Geometric properties of certain analytic functions with real coefficients

Hitoshi Saitoh

Department of Mathematics, Gunma National College of Technology, Maebashi, Gunma 371-8530, Japan e-mail: saitoh@nat.gunma-ct.ac.jp

Abstract

Let \mathcal{T} be the class of functions f(z) of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$ and a_k are real numbers. For a function $f(z) \in \mathcal{T}$, some sufficient conditions for starlikeness and convexity are discussed.

1 Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1.1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$, and let \mathcal{S} be the subclass of \mathcal{A} of the univalent functions in \mathbb{U} . By \mathcal{S}^* and \mathcal{K} , we denote the subclasses of \mathcal{A} whose members map \mathbb{U} onto the domain which are starlike and convex.

Further, the function $f(z) \in \mathcal{A}$ is said to be starlike of order α ($\alpha < 1$) in U if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (z \in \mathbb{U}).$$
 (1.2)

Similarly, $f(z) \in \mathcal{A}$ is said to be convex of order α ($\alpha < 1$) in \mathbb{U} if and only if

$$1 + \operatorname{Re}\left\{\frac{zf''(z)}{f'(z)}\right\} > \alpha \qquad (z \in \mathbb{U})$$
(1.3)

We shall denote by $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$ the subclasses of \mathcal{A} whose members satisfy (1.2) and (1.3), respectively.

It is known that for $0 \leq \alpha < 1$, $\mathcal{S}^*(\alpha) \subset \mathcal{S}^*$, $\mathcal{K}(\alpha) \subset \mathcal{K}$ and that $\mathcal{S}^*(0) \equiv \mathcal{S}^*$, $\mathcal{K}(0) \equiv \mathcal{K}$.

2010 Mathematics Subject Classification: 30C45; 11M35.

Keywords and Phrases: Univalent, starlike, convex, integral operator, general Hurwitz-Lerch Zeta function. Furthermore, we define T the class of analytic functions with real coefficients, that is,

$$\mathcal{T} := \left\{ f(z) \in \mathcal{A} : f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \ a_k \in \mathbb{R} \right\}, \tag{1.4}$$

where \mathbb{R} is the set of real numbers.

According to Silverman, we introduce \mathcal{N} the class of analytic functions with negative coefficients, that is,

$$\mathcal{N} := \left\{ f(z) \in \mathcal{A} : f(z) = z - \sum_{k=2}^{\infty} a_k z^k, \ a_k \ge 0 \right\}. \tag{1.5}$$

We note that

$$\mathcal{N} \subset \mathcal{T} \subset \mathcal{A}$$
.

Next, we define the Hadamard product or convolution by

$$(f * g)(z) = f(z) * g(z) = \sum_{k=0}^{\infty} a_k b_k z^k,$$
 (1.6)

where $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$.

With a view to introducing the Srivastava-Attiya convolution operator $\mathcal{J}_{s,b}$, we begin by recalling a general Hurwitz-Lerch Zeta function $\Phi(z,s,a)$ defined by

$$\Phi(z, s, a) := \sum_{n=0}^{\infty} \frac{z^n}{(n+a)^s}$$
 (1.7)

$$(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C} \text{ when } |z| < 1; \ \operatorname{Re}(s) > 1 \text{ when } |z| = 1).$$

Srivastava and Attiya [3] introduced the linear operator

$$\mathcal{J}_{s,b}(f):\mathcal{A}\longrightarrow\mathcal{A}$$

defined; in term of the Hadamard product (or convolution), by

$$\mathcal{J}_{s,b}(f)(z) := G_{s,b}(z) * f(z) \qquad (z \in \mathbb{U}; \ b \in \mathbb{C} \setminus \mathbb{Z}_{0}^{-}; \ s \in \mathbb{C}), \tag{1.8}$$

where for convenience,

$$G_{s,b}(z) := (1+b)^s \left[\Phi(z,s,b) - b^{-s} \right] \qquad (z \in \mathbb{U}). \tag{1.9}$$

It is easy to observe from (1.1) and the definition (1.7) and (1.8) that

$$\mathcal{J}_{s,b}(f)(z) = z + \sum_{k=2}^{\infty} \left(\frac{1+b}{k+b}\right)^s a_k z^k. \tag{1.10}$$

