Some applications for subordination principle

Kazuo Kuroki and Shigeyoshi Owa

Abstract

By considering some subordinations for a more general linear transformation, an extension of the Briot-Bouquet differential subordination relations given by S. S. Miller and P. T. Mocanu (Pure and Applied Mathematics 225, Marcel Dekker, 2000) for certain linear transformations are discussed.

1 Introduction

Let \mathcal{H} denote the class of functions f(z) which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. For a positive integer n and a complex number a, let $\mathcal{H}[a, n]$ be the class of functions $f(z) \in \mathcal{H}$ of the form

$$f(z) = a + \sum_{k=n}^{\infty} a_k z^k.$$

Also, let A_n denote the class of functions $f(z) \in \mathcal{H}$ of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$$

with $A_1 = A$. If $f(z) \in A$ satisfies the following inequality

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathbb{U})$$

for some real number α with $0 \leq \alpha < 1$, then f(z) is said to be starlike of order α in \mathbb{U} . This class is denoted by $\mathcal{S}^*(\alpha)$. Similarly, we say that f(z) belongs to the class $\mathcal{K}(\alpha)$ of convex functions of order α in \mathbb{U} if $f(z) \in \mathcal{A}$ satisfies the following inequality

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\alpha \qquad (z\in\mathbb{U})$$

for some real number α with $0 \le \alpha < 1$.

2000 Mathematics Subject Classification: Primary 30C45.

Keywords and Phrases: Differential subordination, Briot-Bouquet differential equation, convex function, linear transformation.

For some real numbers A and B with $-1 \le B < A \le 1$, Janowski [1] has investigated the following linear transformation

$$p(z) = \frac{1 + Az}{1 + Bz} \qquad (z \in \mathbb{U})$$

which is analytic snd univalent in \mathbb{U} . This function p(z) is called the Janowski function. Moreover, as a generalization of the Janowski functions, Kuroki and Owa [2] have discussed the Janowski functions for some complex parameters A and B which satisfy

(1.1)
$$A \neq B, |B| \leq 1 \text{ and } |A - B| + |A + B| \leq 2.$$

Note that the Janowski function defined by the conditions (1.1) is analytic and univalent in \mathbb{U} and has a positive real part in \mathbb{U} (see [2]).

We next introduce the familiar principle of differential subordinations between analytic functions. Let p(z) and q(z) be members of the class \mathcal{H} . Then the function p(z) is said to be subordinate to q(z) in \mathbb{U} , written by

$$(1.2) p(z) \prec q(z) (z \in \mathbb{U}),$$

if there exists a function w(z) which is analytic in \mathbb{U} with w(0) = 0 and |w(z)| < 1 $(z \in \mathbb{U})$, and such that p(z) = q(w(z)) $(z \in \mathbb{U})$. From the definition of the subordinations, it is easy to show that the subordination (1.2) implies that

$$(1.3) p(0) = q(0) and p(\mathbb{U}) \subset q(\mathbb{U}).$$

In particular, if q(z) is univalent in \mathbb{U} , then the subordination (1.2) is equivalent to the condition (1.3).

Miller and Mocanu [4] developed the definitive result concerning the Briot-Bouquet differential subordinations as follows.

Lemma 1.1 Let n be a positive integer, and let β and γ be complex numbers with $\beta \neq 0$. Also, let h(z) be convex and univalent in \mathbb{U} with h(0) = a, and suppose that

(1.4)
$$\operatorname{Re}(\beta h(z) + \gamma) > 0 \quad (z \in \mathbb{U})$$

with $Re(\beta a + \gamma) > 0$. If $p(z) \in \mathcal{H}[a, n]$ with $p(z) \not\equiv a$ satisfies the differential subordination

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z) \qquad (z \in \mathbb{U}),$$

then $p(z) \prec q(z) \prec h(z)$ $(z \in \mathbb{U})$, where q(z) with q(0) = a is the univalent solution of the differential equation

$$q(z) + \frac{nzq'(z)}{\beta q(z) + \gamma} = h(z) \qquad (z \in \mathbb{U}).$$

As applications of Lemma 1.1, Miller and Mocanu [4] derived some subordination relation for certain linear transformations.

