c_*_ {(A - (p+ I)B) - 2H(A _pB)} ‘U)fl .

Then, by Lemma 2.1, supposing that 0 £ w; < 1 without loss of generality, and applying the
triangle inequality, it follows that

|1 = w})¢+{(A—(p+1)B) - 2u(A - pB)} w?| £ 1+ {|(A— (p+1)B) —2u(A — pB)| — 1} w}
. { (A= (p+1)B) —2u(A-pB)]  ((A=(p+1)B)—2u(A-pB)| 2 1; w; =1)

1 (A= (p+1)B) — 2u(A - pB)| £ 1; w; = 0).
O

Especially, taking u = ptl in Theorem3.1, we obtain

2p
Corollary 3.2 If f(2) € S;(A, B), then

A(A—-pB

1 |__(_2pp_)| (14l 2 p)

12 = o £ |A - pB|
222 (i)
with equality for
2P Az
mi%‘:,r or 2P (B=0) (|4l 2p)
f(2) =
Zp

1+ Pet” (B=0) (|4 <p).



Furthermore, putting A = p — 2a and B = —1 for some a (0 £ a < p) in Theorem 3.1, we
arrive at the following result by Hayami and Owa [2, Theorem 3].

Corollary 3.3 If f(2) € S;(a), then

[ G-a){er-a)+)-40-au (us3)

1
Ay — paj,,| < 4 p—-o ('2' Sp

| -0) - - -+ 1) (n2ht
with equality for

B P e,
(1 - 2)2¢=e) 2 2(p—0)

f(2)= 1 +1
z p—a
== (Eé“é 2<p—a>)‘

4 p-valently Janowski convex functions
Similarly, we consider the functional ]ap+2 - ua§+1| for p-valently Janowski convex functions.
Theorem 4.1 If f(z) € K,(A, B), then

[ pl(A—pB){((p+1)* - 2p(p+ 2)u)A - ((p + 1)* — 2p*(p + 2)p) B}|
2(p+1)%(p + 2)

((p+1)2 - 2p(p+2)u)A— ((p+1)* - 20%(p + 2)u)B| 2 (p + 1)?)

app2 — pag | £ 9
p|A —pB|

2(p+2)

{ (e +1)* = 2p(p+2)u)A — ((p+1)* — 2p*(p+ 2)u)B| £ (p + 1)?)

with equality for
(( 2%2Fi (p,p— 4;p+1;—Bz) or 2z\1Fi(p,p+1;A2) (B=0)

‘0 (I +1)* - 2p(@+ 2u)A - ((p+1)* = 2p*(p+ 2)p)B| 2 (p+1)*)
Z) =«

2Py F (B, @;—5—4; 1'+ g —Bzz) or 21F (g, 1+ _.2_22) (B =0)

(I((e+1)2 = 2p(p+ 2)u)A — ((p+1)* = 2p*(p + 2)w)B| < (p + 1)?)

\



where 3 F\(a, b; c; z) represents the ordinary hypergeometric function and 1Fy(a, b; z) represents the
confluent hypergeometric function.

Proof. By the help of the relation (1.8) and Theorem 3.1, if f(2) € Ky(A, B), then

p+2 (p+1)? , p+2 P+1? 5 |«
- == - <C
ap+2 /l: p2 ap+1 p 2 p(p+2)ﬂap+1 = (iu‘)
2
where C(u) is one of the values in Theorem 3.1. Then, dividing the both sides by P and
. (p+1)? .
replacin by u, we obtain the theorem. ]
P g o(p+ 2)11' Y H#
1 3
Now, letting p = -2_1(7%(-;7)2) in Theorem 4.1, we have

Corollary 4.2 If f(2) € Kp(A, B), then
|A(A — pB)|

P 2+ 2) (1A 2 p)
Ty PA-PBl 1 4<p)
200+ 2) =P

wiht equality for
#oF, (p,p—4;p+1;,-Bz) or 2"\Fi(p,p+1;42) (B=0) (JA|2p)
f(2) =

2Py Fy (8,2824,1+ 8,-B2?) or 2°1F;(8,1+842%) (B=0) (|A| £p)
where 2 Fy(a, b; c; z) represents the ordinary hypergeometric function and 1 Fi(a, b; z) represents the

confluent hypergeometric function.

Moreover, we suppose that A = p — 2a and B = —1 for some a (0 £ a < p). Then, we arrive
at the result by the Hayami and Owa [2, Theorem 4.

Corollary 4.3 If f(2) € Kp(a), then
([ plp— ) {(p+1)*2(p — @) +1) — 4p(p + 2)(p — &)u} ( < (p+1)? )

(p+1)2(+2) “= o +2)
_ a? plp—a) (p+1)* (p+1)*(p—a+l)
2~ g £ pi2 (w954 Ssioa)

plp—a){4p(p+2)(p— - (p+1)°(2(p - ) + 1)} (u s P+1)P(p—a+ 1))
y (p+1)2(p+2) = 2p(p+2)(p-a)
with equality for

#oF1 (p,2(p — @);p + 1; 2) (u s 2(5—(;;1—)2—) orp2 (I;;(;)Jr(g)(;iz)l))

((P+1)2 < <(p+1)2(p—a+1))
22(p+2) =" T 2p(p+2)(p—a)
where o Fy(a, b; c; 2) represents the ordinary hypergeometric function.

f(z) =

PoFy (B,p—a;1+E;2?%)
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