For $f(z) \in \mathcal{A}$, we define the class $\mathcal{S}_{s,b}^*(\alpha)$ by

$$f(z) \in \mathcal{S}_{s,b}^{*}(\alpha) \iff \operatorname{Re}\left(\frac{z\mathcal{J}_{s,b}'(f)(z)}{\mathcal{J}_{s,b}(f)(z)}\right) > \alpha,$$
 (1.11)

that is, $\mathcal{J}_{s,b}(f)(z)$ is in $\mathcal{S}^*(\alpha)$ $(z \in \mathbb{U}; \ 0 \leq \alpha < 1; \ b \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C}).$

Remark 1 For $f(z) \in A$, we put

$$G(z) = \sum_{n=1}^{\infty} \frac{1+c}{n+c} z^n$$

is convex (Re(c) > -1). So we have

$$\Phi_c(f(z)) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \quad (c > -1)$$

$$= (f * G)(z)$$

$$= z + \sum_{n=2}^{\infty} \frac{1+c}{n+c} a_n z^n$$

$$= \mathcal{J}_{1,c}(f)(z).$$

2 Preliminaries

We introduce the following lemmas for our results.

Lemma 1 [4] Let $f(z) \in \mathcal{T}$ and $\operatorname{Re} \{f'(z)\} > 0$, then the function

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \qquad (c > -1)$$
 (2.1)

belongs to $\mathcal{K}(-c)$ for all c $(0 \le -c < 1)$.

Lemma 2 [1, Carathéodory] Let $\varphi(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$ be analytic in \mathbb{U} and $\operatorname{Re} \{ \varphi(z) \} > 0$ $(z \in \mathbb{U})$. Then, $|c_n| \leq 2$ $(n = 1, 2, 3, \cdots)$.

Lemma 3 [2] Let $f(z) \in T$ and suppose that

$$\operatorname{Re}\left\{f'(z) + \alpha z f''(z)\right\} > 0 \qquad (z \in \mathbb{U}) \tag{2.2}$$

where $\alpha \geq 1$. Then, we have

$$1 + \operatorname{Re}\left\{\frac{zf''(z)}{f'(z)}\right\} > \frac{\alpha - 1}{\alpha} \qquad (z \in \mathbb{U}),$$

or f(z) is convex of order $\frac{\alpha-1}{\alpha}$.

3 Main results

Theorem 1 Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in T$ and $0 \le \alpha < 1$.

(i) If
$$|zf''(z) + (1-\alpha)(f'(z)-1)| \le 1-\alpha$$
, then $f(z) \in \mathcal{K}(\alpha)$ $(z \in \mathbb{U})$.

(ii) If
$$\left| f'(z) + \alpha \left(1 - \frac{f(z)}{z} \right) - 1 \right| \leq 1 - \alpha$$
, then $f(z) \in \mathcal{S}^*(\alpha)$ $(z \in \mathbb{U})$.

Proof. Using Lemma 3, we have (i) and (ii).

Remark 2 From Theorem 1, we have the following results given by H. Silverman [5].

(i)
$$\sum_{n=2}^{\infty} n(n-\alpha)|a_n| \le 1-\alpha \implies f(z) \in \mathcal{K}(\alpha).$$

(ii)
$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \leq 1-\alpha \implies f(z) \in \mathcal{S}^*(\alpha)$$
.

Next, we prove the following theorem.

Theorem 2 Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in A$. If

Re
$$\{(1-\alpha)f'(z) + zf''(z)\} > 0$$
 $(0 \le \alpha < 1),$ (3.1)

then $|a_n| \leq \frac{2(1-\alpha)}{n(n-\alpha)}$. The result is sharp.

Proof. The coefficient bounds are maximized at the extreme point. Now the extreme point of (3.1) may be expressed as

$$f(z) = z + \sum_{n=2}^{\infty} \frac{2(1-\alpha)x^{n-1}}{n(n-\alpha)} z^n, \quad |x| = 1$$
 (3.2)

and the result follows.

Remark 3 If $f(z) \in \mathcal{T}$ and $\alpha = 0$, then $|a_n| \leq \frac{2}{n^2}$. So, we have $\sum_{n=2}^{\infty} |a_n| \leq \frac{\pi^2 - 6}{3} = 1.289 \cdots$. Moreover, in the case of $f(z) \in \mathcal{T}$, we have $f(z) \in \mathcal{K}(\alpha)$.

Theorem 3 Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in A$. If

$$\operatorname{Re}\left\{f'(z) - \alpha \frac{f(z)}{z}\right\} > 0 \qquad (0 \le \alpha < 1), \tag{3.3}$$

then $|a_n| \leq \frac{2(1-\alpha)}{n-\alpha}$. The result is sharp.