Lemma 1.2 Let n be a positive integer. Also, let β , γ and A be complex numbers with $\text{Re}(\beta + \gamma) > 0$, and let B be a real number with $-1 \leq B \leq 0$. If β , γ , A and B satisfy either

$$\operatorname{Re}(\beta(1+AB) + \gamma(1+B^2)) \ge |\beta A + \overline{\beta}B + 2B\operatorname{Re}\gamma| \qquad (-1 < B \le 0)$$

or

$$\beta(1+A) > 0$$
 and $\operatorname{Re}(\beta(1+A) + 2\gamma) \ge 0$ $(B = -1),$

then $p(z) \in \mathcal{H}[1,n]$ with $p(z) \not\equiv 1$ satisfies the following subordination relation

(1.5)
$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec \frac{1 + Az}{1 + Bz} \quad \text{implies} \quad p(z) \prec q(z) \prec \frac{1 + Az}{1 + Bz}$$

for $z \in \mathbb{U}$, where q(z) with q(0) = a is the univalent solution of the differential equation

(1.6)
$$q(z) + \frac{nzq'(z)}{\beta q(z) + \gamma} = \frac{1 + Az}{1 + Bz} \qquad (z \in \mathbb{U}).$$

In the present paper, applying the theory of subordinations, we will try to determine the best conditions for complex numbers β , γ , A and B to satisfy the condition (1.4) as

$$h(z) = \frac{1 + Az}{1 + Bz} \qquad (z \in \mathbb{U})$$

in Lemma 1.1, and deduce an extension of Lemma 1.2.

2 Some subordinations

for certain linear transformations

By using the method of a certain generalization of the Janowski functions given by Kuroki and Owa [2], we first consider a certain subordination for a more general linear transformation.

Theorem 2.1 Let a, A, B, C and D be complex numbers with $A \neq aB$ and $C \neq aD$. If a, A, B, C and D satisfy $|B| \leq 1$, $|D| \leq 1$ and

$$(2.1) |A - aB| + |AD - BC| \leq |C - aD|,$$

then

(2.2)
$$\frac{a+Az}{1+Bz} \prec \frac{a+Cz}{1+Dz} \qquad (z \in \mathbb{U}).$$

Proof. From $A \neq aB$ and the inequality (2.1), it is clear that

$$|C - aD| - |AD - BC| > 0.$$

If we define the function w(z) by

(2.4)
$$w(z) = \frac{(A - aB)z}{C - aD - (AD - BC)z} \qquad (z \in \mathbb{U}),$$

then from the inequality (2.3), w(z) is analytic in \mathbb{U} with w(0) = 0, and that

$$\frac{a+Az}{1+Bz} = \frac{a+Cw(z)}{1+Dw(z)} \qquad (z \in \mathbb{U}).$$

Further, noting the inequality (2.3), a simple calculation yields

$$\left| w(z) - \frac{(A - aB)(\overline{AD - BC})}{|C - aD|^2 - |AD - BC|^2} \right| < \frac{|A - aB||C - aD|}{|C - aD|^2 - |AD - BC|^2} \qquad (z \in \mathbb{U}).$$

Since the inequality (2.1) shows that

$$\frac{|A - aB|}{|C - aD| - |AD - BC|} \le 1,$$

we see that w(z) defined by (2.4) satisfies |w(z)| < 1 ($z \in \mathbb{U}$). Therefore, from the definition of the subordinations, we conclude that the subordination (2.2) holds, which completes the proof of Theorem 2.1.

In particular, letting

$$A = b, C = \overline{a}e^{i\theta}$$
 and $D = -e^{i\theta}$

for a complex number a with $\operatorname{Re} a > 0$ and for some θ with $0 \le \theta < 2\pi$ in Theorem 2.1, we find the following assertion.

Corollary 2.2 Let a be a complex number with $\operatorname{Re} a > 0$. For some complex numbers a, b and B with

$$b \neq aB, |B| \leq 1$$
 and $|b - aB| + |b + \overline{a}B| \leq 2\operatorname{Re} a$,

we have

$$\frac{a+bz}{1+Bz} \prec \frac{a+\overline{a}e^{i\theta}z}{1-e^{i\theta}z} \qquad (z \in \mathbb{U}),$$

where $0 \le \theta < 2\pi$. This subordination means the following inequality

$$\operatorname{Re}\left(\frac{a+bz}{1+Bz}\right) > 0 \qquad (z \in \mathbb{U}).$$

Remark 2.3 Taking a = 1 and b = A in Corollary 2.2, we find the conditions in (1.1) as the conditions for complex numbers A and B to satisfy

$$\operatorname{Re}\left(\frac{1+Az}{1+Bz}\right) > 0 \qquad (z \in \mathbb{U}).$$

3 The Briot-Bouquet differential subordinations for certain linear transformations

By using the discussion in the previous section, and applying Lemma 1.1, we deduce an improvement of Lemma 1.2 bellow.

