The Fekete-Szegö problem for *p*-valently Janowski starlike and convex functions

Toshio Hayami and Shigeyoshi Owa

Abstract

For p-valently Janowski starlike and convex functions defined by applying subordination for the generalized Janowski function, the sharp upper bounds of a functional $|a_{p+2} - \mu a_{p+1}^2|$ related to the Fekete-Szegö problem are given.

1 Introduction

Let \mathcal{A}_p denote the family of functions f(z) normalized by

(1.1)
$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \qquad (p = 1, 2, 3, \dots)$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Furtheremore, let \mathcal{W} be the class of functions w(z) of the form

$$(1.2) w(z) = \sum_{k=1}^{\infty} w_k z^k$$

which are analytic and satisfy |w(z)| < 1 in \mathbb{U} . Then, a function $w(z) \in \mathcal{W}$ is called the Schwarz function. If $f(z) \in \mathcal{A}_p$ satisfies the following condition

$$\operatorname{Re}\left[1+rac{1}{b}\left(rac{zf'(z)}{f(z)}-p
ight)
ight]>0 \qquad (z\in\mathbb{U})$$

for some complex number b ($b \neq 0$), then f(z) is said to be p-valently starlike function of complex order b. We denote by $\mathcal{S}_b^*(p)$ the subclass of \mathcal{A}_p consisting of all functions f(z) which are p-valently starlike functions of complex order b. Similarly, we say that f(z) is a member of the class $\mathcal{K}_b(p)$ of p-valently convex functions of complex order b in \mathbb{U} if $f(z) \in \mathcal{A}_p$ satisfies the following inequality

$$\operatorname{Re}\left[1+\frac{1}{b}\left(\frac{zf''(z)}{f'(z)}-(p-1)\right)\right]>0 \qquad (z\in\mathbb{U})$$

for some complex number $b \ (b \neq 0)$.

2010 Mathematics Subject Classification: Primary 30C45.

Keywords and Phrases: Fekete-Sgezö problem, Schwarz function, p-valently Janowski starlike function, p-valently Janowski convex function.

Next, let $F(z) = \frac{zf'(z)}{f(z)} = u + iv$ and $b = \rho e^{i\varphi}$ ($\rho > 0$, $0 \le \varphi < 2\pi$). Then, the condition of the definition of $\mathcal{S}_b^*(p)$ is equivalent to

(1.3)
$$\operatorname{Re}\left[1 + \frac{1}{b}\left(\frac{zf'(z)}{f(z)} - p\right)\right] = 1 + \frac{\cos\varphi}{\rho}(u - p) + \frac{\sin\varphi}{\rho}v > 0.$$

We denote by $d(l_1, p)$ the distance between the boundary line $l_1 : (\cos \varphi)u + (\sin \varphi)v + \rho - p\cos \varphi = 0$ of the half plane satisfying the condition (1.3) and the point F(0) = p. A simple computation gives us that

$$d(l_1, p) = \frac{|\cos \varphi \times p + \sin \varphi \times 0 + \rho - p \cos \varphi|}{\sqrt{\cos^2 \varphi + \sin^2 \varphi}} = \rho,$$

that is, that $d(l_1, p)$ is always equal to $|b| = \rho$ regardless of φ . Thus, if we consider the circle C_1 with center at p and radius ρ , then we can know the definition of $\mathcal{S}_b^*(p)$ means that $F(\mathbb{U})$ is covered by the half plane separated by a tangent line of C_1 and containing C_1 . For p = 1, the same things are discussed by Hayami and Owa [3].

