Nonstandard arguments and recursive arguments

Keita Yokoyama*
(Mathematical Institute, Tohoku University)

Abstract

We give a new nonstandard method for conservation proofs over $B\Sigma_2^0$ using a combination of recursion theory and nonstandard analysis.

1 Introduction

Techniques from nonstandard analysis play an important role in Reverse Mathematics. In [12, 13], Keisler gives nonstandard characterizations for the big five subsystems of second-order arithmetic. In [16, 20, 21, 22], several nonstandard techniques for analysis in second-order arithmetic are developed, and in [8, 17], Impens and Sanders show that several theorems of nonstandard analysis are equivalent to the Π_1 -transfer principle. Also, combinatorics is an important topic in Reverse Mathematics (see, e.g., [18, 19]). Especially, Ramsey's theorem for pairs (RT₂²) plays an important role in Reverse Mathematics as an intermediate axiom between RCA₀ and ACA₀. There are many theorems of combinatorics and model theory that are provable from RT₂² (see, e.g., [3, 5, 6]). Thus, determining the exact strength of RT₂² is very important. It is well-known that RT₂² implies BΣ₂⁰. On the other hand, Cholak, Jockusch and Slaman ([1]) show that RCA₀ + RT₂² + IΣ₂⁰ is a Π_1 -conservative extension of RCA₀ + IΣ₂⁰, *i.e.*, the first-order part of RT₂² is not stronger than IΣ₂⁰. Then, the question arises: is RCA₀ + RT₂² + BΣ₂⁰ a Π_1 -conservative extension of RCA₀ + BΣ₂⁰? A partial answer to this question is given by Slaman, Chong and Yang ([2]). They showed that RCA₀ + COH + BΣ₂⁰, RCA₀ + ADS + BΣ₂⁰ and RCA₀ + CAC + BΣ₂⁰ are Π_1 -conservative extensions of RCA₀ + BΣ₂⁰. Here, COH, ADS and CAC are all combinatorial principles weaker than RT₂².

In this paper, we will introduce a new approach for conservation proofs over $B\Sigma_2^0$. We will show how to use recursion-theoretic arguments within nonstandard arithmetic and give new proofs of the conservation theorems for WKL and COH over RCA₀ + $B\Sigma_2^0$ (see [4] and [2] for the original proofs, respectively). It is well-known that the nonstandard approach works well for combinatorics (see, e.g., [7]). For Ramsey's theorem, the nonstandard proof of ACA₀ implies RT(k) is known [14, Theorem 2.2.16]. This proof can be formalized in the system of non-standard second-order arithmetic corresponding to ACA₀ introduced in [23]. In this proof, the Π_1^0 -transfer principle is the key element. In the nonstandard arithmetic, the Π_1^0 -transfer principle is conservative over $B\Sigma_2^0$, and this fact plays a key role for the conservation proofs in this paper.

Nonstandard arithmetic

Let \mathcal{L} be the language of first-order arithmetic, and let \mathcal{L}_2 be the language of second-order arithmetic. For a finite set of unary predicates \bar{A} , an $\mathcal{L} \cup \bar{A}$ -structure is a pair $M = (M; \bar{A}^M)$

^{*}E-mail: y-keita@math.tohoku.ac.jp

where $A^M\subseteq M$ for any $A\in \bar{A}$. Let \mathcal{L}^* be the language of nonstandard arithmetic, *i.e.*, $\mathcal{L}^*=\mathcal{L}\cup\{V^s,V^*,\sqrt\}$ where V^s and V^* are unary predicate symbols denoting the standard and nonstandard universe respectively, and \sqrt is a function symbol denoting the embedding from the standard universe into the nonstandard universe. An $\mathcal{L}^*\cup\bar{A}$ structure is a triple $\mathfrak{M}=(M,M^*,\sqrt)$ such that $M=(\{x\mid \mathfrak{M}\models x\in V^s\};\bar{A}^M)$ and $M^*=(\{x\mid \mathfrak{M}\models x\in V^*\};\bar{A}^{M^*})$ are $\mathcal{L}\cup\bar{A}$ -structures and \sqrt is a mapping from M to M^* . We usually use the identification $M\cong \sqrt{(M)}\subseteq M^*$, *i.e.*, identify $a\in M$ with $\sqrt{(a)}\in M^*$.