Theorem 3.1 Let n be a positive integer, and let β , γ , A and B be complex numbers with $\text{Re}(\beta + \gamma) > 0$, $A \neq B$ and $|B| \leq 1$. If β , γ , A and B satisfy

$$|\beta(A-B)| + |\beta(A-B)| + 2B\operatorname{Re}(\beta + \gamma)| \le 2\operatorname{Re}(\beta + \gamma),$$

then $p(z) \in \mathcal{H}[1,n]$ with $p(z) \not\equiv 1$ satisfies the subordination relation (1.5), where q(z) with q(0) = 1 is the solution of the differential equation (1.6).

Proof. If we let

$$a=eta+\gamma,\ b=eta A+\gamma B \quad ext{and} \quad h(z)=rac{1+Az}{1+Bz} \qquad (z\in \mathbb{U}),$$

then, a simple check gives us that

$$b - aB = (\beta A + \gamma B) - (\beta + \gamma)B = \beta(A - B) \neq 0$$

and

$$2\operatorname{Re} a - (|b - aB| + |b + \overline{a}B|) = 2\operatorname{Re} a - (|b - aB| + |b - aB| + 2B\operatorname{Re} a|)$$
$$= 2\operatorname{Re}(\beta + \gamma) - (|\beta(A - B)| + |\beta(A - B)| + 2B\operatorname{Re}(\beta + \gamma)|) \ge 0.$$

Hence by Corollary 2.2, it is easy to see that

$$\operatorname{Re}(\beta h(z) + \gamma) = \operatorname{Re}\left(\frac{\beta + \gamma + (\beta A + \gamma B)z}{1 + Bz}\right) = \operatorname{Re}\left(\frac{a + bz}{1 + Bz}\right) > 0 \qquad (z \in \mathbb{U})$$

Therefore, since the conditions of Lemma 1.1 are satisfied, we conclude the assertion of Theorem 3.1. \Box

By taking $\beta = 1$, $\gamma = 0$ and n = 1 in Theorem 3.1, and letting

$$p(z) = \frac{zf'(z)}{f(z)}$$
 $(z \in \mathbb{U})$

for $f(z) \in \mathcal{A}$, we obtain the following subordination implication.

Corollary 3.2 If $f(z) \in A$ satisfies

$$1 + \frac{zf''(z)}{f'(z)} \prec \frac{1 + Az}{1 + Bz} \qquad (z \in \mathbb{U})$$

for some complex numbers A and B which satisfy the conditions in (1.1), then

$$\frac{zf'(z)}{f(z)} \prec \begin{cases} \frac{Az}{(1+B)\{1-(1+Bz)^{-\frac{A}{B}}\}} & (A \neq 0, \ B \neq 0) \\ \frac{Bz}{(1+Bz)\log(1+Bz)} & (A = 0, \ B \neq 0) \\ \frac{Aze^{Az}}{e^{Az}-1} & (A \neq 0, \ B = 0) \end{cases}$$

for $z \in \mathbb{U}$.

Moreover, let us consider the case that

$$A = 1 - 2\alpha$$
 $(0 \le \alpha < 1)$ and $B = -1$

in Corollary 3.2. Then, from the definition of the subordinations, we find the implication that if $f(z) \in \mathcal{K}(\alpha)$, then $f(z) \in \mathcal{S}^*(\beta)$, where

$$\beta = \beta(\alpha) = \begin{cases} \frac{1 - 2\alpha}{2^{2 - 2\alpha}(1 - 2^{2\alpha - 1})} & \left(\alpha \neq \frac{1}{2}\right) \\ \frac{1}{2\log 2} & \left(\alpha = \frac{1}{2}\right) \end{cases}$$

for each real number α with $0 \le \alpha < 1$. This relationship for convex and starlike functions was proven by MacGregor [3].

References

- [1] W. Janowski, Extremal problem for a family of functions with positive real part and for some related families. Ann. Polon. Math 23 (1970), 159–177.
- [2] K. Kuroki and S. Owa, Notes on the Janowski functions defined by some complex parameters, submitted.
- [3] T. H. MacGregor, A subordination for convex functions of order α , J. London Math. Soc. (2), 9 (1975), 530–536.
- [4] S. S. Miller and P. T. Mocanu, *Differential Subordinations*, Pure and Applied Mathematics **225**, Marcel Dekker, 2000.

Kazuo Kuroki
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan

E-mail: freedom@sakai.zaq.ne.jp

Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-mail: owa@math.kindai.ac.jp