Then, we introduce the following function

(1.4)
$$p(z) = \frac{1 + Az}{1 + Bz} \qquad (-1 \le B < A \le 1)$$

which has been investigated by Janowski [4]. Therefore, the function p(z) given by (1.4) is said to be the Janowski function. Furthermore, as a generalization of the Janowski function, Kuroki, Owa and Srivastava [6] have investigated the Janowski function for some complex parameters A and B which satisfy one of the following conditions

(1.5)
$$\begin{cases} \text{ (i) } A \neq B, \ |B| < 1, \ |A| \leq 1 \quad \text{and} \quad \text{Re}(1 - A\overline{B}) \geq |A - B| \\ \text{ (ii) } A \neq B, \ |B| = 1, \ |A| \leq 1 \quad \text{and} \quad 1 - A\overline{B} > 0. \end{cases}$$

Here, we note that the Janowski function generalized by the conditions (1.5) is analytic and univalent in \mathbb{U} , and satisfies Re(p(z)) > 0 ($z \in \mathbb{U}$). Moreover, Kuroki and Owa [5] discussed the fact that the condition $|A| \leq 1$ can be omitted from among the conditions in (1.5)–(i) as the conditions for A and B to satisfy Re(p(z)) > 0. In the present paper, we consider the more general Janowski function p(z) as follows:

(1.6)
$$p(z) = \frac{p + Az}{1 + Bz} \qquad (p = 1, 2, 3, \dots)$$

for some complex parameter A and some real parameter B ($A \neq pB$, $-1 \leq B \leq 0$). Then, we don't need to discuss the other cases because for the function

(1.7)
$$q(z) = \frac{p + A_1 z}{1 + B_1 z} \qquad (A_1, B_1 \in \mathbb{C}, \ A_1 \neq pB_1, \ |B_1| \leq 1),$$

letting $B_1 = |B_1|e^{i\theta}$ and replacing z by $-e^{-i\theta}z$ in (1.7), we see that

$$p(z) = q(-e^{-i\theta}z) = \frac{p - A_1e^{-i\theta}z}{1 - |B_1|z} \equiv \frac{p + Az}{1 + Bz} \qquad (A = -A_1e^{-i\theta}, \ B = -|B_1|)$$

maps \mathbb{U} onto the same circular domain as $q(\mathbb{U})$.

Remark 1.1 For the case B = -1 in (1.6), we know that p(z) maps \mathbb{U} onto the following half plane

$$\operatorname{Re}\left(p+\overline{A}\right)p(z) > \frac{p^2-|A|^2}{2}$$

and for the case $-1 < B \leq 0$ in (1.6), p(z) maps \mathbb{U} onto the circular domain

$$\left|p(z) - \frac{p+AB}{1-B^2}\right| < \frac{|A+pB|}{1-B^2}.$$

Let p(z) and q(z) be analytic in \mathbb{U} . Then we say that the function p(z) is subordinate to q(z) in \mathbb{U} , written by

$$p(z) \prec q(z) \quad (z \in \mathbb{U}),$$

if there exists a function $w(z) \in \mathcal{W}$ such that p(z) = q(w(z)) $(z \in \mathbb{U})$. In particular, if q(z) is univalent in \mathbb{U} , then $p(z) \prec q(z)$ if and only if

$$p(0) = q(0)$$
 and $p(\mathbb{U}) \subset q(\mathbb{U})$.

We next define the subclasses of \mathcal{A}_p by applying the subordination as follows:

$$\mathcal{S}_p^*(A,B) = \left\{ f(z) \in \mathcal{A}_p : \frac{zf'(z)}{f(z)} \prec \frac{p + Az}{1 + Bz} \quad (z \in \mathbb{U}) \right\}$$

and

$$\mathcal{K}_p(A,B) = \left\{ f(z) \in \mathcal{A}_p : 1 + \frac{zf''(z)}{f'(z)} \prec \frac{p + Az}{1 + Bz} \quad (z \in \mathbb{U}) \right\}$$

where $A \neq pB$, $-1 \leq B \leq 0$. We immediately know that

(1.8)
$$f(z) \in \mathcal{K}_p(A, B) \quad \text{if and only if} \quad \frac{zf'(z)}{p} \in \mathcal{S}_p^*(A, B).$$

Then, we have the next theorem.

