On a generalization of Avhadiev and Aksentev's theorem

By

M. Nunokawa, T. Yaguchi, K. Takano and G. Salagean

1. Introduction

Let

$$F(z) = \sum_{n=0}^{\infty} a_n z^n$$

be analytic and univalent in $D = \{z \mid |z| < 1\}$ and suppose that F(D) = E. If f(z) is analytic in D, f(0) = F(0) and $f(D) \subset E$, then we call that f(z) is subordinate to F(z) in D, and we write $f(z) \prec F(z)$ in D. In 1943, Rogosinski [3] obtained the following theorem.

Theorem A. If $f(z) \prec F(z)$ in D and if 0 < p, then

$$\int_0^{2\pi} |f(re^{i\theta})|^p d\theta \le \int_0^{2\pi} |F(re^{i\theta})|^p d\theta$$

for 0 < r < 1.

On the other hand, in 1973, Avhadiev and Aksentev [1] obtained a theorem which is conguously with Rogosinski's theorem.

Theorem B. If f(z) and F(z), with f(0) = F(0), are analytic in D and $f(z) \prec F(z)$ in D, then

$$\int_0^{2\pi} |\mathrm{Re}f(re^{i\theta})| d\theta \le \int_0^{2\pi} |\mathrm{Re}F(re^{i\theta})| d\theta$$

for 0 < r < 1.

Applying Theorem A and B, Nunokawa, Fukui and Saitoh [2] obtained the following theorem.

Theorem C. If f(z) and F(z), with f(0) = F(0), are analytic in D and $f(z) \prec F(z)$ in D, then

$$\int_0^{2\pi} |\mathrm{Re}f(re^{i\theta})|^2 d\theta \le \int_0^{2\pi} |\mathrm{Re}F(re^{i\theta})|^2 d\theta$$

for 0 < r < 1.

2. Main result

In this paper, we will prove the following theorem.

Theorem 1. If f(z) and F(z), with f(0) = F(0), are analytic in D and

$$f(z) \prec F(z) \tag{1}$$

in D, then

$$\int_0^{2\pi} |\mathrm{Re} f(re^{i\theta})|^p d\theta \le \int_0^{2\pi} |\mathrm{Re} F(re^{i\theta})|^p d\theta$$

where 1 .

Proof. From the hypothesis (1), we can write

$$f(z) = F(\phi(z))$$

where $\phi(z)$ is analytic in D, $|\phi(z)| < 1$ in D and $\phi(0) = 0$. Then, from the harmonic function theorey, we can write

$$\begin{aligned} &\operatorname{Re} f(z) = \operatorname{Re} f(re^{i\theta}) \\ &= \operatorname{Re} F(re^{i\theta}) \\ &= \frac{1}{2\pi} \int_0^{2\pi} (\operatorname{Re} F(\rho e^{i\nu})) \operatorname{Re} \frac{\rho e^{i\nu} + \phi(re^{i\theta})}{\rho e^{i\nu} - \phi(re^{i\theta})} d\nu \end{aligned}$$

where

$$|\phi(re^{i\theta})|<|z|=|re^{i\theta}|=r<\rho<1.$$

On the other hand, we will obtain the following easy calculation

$$\begin{aligned} &\left| \operatorname{Re} \frac{\rho e^{i\nu} + \phi(re^{i\theta})}{\rho e^{i\nu} - \phi(re^{i\theta})} \right| \\ &= \frac{\rho^2 - |\phi(re^{i\theta})|^2}{\rho^2 - 2\rho |\phi(re^{i\theta})| \cos(\nu - \arg \phi(re^{i\theta})) + |\phi(re^{i\theta})|^2} \\ &= \operatorname{Re} \frac{\rho e^{i\nu} + \phi(re^{i\theta})}{\rho e^{i\nu} - \phi(re^{i\theta})} > 0 \end{aligned}$$
(2)

and

$$\begin{split} &\int_0^{2\pi} \frac{\rho e^{i\nu} + \phi(re^{i\theta})}{\rho e^{i\nu} - \phi(re^{i\theta})} \ d\theta = \int_{|z|=r} \frac{\rho e^{i\nu} + \phi(re^{i\theta})}{\rho e^{i\nu} - \phi(re^{i\theta})} \frac{dz}{iz} \\ &= \frac{1}{i} \int_{|z|=r} \frac{\rho e^{i\nu} + \phi(z)}{z(\rho e^{i\nu} - \phi(z))} dz = 2\pi, \end{split}$$

and therefore we have

$$\int_0^{2\pi} \operatorname{Re} \frac{\rho e^{i\nu} + \phi(re^{i\theta})}{\rho e^{i\nu} - \phi(re^{i\theta})} d\theta = 2\pi$$
 (3)

where $z = re^{i\theta}$ and $0 < r < \rho < 1$. Let us put

$$R(\rho, r, \phi, \theta) = \operatorname{Re} \frac{\rho e^{i\nu} + \phi(re^{i\theta})}{\rho e^{i\nu} - \phi(re^{i\theta})}.$$

