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N-Fractional Calculus Operator Method to
Some Second Order homogeneous Euler’s
Equation

Tsuyako Miyakoda and Katsuyuki Nishimoto

Abstract
In this article, the solutions to homogeneous second order Euler’s equation
-2 +pr1-az+p-b=0, (z#0)

where
(8]

d
©o = ¢ = p(2), soa—df(fora>0)

are discussed by means of N- fractional calculus operator.
We have the following fractional differintegrated forms as particular solutions;

() = (z7®F)) 14y = Q)b (denote)

(v —(1 —a+/p), p#0)
(i) = (2N _(116) = V2(at)

(6=301-a=Vp), p#0)

and
(@)p = (27 1(0-3) = Pl3ler) (P=0)

where p = (a — 1)2 — 4b.
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1 Introduction ( Definition of Fractional Calculus )

(I) Definition. ( by K. Nishimoto ) ([ 1] Vol. 1)

Let D = {D_,D,}, C = {C_,C.}, where C_ be a curve along the cut
joining two points z and —oo + iIm(z), C, be a curve along the cut joining
two points z and oo +iIm(z), D_ be a domain surrounded by C_ , D, be a
domain surrounded by C;. ( Here D contains the points over the curve C ).

And, let f = f(z) be a regular function in D(z € D) ,

v = (f)v:C(f)v
Fv+1) 1 f(Qd¢

i Je ozt WEZD) (1)
(Pom = lim (f)y (meZ7) @)

where
—r <arg((—2) <7 for C_, 0<arg((—2) <2t for C,
(#2 z€C, veR, T, Gamma function,

then (f), is the fractional differintegration of arbitrary order v ( derivatives
of order v for v > 0, and integrals of order —v for v < 0 ), with respect to z
, of the function f , if |(f),]| < oco.

Notice that (1) is reduced to Goursat’s integral for v = n(c Z*)
and is reduced to the famous Cauchy’s integral for v = 0. that is,
(1) is an extension of Cauchy’s integral and of Goursat’s integral,
consequently, Cauchy and Goursat’s integrals are special cases of

(1).
(IT) On the fractional calculus operator N” [ 3 |
Theorem A. Let fractional calculus operator ( Nishimoto’s Operator ) N¥

be
N = (R [ SO g2, (Refer o) (3
with
N""= lm N (meZ), (4)

and define the binary operation o as
(NP o N®)f = (N°N*)f = N*(N°f) (a,B € R), (5)
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then the set
{N"} = {N"|v € R} (6)
is an Abelian product group ( having continuous index v ) which has the
inverse transform operator (N¥)~! = N~ to the fractional calculus operator
NV, for the function f such that f € F = {f;0 # |f,| < oo,v € R}, where
f=f(z)and 2€ C. (vis. —co<v <o00).
( For our convenience, we call N® o N* as product of N® and N* . )

Theorem B. ” F.0.G. {N”}) ” is an ” Action product group which has
continuous index v ” for the set of F . ( F.O.G. ; Fractional calculus operator

group )
Theorem C. Let

S:={+N"}U{0} = {N"}U{_N"}U{0} (v€R). (7)

Then the set S is a commutative ring for the function f € F, when the
identity

N* 4+ NP =N (N® NP NYe?S) (8)
holds. [ 5]
(III) Lemma. We have [ 1 ]

X I(a —B) I'(a—pB)
—ima 2 \ & — —a a—
(z=cf)a=ce (z—cyf (|

T(h) (p) | <

(i)
(log(z — ¢))a = —€™T(a)(z = ) (IT(e)] < oo)
(i) 1
(=) = —¢" s log(z — <), (IT(e)] <o)

where z — ¢ # 0 in (i), and 2z — ¢ # 0,1 in (ii) and (iii) ,

(iv)
(u-v)q = kz:% k!PIEia++11-)— 5 Ue—kVk  (u=u(2),v =v(2))
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2 Solutions to some homogeneous Euler’s equation

Theorem 1. Let ¢ € F = {¢p : 0 # |p,| < 00, v € R} then the second
order homogeneous Euler’s equation

L(p;z;a,b) :=pa - 22 + 1 az+¢-b=0 (2 #0) (1)

(pa =d%p/dz* for a>0, po=¢=p(2))

has particular solutions of the forms in fractional differintegrate form as
follows;

(i)
Q= (z‘(27+“))_(1+,y) = Pljep) (denote) (2)
(r=5i~(e~1)+ e~ 12— 48}, (e~ 1)~ 2 #£0)
(i) |
= (27®)_(115) = Ppan) (3)
(6=3{-(a~1)~ yfla— 12— 4}, (a1~ #0)
and
i
¢ =(27) 103 = PBIaY) 4
((a—1)% —4b=0).
Proof

We operate the N-fractional calculus operator of order a (@ ¢ Z~) N® to
the both sides of equation (1), then

(P2 2%)a+ (91 G2)a+ (¢ - b)a = 0. ()

From the index low we notice

N°pm = (Pm)a = Pmta (M= 2’ 1) (6)
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And by Lemma (iv) we have