Theorem 1.2 If $f(z) \in \mathcal{S}_p^*(A, B)$ $(-1 < B \leq 0)$, then $f(z) \in \mathcal{S}_b^*(p)$ where

$$b = \frac{\left| B(-pB + \text{Re}(A))\cos\varphi + B\text{Im}(A)\sin\varphi + |A - pB| \right|}{1 - B^2} e^{i\varphi} \quad (0 \le \varphi < 2\pi).$$

Espesially, $f(z) \in \mathcal{S}_p^*(A, -1)$ if and only if $f(z) \in \mathcal{S}_b^*(p)$ where $b = \frac{p+A}{2}$.

Proof. Supposing that $\frac{zf'(z)}{f(z)} \prec \frac{p+Az}{1-z}$, it follows from Remark 1.1 that

$$\operatorname{Re}\left[(p+\overline{A})\frac{zf'(z)}{f(z)}\right] > \frac{p^2-|A|^2}{2}$$

that is, that

$$\operatorname{Re}\left[2(p+\overline{A})rac{zf'(z)}{f(z)}
ight] > \operatorname{Re}\left[2p(p+\overline{A})
ight] - |p+A|^2.$$

This means that

$$\operatorname{Re}\left[\frac{2(p+\overline{A})}{|p+A|^2}\left(\frac{zf'(z)}{f(z)}-p\right)\right] > -1$$

which implies that

$$\operatorname{Re}\left[\frac{1}{\frac{1}{2}(p+A)}\left(\frac{zf'(z)}{f(z)}-p\right)\right] > -1.$$

Therefore, $f(z) \in \mathcal{S}_b^*$ where $b = \frac{p+A}{2}$. The converse is also completed.

Next, for the case $-1 < B \le 0$, by the definition of the class $\mathcal{S}_b^*(A, B)$, if a tangent line l_2 of the circle C_2 containing the point p is parallel to the straight line $L: (\cos \theta)u + (\sin \theta)v = 0$ $(-\pi \le \theta)u + (\sin \theta)v = 0$ $(-\pi \le \theta)u + (\sin \theta)v = 0$ of the circle U, and the image U by U by U is covered by the circle U, then there exists a non-zero complex number U with U and U is equivalent to U by U is the distance between the tangent line U and the point U. Now, for the function U is equivalent to

$$C_2 = \left\{ \omega \in \mathbb{C} : \left| \omega - \frac{p - AB}{1 - B^2} \right| < \frac{|A - pB|}{1 - B^2} \right\}$$

and the point ξ on $\partial C_2 = \left\{ \omega \in \mathbb{C} : \left| \omega - \frac{p - AB}{1 - B^2} \right| = \frac{|A - pB|}{1 - B^2} \right\}$ can be written by

$$\xi:=\xi(\theta)=\frac{|A-pB|}{1-B^2}e^{i\theta}+\frac{p-AB}{1-B^2}\quad (-\pi\leqq {}^\exists\theta<\pi).$$

Further, the tangent line l_2 of the circle C_2 through each point $\xi(\theta)$ is parallel to the straight line $L: (\cos \theta)u + (\sin \theta)v = 0$. Namely, l_2 can be represented by

$$l_2: (\cos \theta) \left(u - \frac{|A - pB| \cos \theta + p - B\operatorname{Re}(A)}{1 - B^2} \right) + (\sin \theta) \left(v - \frac{|A - pB| \sin \theta - B\operatorname{Im}(A)}{1 - B^2} \right) = 0$$

which implies that

$$l_2: (\cos \theta)u + (\sin \theta)v - \frac{|A - pB| + \{p - B\operatorname{Re}(A)\}\cos \theta - B\operatorname{Im}(A)\sin \theta}{1 - B^2} = 0.$$