An $\mathcal{L} \cup \bar{A}$ -structure M is said to be a model of $I\Sigma_n^0$ (resp. $B\Sigma_n^0$) if $(M, \bar{A}^M) \models I\Sigma_n^0$ (resp. $B\Sigma_n^0$) as a second order structure. In other words, $(M; \bar{A})$ satisfies the induction axioms (resp. bounding axioms) for $\Sigma_n^{\bar{A}}$ formulas.

Definition 1.1. For a finite set of unary predicates \bar{A} , we define axioms for $\mathcal{L}^* \cup \bar{A}$ as follows:

- BNS consists of the following:
 - $-\sqrt{}$ is an embedding (with respect to $+, \times, \bar{A}$ -structures) from V^s to V^* ,
 - V^* is an end extension of $\sqrt{(V^s)}$,
 - $-V^{s} \models I\Sigma_{1}^{0} \text{ and } V^{*} \models I\Sigma_{1}^{0}.$
- $\Pi_n^0 \text{TP}$: $\forall \bar{x} \in V^s(V^s \models \varphi(\bar{x}, \bar{A}) \leftrightarrow V^* \models \varphi(\bar{x}, \bar{A}))$ for any $\varphi \in \Pi_n^{\bar{A}}$ formulas.

Note that we can easily show that BNS implies Π_0^0 TP.

2 $B\Sigma_2^0$ and Π_1^0 TP

In this section, we prove that BNS + Π_1^0 TP is a (first-order) conservative extension of B Σ_2^0 . To prove this, we use a version of Friedman's self-embedding theorem.

From now on, we identify an $\mathcal{L} \cup \bar{A}$ formula φ with an $\mathcal{L}^* \cup \bar{A}$ formula φ^s , where φ^s is a formula constructed by replacing $\forall x$ (resp. $\exists x$) in φ into $\forall x \in V^s$ (resp. $\exists x \in V^s$).

Theorem 2.1. Let $n \geq 1$. Then, BNS + Π_n^0 TP + $(V^s, V^* \models I\Sigma_{n-1}^0)$ proves $B\Sigma_{n+1}^0$. In other words, for any finite set of unary predicates \bar{A} , if $M = (M; \bar{A}^M)$ and $M^* = (M^*; \bar{A}^{M^*})$ are models of $I\Sigma_{n-1}^0$ such that M^* is an elementary end extension of M with respect to $\Pi_n^{\bar{A}}$ formulas, then M is a model of $B\Sigma_{n+1}^0$.

Proof. This proof is essentially due to Theorem B of [15]. Let $M = (M; \bar{A}^M)$ and $M^* = (M^*; \bar{A}^{M^*})$ are models of $\mathrm{B}\Sigma_n^0$ such that M^* is an elementary end extension of M with respect to $\Pi_n^{\bar{A}}$ formulas. Let $\theta(x,y) \equiv \forall z\theta_0(x,y,z)$ be a $\Pi_n^{\bar{A}}$ formula, and let $a \in M$ such that $M \models \forall x < a \exists y \theta(x,y)$. We will show that there exists $b \in M$ such that $M \models \forall x < a \exists y < b\theta(x,y)$. By $\Pi_n^0 \mathrm{TP}$, for any $c \in M^* \setminus M$, we have $M^* \models \forall x < a \exists y < c\theta(x,y)$. Take $d \in M^* \setminus M$. Then, for any $c \in M^* \setminus M$, we have $M^* \models \forall x < a \exists y < c \forall z < d\theta_0(x,y,z)$. Then, there exists $b \in M$ such that $M^* \models \forall x < a \exists y < b \forall z < d\theta_0(x,y,z)$ by underspill for $\Sigma_{n-1}^{\bar{A}}$ formula, which is available from $M^* \models \mathrm{I}\Sigma_{n-1}^0$. (Note that $\forall x < a \exists y < b \forall z < d\theta_0(x,y,z)$ is equivalent to a $\Sigma_{n-1}^{\bar{A}}$ formula since $M^* \models \mathrm{I}\Sigma_{n-1}^0$.) Thus, we have $M \models \forall x < a \exists y < b\theta(x,y)$. This means that M satisfies $\mathrm{B}\Pi_n^0$, which is equivalent to $\mathrm{B}\Sigma_{n+1}^0$.