Applying (2),(3) and Hölder's inequality, we have the following inequality

$$\begin{split} & \int_{0}^{2\pi} \left| \operatorname{Re} f(re^{i\theta}) \right|^{p} d\theta \\ & = \int_{0}^{2\pi} \left| \frac{1}{2\pi} \int_{0}^{2\pi} \left(\operatorname{Re} F(\rho e^{i\nu}) \right) R(\rho, r, \phi, \theta) d\nu \right|^{p} d\theta \\ & \leq \int_{0}^{2\pi} \frac{1}{(2\pi)^{p}} \left| \left\{ \int_{0}^{2\pi} \left| \operatorname{Re} F(\rho e^{i\nu}) \right|^{p} \left(R(\rho, r, \phi, \theta) \right)^{\frac{1}{p}^{p}} d\nu \right\}^{\frac{1}{p}} \\ & \cdot \left\{ \int_{0}^{2\pi} \left(R(\rho, r, \phi, \theta) \right)^{\frac{1}{q}^{q}} d\nu \right\}^{\frac{1}{q}} \right|^{p} d\theta \\ & = \frac{1}{(2\pi)^{p}} \int_{0}^{2\pi} \left| \left\{ \int_{0}^{2\pi} \left| \operatorname{Re} F(\rho e^{i\nu}) \right|^{p} R(\rho, r, \phi, \theta) d\nu \right\}^{\frac{1}{p}} \right. \\ & \cdot \left\{ \int_{0}^{2\pi} R(\rho, r, \phi, \theta) d\nu \right\}^{\frac{1}{q}} \right|^{p} d\theta \\ & = (2\pi)^{-p+\frac{p}{q}} \int_{0}^{2\pi} \left(\int_{0}^{2\pi} \left| \operatorname{Re} F(\rho e^{i\nu}) \right|^{p} R(\rho, r, \phi, \theta) d\nu \right) d\theta \\ & = (2\pi)^{-p+\frac{p}{q}} \int_{0}^{2\pi} \left| \operatorname{Re} F(\rho e^{i\nu}) \right|^{p} \left(\int_{0}^{2\pi} R(\rho, r, \phi, \theta) d\theta \right) d\nu \\ & = (2\pi)^{-p+\frac{p}{q}+1} \int_{0}^{2\pi} \left| \operatorname{Re} F(\rho e^{i\nu}) \right|^{p} d\nu \\ & = \int_{0}^{2\pi} \left| \operatorname{Re} F(\rho e^{i\nu}) \right|^{p} d\nu \end{split}$$

where $\frac{1}{p} + \frac{1}{q} = 1$, 1 < p and 1 < q. Putting $r \to \rho$, it completes the proof. \square

Remark 1. In Theorem 1, we can not prove it for the case 0 . It is an open problem.

Acknowledgement. The present investigation was completed while all authors were visiting Nihon University. This work was supported by the College of Humanities and Science, Nihon University, Tokyo, Japan.

References

- [1] F. Ahadiev and L. Aksentev, The subordination principle in sufficient conditions for univalence, Dokl. Akad. Nauk SSSR, Tom 211 (1973), No. 1, Soviet Math. Dokl. Vol. 14(1973), No. 4, 934-939.
- [2] M. Nunokawa. S. Fukui and H. Saitoh, Majorization of subordinate analytic functions, Sci. Rep. Fac. Edu. Gunma Univ. Vol.24(1975), 7-10.
- [3] W. Rogosinski, On the coefficients of subordinate functions, Proc.London Math. Soc. (2) 48 (1943), 48-82.

Mamoru Nunokawa Emeritus Professor of University of Gunma Hosikuki-cho 798-8, Chuou-ward, Chiba city 260-0808, Japan e-mail: mamoru-nuno@doctor.nifty.jp

Teruo Yaguchi

Department of Computer Science and System Analysis, College of Humanities and Sciences, Nihon University 3-25-40 Sakurajosui Setagaya Tokyo, 156-8550, Japan e-mail:yagichi@cssa.chs.nihon-u.ac.jp

Katsuo Takano Emeritus Professor of Ibaraki University Motoyosida 59-40, Mito city 310-0386, Japan e-mail: ktaka@mx.ibaraki.ac.jp

Grigore S. Salagean Faculty of Mathematics and Computer Science, Str. Kogalniceanu nr. 1, 400084 Cluj-Napoca, Romania e-mailsalagean@math.ubbcluj.ro