Then, we see that the distance $d(l_2, p)$ between the point p and the above tangent line l_2 of the circle C_2 is

$$\begin{vmatrix} \cos \theta \times p + \sin \theta \times 0 - \frac{|A - pB| + \{p - B\operatorname{Re}(A)\} \cos \theta - B\operatorname{Im}(A) \sin \theta}{1 - B^2} \end{vmatrix}$$

$$= \frac{\left| -B(-pB + \operatorname{Re}(A)) \cos \theta - B\operatorname{Im}(A) \sin \theta + |A - pB| \right|}{1 - B^2}.$$

Therefore, if the subordination

$$\frac{zf'(z)}{f(z)} \prec \frac{p+Az}{1+Bz} \quad (A \neq pB, \ -1 < B \le 0)$$

holds true, then $f(z) \in \mathcal{S}_b^*$ where

$$b = \frac{\left| -B(-pB + \operatorname{Re}(A))\cos\theta - B\operatorname{Im}(A)\sin\theta + |A - pB| \right|}{1 - B^2} e^{i(\theta + \pi)}.$$

Finally, setting $\varphi = \theta + \pi$ $(0 \le \varphi < 2\pi)$, the proof of the theorem is completed.

Noonan and Thomas [8], [9] have stated the q-th Hankel determinant as

$$H_{q}(n) = \det \begin{pmatrix} a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2} \end{pmatrix} \qquad (n, q \in \mathbb{N} = \{1, 2, 3, \cdots\}).$$

This determinant is discussed by several authors with q=2. For example, we can know that the functional $|H_2(1)|=|a_3-a_2^2|$ is known as the Fekete-Szegö problem and they consider the further generalized functional $|a_3-\mu a_2^2|$ where $a_1=1$ and μ is some real number (see, [1]). The purpose of this investigation is to find the sharp upper bounds of the functional $|a_{p+2}-\mu a_{p+1}^2|$ for functions $f(z) \in \mathcal{S}_p^*(A,B)$ or $\mathcal{K}_p(A,B)$.

2 Preliminary results

We need some lemmas to establish our results. Applying the Schwarz lemma or subordination principle.

Lemma 2.1 If a function $w(z) \in \mathcal{W}$, then

$$|w_1| \leq 1$$
.

Equality is attained for $w(z) = e^{i\theta}z$ for any $\theta \in \mathbb{R}$.

The following lemma is obtained by applying the Schwarz-Pick lemma (see, for example, [7]).

Lemma 2.2 For any functions $w(z) \in \mathcal{W}$, the inequality

$$|w_2| \le 1 - |w_1|^2$$

holds true. Namely, this gives us the following representation

$$w_2 = \left(1 - |w_1|^2\right) \zeta$$

for some ζ ($|\zeta| \leq 1$).

3 p-valently Janowski starlike functions

Our first main result is contained in

Theorem 3.1 If $f(z) \in S_p^*(A, B)$, then $|a_{p+2} - \mu a_{p+1}^2| \le$

$$\begin{cases} \frac{|(A-pB)\{(1-2\mu)A-((p+1)-2p\mu)B\}|}{2} & (|(1-2\mu)A-((p+1)-2p\mu)B| \ge 1) \\ \frac{|A-pB|}{2} & (|(1-2\mu)A-((p+1)-2p\mu)B| \le 1) \end{cases}$$

with equality for

$$f(z) = \begin{cases} \frac{z^p}{(1+Bz)^{\frac{pB-A}{B}}} & \text{or} \quad z^p e^{Az} \ (B=0) & (|(1-2\mu)A - ((p+1)-2p\mu)B| \ge 1) \\ \\ \frac{z^p}{(1+Bz^2)^{\frac{pB-A}{2B}}} & \text{or} \quad z^p e^{\frac{A}{2}z^2} \ (B=0) & (|(1-2\mu)A - ((p+1)-2p\mu)B| \le 1) \end{cases}.$$

Let $f(z) \in \mathcal{S}_p^*(A, B)$. Then, there exists the function $w(z) \in \mathcal{W}$ such that Proof.