N%(py-2%) = (p2-2%)a

2 T(a+1)
B le‘l;o KN a+1-k) (2)ak(2*)k (7)
= ©2ta" 22 + Y14a 2az + Pa * a(a - 1)) (8)

. 1. T(a+1)
N%(p1-az) = (p1-a2)e= kz_:o KT(e+ 1 - k) (P1)o—k - (@2z)e  (9)
= Plta a2+ Pq - ax (10)
and

N*(p-b) =@a b (11)

Therefore we obtain
Pora 22+ Pria- 2a+a)z+ s - {@® +ala—1)+b}=0. (12)
We choose a such that
o +afa—1)+b=0, (13)
that is

a={-a-DH+Vp =7 , a=yi-@-D-yB=d (19

where p = (a — 1)2 — 4b.
When a =« and p # 0, we have

P2y 22+ Priy - 2(2y +0a) =0 (15)
from (12) by applying (14). Setting
Y =9(2) =14y, (¢ =V-(4y) (16)
and we obtain
Y- 22+ - 2(2y+a)=0. (17)

Then a particular solution to this equation is given by
P(z) = 2~ ) (18)
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Therefore we obtain

(2) = (27 _(119) = Pliia)- (19)
Inversely the function shown by (19) satisfy the equation (1) cleary. Since
Pitv = (z_(27+a))—(1+v)+1+"/ - Z-(%Jra)) (20)

and
Porv = (z—(27+a))—(1-+4y)+2+'y = (Z_(}YM))I, (21)

we have
LHS of (15) = (z=®F9); . 22 + (7@ . 2(2y +a) = 0. (22)

Therefore the function (2) satisfies the equation (1).
When a = § and p # 0, we have

Pars- 2 +pris-2(26+a) =0 (23)
instead of (15). Therefore in the same way we obtain
p(2) = (%) _(116) = Ppi(ap)- (24)
When p = 0, the case is v = § = 3(1 — a) , we have

P(2) = (271 ya-3) = PBIaY): (25)

Notice that in our N-fractional calculus operator (NFCO)-method,
the original homogeneous linear second order ordinary differential
equation (1) is reduced to a variable separable form one.

3 Familiar forms of Solutions

In this section we show the translated forms (familiar forms) of the solutions
obtained in §2.

Theorem 2. The solutions shown in Theorem 1 are writen like as the
following familiar forms;
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0
Plijap) = —€ ™7 Fg;ri_;)l ) -r-ant (1)
(Rt <oo, 7= 21-a= VB, p£0)
(@)
S Fg( ;s c-lr - )1) ,—b-artl )
(Pl <00, 7= 5 -a+ VP, p#0
i)

Iy | l1_a
e™33-I(% — 1)2772  fori(a-3)¢ Z7,p=0
PBlab) = { (log z)_%(a_?,)ﬂ for ;(a -3)eZ,p=0 (3)

where p=(a—1)2 — 4b .

4 A Special case

When a = 1 and b = —2, we have the following corollary from Theorem 1.
Corollary 1.Let p € F = {¢ : 0 # |p,| < 00, v € R} then the second order
homogeneous Euler’s equation

L(p;z;1, ") =0 (2#0) (1)

has particular solutions of the forms in fractional differintegrated form as
follows;

(i)
¢ = (Z®*)_(112) = Py, -2) (2)
(ii) -
¢ = (2% o1 = Pp1,-02) 3)
and
(iii)

= (z2"")1=pEu~2 (whenv=0) (4)
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5  Some Illustrative Example
[I] Let @ =1 and b = —1. The equation is

p2-Z+pi-z—p=0 (2#0) (1)

and the solutions are

1
¢ = a1 = (270)-2= TG)° z7 (2)
and
¥ = P11,-1) = (2)o = 2. (3)

The function given by (2) and (3) satisfy the equation (1) clearly.
[II] Let @ = 5 and b = 1. The equation is

pa 22+ p1-5z+p=0 (2#0) (4)
and the solutions are

Y =PuGy = (z—1«2\/§)1—\/§

— Kz 2V3 (K=enV3-)__~ r 1+2vV3 5
and
e =epiBYn = (Z_HNE)H\/‘
. 1
= K'z7 23 (K =™V~ __T(1-2v3)) (6

The function given by (5) and (6) satisfy the equation (4) clearly.
Indeed in the case of (5), we have

= K(-2-V3)z7%V? (7)

and
w2 =K2+V3)(3+V3)z+ V5. (8)

Therefore we obtain

LHS of (4) = Kz>V3{(2+V3(3+V3) +5(-2—v3)+1} =0. (9)
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(I) Usually the Euler’s equation is solved by the change og independent

variable

z=¢.

Since
_dp _dp dt _dp _,

YL= 0T dt dz dts

d*p dp, ¢ dp. o
('02—?1—22—_521;)_(__#)6 )

dt2  dt
therefore, for example, for §5, (1) we have
d*p

dt?

Particular solutions to this equation are given by

and

(II) Equation §2 (1)
w2 22+ pr-az+@-b=0
canbe solved with setting
p=2"¢ (8=0(2))

too.

(IITI) Nonhomogeneous equations shall be discussed in a next paper.
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