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1 Introduction

A probability distribution function F(z) is called an infinitely divisible prob-
ability distribution if for each integer n > 1 there is a probability distribution
Fyo(z) such that the following relation holds,

F(z) = (Fox - x ) (),

where * denotes the convolution. If a probability distribution function F(z)
is concentrated on the interval [0, c0) and an infinitely divisible probability
distribution, and if we set

n(s) = /Ooo e *dF(z), 1n(s) = /Ooo e *dFy,(z),

the following relation

n(s) = (n(5))”

holds. It is known that the Laplace-Stieltjes transform of an infinitely divisi-
ble probability distribution F'(x) which is concentrated on the interval [0, )
can be written as follows:

n(s) = exp{—ds + A:O(e_” - 1)%dK(:z:)}

where

(c1) K(z) is nondecreasing,
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(c2) K(=0)=0,
() [ °1/zdK(z) < oo.

Here, let us assume d = 0 in what follows. If an infinitely divisible proba-
bility distribution F(x) which is concentrated on the interval [0, 00) and if
the probability distribution function F(z) has a density function f(z), the
density funcion f(x) satisfies the following integral equation:

zf(z) = /Oxf(ac —t)dK(t), z > 0.

If dK(t) = k(t)dt we have

zf(z) = flx —t)k(t)dt, = > 0.

(0,z)

We will discuss about the Student ¢ distribution. The density function of the
Student ¢ distribution with degrees of freedom r is as follows:
I(r+1)/2)) 1

Vvar T(r/2) (1+2/r)r+D/2

If r is an odd integer, r = 2n + 1 for a nonnegative integer n and if we make
a change of variable, t/\/r = z, we have the density function

T(t) =

I'(n+1) 1
Va L(n+1/2) (14 z2)n+’

The purpose of this note is to show that we can prove the infinite divisibility
of the ¢ distribution with the odd degrees of freedom 2n + 1 without making
use of the Bessel functons (cf. [3]). We will make use of the fact that if A
tends to +0 the density function of the Student ¢ distribution can be obtained
by the following relation

c

JELl = Ty e T o) (T o)

L%
(1 + w2)n+l ’

where ¢ and ¢g are normalised constants.
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2 The hypergeometric function

Let a be a positive constant. In what follows, suppose that a; = a, a3 =
a+h, ...,any1 = a+ nh. Let us consider the following density function

C

;a,h 1
f(x a ) n+1(a + .'.82) ( )
where c is a normalized constant. It holds that
n+1 1
f(z;a,h) =c = : (2)
DI s v ey
From the relation
i / T et g
a? + r? o
o0 1 2
= ~=*/v. [ e~ /0y~32dy
0 AV 7T'U \/— ’
we obtain the following equality
f(z;a,h) = " = e T/
3 Uy Jo ’_-7T'U
n+1
c
DL L Y ®)

=1 I s (—af 2+af)

Let us denote the mixing density function in the integrand of (3) by g(v). The
mixing density g(v) is positive on [0, 00) and a probability density function.
We take the Laplace transform of g(v). Since it holds that

oc
/ e~ o= /ry=3/2gy — VT 20,5
J0

aj
we obtain
n(s) = c\/77
n+1
a?/vU—B/Zdv
Z ?+lll—¢]( 02 +a}) /
= Z ‘201\/_ (4)

H;Hllz;eg( a; +012)



For n = 3 we obtain

n(s) = = e Ve
a3'h3(2a + h)(2a + 2h)(2a + 3h)

( (—3)(2m)= 4 (-3)(—=2)(2m)(2m + 1) 22

(2m + 4) (2m + 4)(2m + 5)2!
(=3)(—2)(-1)(2m)(2m + 1)(2m + 2)::3) (5)
(2m + 4)(2m + 5)(2m + 5)3!
Making use of hypergeometric function we obtain the simple expression
n(s) = 2en 2mF(—n,2m;2m+ n + 1;2) (6)

n!h2"+1(2m)n+1

where we let z = e=?*v® and m = a/h. Concerning the roots of the hyperge-
ometric function F(—n, 2m;2m + n+ 1; z) the author obtained the following
result (cf.[11]).

Theorem 1. If m is a positive constant and n is a natural number the hy-
pergeometric function F(—n,2m;2m + n + 1;z) has roots outside the unit
disk.

3 The Student t distributions

We show that the probability distribution with density function (2) is in-
finitely divisible and obtain the Lévy measure of the Student ¢ distribution
from the Lévy mesure of the distribution with the density functon (2).