$$\frac{zf'(z)}{f(z)} = \frac{p + Aw(z)}{1 + Bw(z)}$$

which means that

$$(n-p)a_n = \sum_{k=n}^{n-1} (A-kB)a_k w_{n-k} \qquad (n \ge p+1)$$

where $a_p = 1$. Thus, by the help of the relation in Lemma 2.2, we see that

$$\begin{aligned} \left| a_{p+2} - \mu a_{p+1}^2 \right| &= \left| \frac{1}{2} (A - pB) \left\{ w_2 + (A - (p+1)B) w_1^2 \right\} - \mu (A - pB)^2 w_1^2 \right| \\ &= \frac{|A - pB|}{2} \left| (1 - w_1^2) \zeta + \left\{ (A - (p+1)B) - 2\mu (A - pB) \right\} w_1^2 \right|. \end{aligned}$$

Then, by Lemma 2.1, supposing that $0 \leq w_1 \leq 1$ without loss of generality, and applying the triangle inequality, it follows that

$$\begin{split} \left| (1-w_1^2)\zeta + \left\{ (A-(p+1)B) - 2\mu(A-pB) \right\} w_1^2 \right| & \leq 1 + \left\{ \left| (A-(p+1)B) - 2\mu(A-pB) \right| - 1 \right\} w_1^2 \\ & \leq \begin{cases} \left| (A-(p+1)B) - 2\mu(A-pB) \right| & \left(\left| (A-(p+1)B) - 2\mu(A-pB) \right| \geq 1; \ w_1 = 1 \right) \\ & 1 & \left(\left| (A-(p+1)B) - 2\mu(A-pB) \right| \leq 1; \ w_1 = 0 \right). \end{cases} \end{split}$$

Especially, taking $\mu = \frac{p+1}{2n}$ in Theorem 3.1, we obtain

Corollary 3.2 If $f(z) \in \mathcal{S}_{p}^{*}(A, B)$, then

$$\left| a_{p+2} - \frac{p+1}{2p} a_{p+1}^2 \right| \le \begin{cases} \frac{|A(A-pB)|}{2p} & (|A| \ge p) \\ \frac{|A-pB|}{2} & (|A| \le p) \end{cases}$$

with equality for

$$f(z) = \begin{cases} \frac{z^p}{(1+Bz)^{\frac{pB-A}{B}}} & \text{or} \quad z^p e^{Az} \ (B=0) \qquad (|A| \ge p) \\ \\ \frac{z^p}{(1+Bz^2)^{\frac{pB-A}{2B}}} & \text{or} \quad z^p e^{\frac{A}{2}z^2} \ (B=0) \qquad (|A| \le p) \ . \end{cases}$$

Furthermore, putting $A = p - 2\alpha$ and B = -1 for some α $(0 \le \alpha < p)$ in Theorem 3.1, we arrive at the following result by Hayami and Owa [2, Theorem 3].

Corollary 3.3 If $f(z) \in \mathcal{S}_{p}^{*}(\alpha)$, then

$$|a_{p+2} - \mu a_{p+1}^2| \le \begin{cases} (p-\alpha)\left\{(2(p-\alpha)+1) - 4(p-\alpha)\mu\right\} & \left(\mu \le \frac{1}{2}\right) \\ p-\alpha & \left(\frac{1}{2} \le \mu \le \frac{p-\alpha+1}{2(p-\alpha)}\right) \end{cases}$$

$$(p-\alpha)\left\{4(p-\alpha)\mu - (2(p-\alpha)+1)\right\} & \left(\mu \ge \frac{p-\alpha+1}{2(p-\alpha)}\right) \end{cases}$$
equality for

with equality for

$$f(z) = \begin{cases} \frac{z}{(1-z)^{2(p-\alpha)}} & \left(\mu \leq \frac{1}{2} \text{ or } \mu \geq \frac{p-\alpha+1}{2(p-\alpha)}\right) \\ \frac{z}{(1-z^2)^{p-\alpha}} & \left(\frac{1}{2} \leq \mu \leq \frac{p-\alpha+1}{2(p-\alpha)}\right). \end{cases}$$

p-valently Janowski convex functions 4

Similarly, we consider the functional $|a_{p+2} - \mu a_{p+1}^2|$ for p-valently Janowski convex functions.

