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On a generalization of Avhadiev and
Aksentev’s theorem

By
M. Nunokawa, T. Yaguchi, K. Takano and G. Salagean

1. Introduction

Let
F(z)= E an2"
n=0

be analytic and univalent in D = {z | |2| < 1} and suppose that F(D) = E.
If f(z) is analytic in D, f(0) = F(0) and f(D) C FE, then we call that
f(2) is subordinate to F(2) in D, and we write f(2) < F(2) in D. In 1943,
Rogosinski [3] obtained the following theorem.

Theorem A. If f(z) < F(z) in D and if 0 < p, then

27 ) 2n ‘
/ |f(re®®)[Pdo < / |F(re)[Pdo
0 1]

for0<r<1.

On the other hand, in 1973, Avhadiev and Aksentev [1] obtained a theo-
rem which is conguously with Rogosinski’s theorem.

Theorem B. If f(z) and F(z), with f(0) = F(0), are analytic in D and
f(z) < F(2) in D, then

27 27
/ IRef(re)|df < / IReF (re'®)|dd
0 0

forO<r<1.

Applying Theorem A and B, Nunokawa, Fukui and Saitoh [2] obtained
the following theorem.



Theorem C. If f(z) and F(2), with f(0) = F(0), are analytic in D and
f(2) < F(z) in D, then

2r | 2r
/ IRef(re®)2d0 < / ReF(re®)[2d0
0 0

for0<r<1.

2. Main result

In this paper, we will prove the following theorem.
Theorem 1. If f(2) and F(z), with f(0) = F(0), are analytic in D and

f(z) < F(z) (1)
in D, then

27 2%
/ Ref(re)|Pdd < / ReF(re'%)[Pdf
0 0

where 1l <pand 0 < r < 1.
Proof. From the hypothesis (1), we can write

f(z) = F(¢(2))
where ¢(z) is analytic in D, |¢(z)| < 1 in D and ¢(0) = 0. Then, from the
harmonic function theorey, we can write

Ref(z) = Ref(re')
—ReF(re %

27 w + ¢(’I’6‘0)

—_ w pe
(ReF(pe ))Re T p(re0) dv

where _ .
|p(re?®)| < |z| = |re’| =r < p< 1.

On the other hand, we will obtain the following easy calculation

lR pe” + o(re’)

eLV —- ¢(relﬂ)

_ p° —|g(re”)?
0?2 — 2p|p(rei?)| cos(V — arg q&(reif')) + |p(rei)|2
_pe” + P(re’)
“pe — g(re”)

(2)
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and

2n peiu + ¢(re“’) P =/~ pe“’ + ¢(rei0).(2
0 pez‘u - (b(rew) lz|=r peiu - ¢(rei0) 12
1 pe” + ¢(2)
= . dz = 2,
) /|;,|=r z(pew - ¢(Z)) ¢ "

and therefore we have

pe‘” + ¢(re”)
RU ” (l0 =27
0 — ¢(rei)
where z = re* and 0 < r < p < 1. Let us put
w i0
R(p,7,6,0) = R XD

pe — glred)

(3)

Applying (2),(3) and Holder’s inequality, we have the following inequality

Ref(re)| do

/21(‘
/ / ReF(PP‘”))R(p,rqg’()) d"i "

/ 2y {/ ” e (e (B(p.r, 6,0)) v}’
/ R(p,r,¢,0) }% P
(zﬂ)”/(; {/021r [ReF (pe™)[”R(p., ¢,0)du}%

2

{ [ RGems, 0)(1”}%

do

"o

= (2m)P+e /:ﬂ (/02" |ReF(pe™)|PR(p, T, d, O)dv) dé

27

27
—_-(2”)—“5/0 ReF(pe)P( | Rip,7,6.0)d0)dv

J0

2%
= ()P [ ReF (e P

27
= / |ReF (pe™)[Pdv
0

where ;1;+% =1,1<pand 1 < q. Putting r — p, it completes the proof.
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Remark 1. In Theorem 1, we can not prove it for the case 0 < p < 1. It is
an open problem.
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