Proof. The coefficient bounds are maximized at the extreme point. The extreme point of (3.3) is

$$f(z) = z + \sum_{n=2}^{\infty} \frac{2(1-\alpha)x^{n-1}}{n-\alpha} z^n, \quad |x| = 1$$
 (3.4)

and the result follows.

Remark 4 In the case of $f(z) \in \mathcal{T}$, we have $f(z) \in \mathcal{S}^*(\alpha)$.

Next, in Theorem 4 below, we present the coefficient inequalities for functions in the class $\mathcal{K}(\alpha)$.

Theorem 4 Let $0 \le \alpha < 1$. If $f(z) \in A$ satisfies the following inequality

$$\sum_{n=2}^{\infty} n(n-\alpha) \left| \left(\frac{1+b}{n+b} \right)^{s} \right| |a_n| \le 1-\alpha, \tag{3.5}$$

then $f(z) \in \mathcal{K}(\alpha)$.

Proof. Using Silverman's result (Remark 2 (i)), we can prove this theorem.

Letting $\alpha = 0$ in Theorem 4, we have

Corollary 1 If $f(z) \in A$ satisfies the following inequality

$$\sum_{n=2}^{\infty} n^2 \left| \left(\frac{1+b}{n+b} \right)^s \right| |a_n| \le 1, \tag{3.6}$$

then f(z) is convex.

Furthermore, we can have

Theorem 5 Let $0 \le \alpha < 1$. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{K}(\alpha)$, then

$$|a_n| \le \frac{2(1-\alpha)}{n(n-1)} \left| \left(\frac{n+b}{1+b} \right)^s \right| \cdot \prod_{j=2}^{n-1} \left(1 + \frac{2(1-\alpha)}{j-1} \right) \qquad (n \in \mathbb{N} \setminus \{1\}).$$
 (3.7)

Proof. We set

$$p(z) := \frac{1 + \frac{z \mathcal{J}''_{s,b}(f)(z)}{\mathcal{J}'_{s,b}(f)(z)}}{1 - \alpha} = 1 + \sum_{n=2}^{\infty} c_n z^n.$$

Then p(z) is analytic with

$$p(0) = 1$$
 and $\text{Re}\{p(z)\} > 0$ $(z \in \mathbb{U})$.

Since

$$z\mathcal{J}_{s,b}''(f)(z) = [(1-\alpha)(p(z)-1)]\mathcal{J}_{s,b}'(f)(z),$$

by virtue of equation

$$\mathcal{J}_{s,b}(f)(z) = z + \sum_{n=2}^{\infty} \left(\frac{1+b}{n+b}\right)^s a_n z^n, \tag{3.8}$$

we have

$$n(n-1)\left(\frac{1+b}{n+b}\right)^{s} a_{n} = (1-\alpha)\left[c_{n-1} + \sum_{m=2}^{n-1} m\left(\frac{1+b}{m+b}\right)^{s} a_{m} c_{n-m}\right] \quad (n \in \mathbb{N} \setminus \{1\}). \quad (3.9)$$

By applying Lemma 2, we obtain

$$n(n-1)\left|\left(\frac{1+b}{n+b}\right)^{s}\right|\left|a_{n}\right| \leq 2(1-\alpha)\left[1+\sum_{n=2}^{n-1}m\left|\left(\frac{1+b}{m+b}\right)^{s}\right|\left|a_{m}\right|\right].$$
 (3.10)

We shall prove, by using the principle of mathematical induction, that the inequality (3.7) is satisfied for $n \in \mathbb{N} \setminus \{1\}$.

Putting $\alpha = 0$ in Theorem 5, we have

Corollary 2 If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{K}$, then

$$|a_n| \le \left| \left(\frac{n+b}{1+b} \right)^s \right|.$$

References

- [1] P. L. Duren, Univalent Functions, Springer, 1983.
- [2] M. Nunokawa, S. Owa, J. Nishiwaki and H. Saitoh, Sufficient conditions for starlikeness and convexity of analytic functions with real coefficients, Southeast Asian Bull. Math. 33 (2009), 748–754.
- [3] D. Răducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms and Special Functions, 18(12) (2007), 933-943.
- [4] H. Saitoh, Geometric properties of certain analytic functions with real coefficients, RIMS Kôkyûroku 1579 (2008), 101–109.
- [5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1) (1975), 109–116.