Theorem 4.1 If $f(z) \in \mathcal{K}_p(A, B)$, then

$$\left|a_{p+2} - \mu a_{p+1}^{2}\right| \leq \begin{cases} \frac{p\left|(A-pB)\left\{((p+1)^{2} - 2p(p+2)\mu\right)A - ((p+1)^{3} - 2p^{2}(p+2)\mu\right)B\right\}\right|}{2(p+1)^{2}(p+2)} \\ (\left|((p+1)^{2} - 2p(p+2)\mu\right)A - ((p+1)^{3} - 2p^{2}(p+2)\mu\right)B\right| \geq (p+1)^{2}) \\ \frac{p|A-pB|}{2(p+2)} \\ (\left|((p+1)^{2} - 2p(p+2)\mu\right)A - ((p+1)^{3} - 2p^{2}(p+2)\mu\right)B\right| \leq (p+1)^{2}) \end{cases}$$

with equality for

$$f(z) = \begin{cases} z^{p}{}_{2}F_{1}\left(p, p - \frac{A}{B}; p + 1; -Bz\right) & or \quad z^{p}{}_{1}F_{1}\left(p, p + 1; Az\right) \quad (B = 0) \\ (|((p + 1)^{2} - 2p(p + 2)\mu)A - ((p + 1)^{3} - 2p^{2}(p + 2)\mu)B| \ge (p + 1)^{2}) \\ z^{p}{}_{2}F_{1}\left(\frac{p}{2}, \frac{pB - A}{2B}; 1 + \frac{p}{2}; -Bz^{2}\right) & or \quad z^{p}{}_{1}F_{1}\left(\frac{p}{2}, 1 + \frac{p}{2}; \frac{A}{2}z^{2}\right) \quad (B = 0) \\ (|((p + 1)^{2} - 2p(p + 2)\mu)A - ((p + 1)^{3} - 2p^{2}(p + 2)\mu)B| \le (p + 1)^{2}) \end{cases}$$

where ${}_{2}F_{1}(a,b;c;z)$ represents the ordinary hypergeometric function and ${}_{1}F_{1}(a,b;z)$ represents the confluent hypergeometric function.

Proof. By the help of the relation (1.8) and Theorem 3.1, if $f(z) \in \mathcal{K}_p(A, B)$, then

$$\left| \frac{p+2}{p} a_{p+2} - \mu \frac{(p+1)^2}{p^2} a_{p+1}^2 \right| = \frac{p+2}{p} \left| a_{p+2} - \frac{(p+1)^2}{p(p+2)} \mu a_{p+1}^2 \right| \le C(\mu)$$

where $C(\mu)$ is one of the values in Theorem 3.1. Then, dividing the both sides by $\frac{p+2}{p}$ and replacing $\frac{(p+1)^2}{p(p+2)}\mu$ by μ , we obtain the theorem.

Now, letting $\mu = \frac{(p+1)^3}{2p^2(p+2)}$ in Theorem 4.1, we have

Corollary 4.2 If $f(z) \in \mathcal{K}_p(A, B)$, then

$$\left| a_{p+2} - \frac{(p+1)^3}{2p^2(p+2)} a_{p+1}^2 \right| \le \begin{cases} \frac{|A(A-pB)|}{2(p+2)} & (|A| \ge p) \\ \\ \frac{p|A-pB|}{2(p+2)} & (|A| \le p) \end{cases}$$

wiht equality for

$$f(z) = \begin{cases} z^{p}{}_{2}F_{1}\left(p, p - \frac{A}{B}; p + 1; -Bz\right) & or \quad z^{p}{}_{1}F_{1}\left(p, p + 1; Az\right) \quad (B = 0) \quad (|A| \ge p) \\ \\ z^{p}{}_{2}F_{1}\left(\frac{p}{2}, \frac{pB - A}{2B}; 1 + \frac{p}{2}; -Bz^{2}\right) & or \quad z^{p}{}_{1}F_{1}\left(\frac{p}{2}, 1 + \frac{p}{2}; \frac{A}{2}z^{2}\right) \quad (B = 0) \quad (|A| \le p) \end{cases}$$

where $_2F_1(a,b;c;z)$ represents the ordinary hypergeometric function and $_1F_1(a,b;z)$ represents the confluent hypergeometric function.