Theorem 2. The probability distribution with density function (2) is in-
finitely divisible for each positive numbers a, h and every positive integer
n.

Proof. Let us show that the density function g(v) is an infinitely divisible
density for every positive integer n. To show the infinite divisibility of the
distribution with g(v), it suffices to show that if dK (z) = k(z)dz the following
relation

—1'(s) = n(s) /0 ) e”*k(z)dx

holds and k(z) is a nonnegative function and satisfies the conditions (cl),
(c2), (c3) imposed on an infinitely divisible probability distribution. From
(6) we have

108) = S @my om+n+ 1)

2cm mzn:( ("'n)j(zm)j P (7)
=0
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where we set z = e~2V® and m = a/h. From this we obtain

/() = — 2cth
T I 2m)p /s

(=) @m);(m +3) e
?::6 (2m + n + 1);5! ™ (8)

and hence

7(s) _ h (o (n)i(2m);(m +5)
AC ﬁ(; j , +)

n(s) (2m + n + 1);5!
 (=n);(2m);(m + ) ma;
/(;0 (erjz—f-nfl—l)jj! ¢ +)' (9)

If we set z = e72*V® and R{./s } > 0, then |z| < 1. We note that
F(-n,2m;2m+n+1;2) # 0.

The denominator of (9) does not vanish in the whole complex plane except
at the origin. By the contour integration of the figure after the reference we
can calculate the inverse Laplace transform of the following formula

I A 7'(s)
k(t) = lim — ts(—1)—=d
(t) = lim o— o ( )n(s) s,

(€>0,t>0, Ry = Rcose).
Let

(—3);(2m);2?

3
D= \/E )

N = h‘i (=3);(2m);(m + )27

(A) The integral along a small circle with the center at O.



From s =re®, \/s = \/r(cos/2 + isinf/2) for —7 < 0 < 7, we see that

fest%ds —_ __/—"r ere“’t

[{hz (=3);(2m);(m + j)e” —j2h/fret 6/2}

= (2m +4),7!
(—3);(2m); e~ g2kttt i0/2;
{Z (2m + 4);5! }]‘/Fe idf.

Since it holds that for every 0 <7 <1 and 0 < 8 <7
F(=1,2m;2m + 2;e"2V7**) £ 0
we have

]{e"t—g—ds — Qasr — +0.

(B) The integral along B ~ D.
From s = Re*we have /5 = v/R(cos /2 + isin§/2) and we see that

N i i0
/ est__ds — eRe t
B~D D %—c

[{ i(——wj(zm)j(m+j)e—f2"ﬁe"””}

Jj=0

/{\/Ee”w i (=3);
j=0

(2m)je——j2h\/ﬁe“’/2

}] Re®idf

T 3 (=3);(2m); oy
=i/1 efte [{hz( 3) (2771()2577171:4])3;! }

3 —2h\/Rei/2
(*3)3'(2"1)3'3 92k i6/2
VvV Re*’249
/{jzo (2m + 4);5! | VEe

.z N i9/2
+i /2 Re”t[{hz —3);(2m);(m + j)e~92hVRe

Ay e 2| R o
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We see that

/ VR|e?/2eRet | dg = / VRe!Ees0 g
¥ i
_ / | VRetRene 4

< —2tRo/n —-2tR¢/1r ’72"
< / VEe R4y = VR oo ReI
= \/R'{Ei%(-—e—tﬂ +1)} >0 (11)
as R — +00. We show that
/ |VRe¥/2eRe"t|df — 0 (12)
5 —¢

as R — oo. From the fact that
cos 6 = cos(¢ + g —¢)=sing, 0< P <,

sine = % >sing > 0,

we see that
i . . ;1
VR|e®/2ef"|df = VRetfe=0qg
Z—¢ Z—¢
= [ VEerened < / VReU/% g = \/Ree
0
o : € _ _u Sy ¢
e (\/l_%smc)sin =e (\/—R)sme —0 (13)
as R — oc.

(C) The integrals along D — G and H — F.
From s = pe'™, 1 < p < Ron D — G and from /s = \/pe'™? = i,/p, we



see that

/ est-jy-ds
Jp¢ D

. peint y . -\ ,—j2h,/pe'™/?
e O

). p—i2h/pe™/? .
im/2 ( 3)3(277?,)]6 72 i
/{\/ﬁe Z (2m + 4),5! ]e dp

T ,: 2, (=8);(2m);(m + j)e IV
::——/Re ’ [{hg‘( 3 ngT:)ij!e !