Moreover, we suppose that $A = p - 2\alpha$ and B = -1 for some α $(0 \le \alpha < p)$. Then, we arrive at the result by the Hayami and Owa [2, Theorem 4].

Corollary 4.3 If $f(z) \in \mathcal{K}_p(\alpha)$, then

$$|a_{p+2} - \mu a_{p+1}^2| \le \begin{cases} \frac{p(p-\alpha)\{(p+1)^2(2(p-\alpha)+1) - 4p(p+2)(p-\alpha)\mu\}}{(p+1)^2(p+2)} & \left(\mu \le \frac{(p+1)^2}{2p(p+2)}\right) \\ \frac{p(p-\alpha)}{p+2} & \left(\frac{(p+1)^2}{2p(p+2)} \le \mu \le \frac{(p+1)^2(p-\alpha+1)}{2p(p+2)(p-\alpha)}\right) \\ \frac{p(p-\alpha)\{4p(p+2)(p-\alpha)\mu - (p+1)^2(2(p-\alpha)+1)\}}{(p+1)^2(p+2)} & \left(\mu \ge \frac{(p+1)^2(p-\alpha+1)}{2p(p+2)(p-\alpha)}\right) \end{cases}$$

with equality for

$$f(z) = \begin{cases} z^{p} {}_{2}F_{1}\left(p, 2(p-\alpha); p+1; z\right) & \left(\mu \leq \frac{(p+1)^{2}}{2p(p+2)} \text{ or } \mu \geq \frac{(p+1)^{2}(p-\alpha+1)}{2p(p+2)(p-\alpha)}\right) \\ \\ z^{p} {}_{2}F_{1}\left(\frac{p}{2}, p-\alpha; 1+\frac{p}{2}; z^{2}\right) & \left(\frac{(p+1)^{2}}{2p(p+2)} \leq \mu \leq \frac{(p+1)^{2}(p-\alpha+1)}{2p(p+2)(p-\alpha)}\right) \end{cases}$$

where $_2F_1(a,b;c;z)$ represents the ordinary hypergeometric function.

References

- [1] M. Fekete and G. Szegö, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc. 8(1933), 85–89.
- [2] T. Hayami and S. Owa, Hankel determinant for p-valently starlike and convex functions of order α , General Math. 17(4), (2009), 29-44.
- [3] T. Hayami and S. Owa, New properties for starlike and convex functions of complex order, Int. Journal of Math. Analysis, 4(1), (2010), 39-62.
- [4] W. Janowski, Extremal problem for a family of functions with positive real part and for some related families, Ann. Polon. Math 23(1970), 159-177.
- [5] K. Kuroki and S. Owa, Some subordination criteria concerning the Sălăgean operator, J. Inequal. Pure and Appl. Math. 10(2), (2009), Article ID 36, 1-11.
- [6] K. Kuroki, S. Owa and H. M. Srivastava, Some subordination criteria for analytic functions, Bull. Soc. Sci. Lett. Lodz. **52** (2007), 27–36.
- [7] Z. Nehari, Conformal Mappings, McGraw-Hill, New York, 1952.
- [8] J. W. Noonan and D. K. Thomas, On the Hankel determinant of areally mean p-valent functions, Proc. London Math. Soc. 25(1972), 503-524.
- [9] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223(2) (1976), 337-346.

Toshio Hayami
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan

E-mail: $ha_ya_to112@hotmail.com$

Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-mail: owa@math.kindai.ac.jp