3 . .
(=3),2m);e VA \1 dp
/{Z (2m +Z)jj! }] VP

- / Cen { i (=3);(2m);(m + f)e” TV J

r (2m + 4)].7'

j je VN1 d
{z( 322(:::-)4 7! }] \/gz

From s = pe ™ = —p, r < p< Ron H — E and from /s = —i,/p we see

that
N
et —ds
foe®D
= [{h}:( 8),2m)sm + g)e AT
H——»E 2m+4)_7]' ;

3);(2m); 2V

{ Jpe 2 Z St O }] e~ dp

7
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= — / —pt [{h’z —3);(2m);(m + ])e“zh\/ﬁ}

(2m + 4);5!

—-3); .e+J2h\/ﬁi
/{Z( 3212(::7:—)]4),7'! }]f’,%

R 3 (—3). (m + i)e+i2hv/pi
-] e_m[{h;( 3),(22);2531 \

(=3);(2m) e*?VP \ 1 dp
{Z (2m + 4),3! }] N (14)

Therefore we see that

o Pt (=3);(2m);(m + j)e 32hVFi
5’; [{Z J (27; + 4);3! }

/ {Z (= 3)3(2m)16“"2"~/7"' }

(2m + 4);5!

(—3);(2m);(m + j)et2hVP
+{Z (2m + 4);3! }

/ {Z (=83);(2m) e 72V }] hdp

(2m + 4);5! N
—pt ( 3) (2m) (m + j)e—jflh\/ﬁi
oo [{Z TGm 0, )

/{Z( 3);(2m)se” ﬂw}

(=3);(2m);(m + j)et2hVP
+{Z (2m + 4);5! }

3 o
(—3);(2m);e VP | 1 hdp
/{Z (2m + 4);37! }] /P




as r — 0 and R — oo. From the Cauchy theorem we see that

Lo
& | - :
/{12-—?5 (—323(72”253';23’1@ }
2 J i
+{J§:;( 3); (21(7;3”115:])!e+ 2h./Fi }
e e "

as R — 0o0. By change of variable, \/p = y, we obtain

b= [ {3 R
A3 S )

(—3);(2m);(m + j)ets?
+{Z (2m + 4);5! J

/{i (=3); (Qm)je““:?'?hyi }] hdy.

=0 (2m + 4)5!

For the general case n we obtain

-1 [ oS e
(—n);(2m) je—72hvi
/{Z (ZZn(-zk n)+ 1) : }

= (—n)j(Qm)j(m + j)eti2hyi
+{Z 2m+n+1); }

J=0

/{zn: (=n);(2m) eIt }] hdy. -

& (@m+n+1);
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To show the infinite divisibility it is necessary to show that the following
function

. {Z( n)(2m)y(m + e

2m+n+1);
(=n);(2m) e
{Z 27131 +n+1); }

is nonnegative for y > 0. Let 2hy = @ in the above and let

A = m{i (—n);(2m);(m + j)e‘i(mﬂ)o}

pors (2m +n+1);
" (=) (2m)etimiae
{Z (2m+1i+ 1) }

If n = 0 we obtain
= (1/m?)(cos @ - mcos@ + msinf - sind) = 1/m.

If n =1 we obtain

2m(2m +1)
_—(1- .
om 2 (L cosb)
For the general n we obtain
n—1
_ 2 @2m)nin (1 —cos6)".

T (2m+n+1l),
Let

B= '5,.: (=n);(2m);e’m+d0
(2m + n + 1),35!

= |F(—n,2m;2m + n + 1; €)% (17)

From the fact that A is nonnegative for 8 = 2hy > 0 we see that the function

1 > 2A
k(t) = = et 22
(t) =~ /0 - hdy (18)



is positive for ¢ > 0 and we obtain

24 2"(2m)nyy (1 — cos @)™
B (2m+n+ 1)n |[F(—n,2m;2m + n+ 1;€¥)[2
= 2"(2m)n41(1 — cos 2hy)"/

- (2m); n\ (2n—j
{j;o (2m +27T+ pn—j (]) (2 n J)
(2(n — §))12?(1 — cos 2hy)j}.

After all, by change of variable, y = /w, we obtain

k(t) = /Ooo e ™ (2”‘1(2m)n+1(1 — cos 2h\/®"h) dw

[ a2y (%) ()

=0
(2(n — 7))Y(1 — cos 2h\/?u')j)

and therefore

k(t) = / ” et (22""1(2m)n+1(sin h@2”h> dw
0

[ a6 (7))

(2(n — 5))!(sin h\/m%') .

(19)

(20)

We can show that k(t) satisfies the conditions (c1), (c2) and (c3). Therefore
the density function g(v) is an infinitely divisible density, and the probability
distribution with the density function (2) is infinitely divisible since it is a

mixture density of the normal distributions.

a

Let us denote the characteristic fuction of the probability distribution with

the density function (2) in the following form

&(t) = exp [ /é o (em -1- %—2) -l-%-)-da:]

In what follows we will obtain the measure I(z)dz/z. We have

é(t) = /+°° e't® (/Ooo —\/%e_“’z/”g(v)dv)dm

i o}

= / e ""/4g(v)dv
0
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and

log (b(t) - /+°°( —az )k(.’lt)

+0
- /O (e - 1) ~( /+ O &Y (w)dw) do
- /0 ~ log(1 + %)U(w)dw (21)
where we set s = ¢?/4 and
U(w) = (2"~ (2m)ns(sin hv/)"h )
/e () ()
(2(n — 1))(sin hv/)¥).

By using the following equality

2

t : itu \ du
— 1 1+ —)= 6—2\/@11] (ectu —-1- )____
og (1+ 4w) ,/,; © 1+ u?/ |ul

we obtain
é(2)

= exp [/(;oo{ /R—{o} e~ 2Vl (em‘ —-1- 1 iuuz) ﬁZ}U(w)dw]

= exp [-/R—{o} (eitu —1- T:f_“ui) ﬁ(/o 3‘2‘/*7'“'U(w)dw) du].

We see that the function /() can be given in the following form

l(z) = (sgn ) /oo e 2V¥ 12y (w)dw
_Jo

= (sgn ) ./0 e~ l=lv g2n—1

[(2m>n+1h(sin(hv/2»2n/

(S s () (")

(2(n —]))!(sm(hv/2))2’)] v. (22)




Let us denote the characteristic function of the Student t distribution with
odd degrees of freedom in the following form

@(t) = exp [/R_{O} (eitm —1-- imﬁ) lsta(:x)dx]-

Theorem 3. The function ly(x) can be given in the explicit form

lst(z) = (Sg‘n J,‘) /x e“!-”"l'v
0
o jgo(z@)zj (7;) <2nn— j) (2(n =))W} (23)

We take a = 1 for the Student t distribution.

Proof. By (22) and hm = a we see that

oG
= (sgn 9:)/ e~lelv
0

[227 @m) b (sin(ho/2) /(o /2))
2n - j 2% n\(2n-j
(hv/2) /{W;::O (2m(im73 +21)n_j (]) ( ln ])
(2(n = ) ((sin(ho/2))/(h/2)) " o2/ }]aw (29

From the above we see that

lst(z) = (sgn x) /oo e”l=lv (2a)2n+1v2"/
(27r Z:(Za)ZJ ( ) (Zn ]) (2(n —j))!v2j)]dv

as h tends +0 and we obtain (23). a

If a =1 we have

la(x) = (sgn z) /co e—lely [2(2y)2n/
() -

(25)
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In order to show that the results here coincide with those formulae of which
have been already obtained we write down the several cases (cf. [1]).
Ifn=1

i 2
_ —laly___Y
lst(z) = (sgn z) /(; e ) dy

+ 3?)

Ifn=2

T el y!

= —lzly
lst(z) = (sgn ar:)/0 e T T y4)dy

Ifn=3

" ~|=ly y6

La(z) = (sgn @) /0 € 7(225 + 45y% + 6y + ys)dy

Ifn=4

00

lst(x) = (sgn (L‘)/O el

y8

d
(11025 + 157542 + 1355% + 1055 + 55) 7

(26)

From the above we see that the function /. (z) can be decomposed to the two
terms and we can obtain the convolutional decomposition.

Ifn=1
1 = 1
l - “lely =g
() L (sgn z)/o ¢ (1 + y?) y
[o < B (o <]
= 1 _sne [cos || -———Smydy — sin |z| ik y],
T vis || y || y
(z # 0). (27)
Ifn=2
_ 32 + 3y?
= — — |lzly
e = L~ o) [ e Ty
Ifn=3
1
st(z) =—_

225 + 4512 + 6y*
_ ~|zly
(sgn 2) / (225 + 4552 + 6y2 + o) ¥
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