The following lemma is a modification of a version of Friedman's self-embedding theorem. See also [11, page 166, Exercise 12.2]

Lemma 2.2. Let M and N be countable recursively saturated models of $B\Sigma_{n+1}^0$ such that SSy(M) = SSy(N). Let $a \in M$ and $b, c \in N$ such that $M \models \exists x \psi(x, a)$ implies $N \models \exists x < b\psi(x, c)$ for any Π_n formulas $\psi(x, y)$. Then, there exists an embedding $f: M \to N$ such that $f(M) \subseteq_e N$, f(M) < b, f(a) = c and f is an elementary embedding with respect to Π_n formulas.

Proof. We will construct sequences $\{a_i\}_{i<\omega}=M$ and $\{c_i\}_{i<\omega}\subseteq_e N_{< b}$ such that $a_0=a, c_0=c$ and $M\models\exists x\psi(x,\bar{a_i})$ implies $N\models\exists x< b\psi(x,\bar{c_i})$ for any Π_n formulas by a back and forth argument, where $\bar{a_i}=(a_0,\ldots,a_i)$ and $\bar{c_i}=(c_0,\ldots,c_i)$. We fix enumerations $M=\{p_k\}_{k\in\omega}$ and $N=\{q_k\}_{k\in\omega}$ such that each element of $d\in N$ occurs infinitely often in $\{q_k\}_{k\in\omega}$.

Assume that we have already constructed $\{a_j\}_{j < i}$ and $\{c_j\}_{j < i}$ which satisfy the desired conditions. If i = 2k + 1, put $a_i = p_k$. By recursive saturation, there exists $\alpha \in M$ such that for any $\theta(x) \in \Pi_n$, $\lceil \theta(x) \rceil \in \operatorname{code}(\alpha) \leftrightarrow \exists z \theta(\langle \bar{a}_i, z \rangle)$. Since $\operatorname{SSy}(M) = \operatorname{SSy}(N)$, there exists $\beta \in N$ such that $\operatorname{SSy}(\alpha) = \operatorname{SSy}(\beta)$. Then, $q(y) = \{\lceil \theta(x) \rceil \in \operatorname{code}(\beta) \to \exists z \theta(\langle \bar{c}_{i-1}, y, z \rangle) \land y < b \mid \theta(x) \in \Pi_n\}$ is a recursive type over N (we can easily check that q(y) is finitely satisfiable). Take a solution c' of q(y), and define $c_i = c'$. Then $\{a_j\}_{j \le i}$ and $\{c_j\}_{j \le i}$ satisfy the desired conditions.

If i=2k+2 and $q_k>\max\{\bar{c}_{i-1}\}$, put $c_i=c_0$ and $a_i=a_0$. If i=2k+2 and $q_k\leq\max\{\bar{c}_{i-1}\}$, put $c_i=q_k$. By recursive saturation, there exists $\beta\in N$ such that for any $\theta(x)\in\Sigma_n$, $[\theta(x)]\in\operatorname{code}(\beta)\leftrightarrow \forall z< b\theta(\langle\bar{c}_i,z\rangle)$. Since $\operatorname{SSy}(N)=\operatorname{SSy}(M)$, there exists $\alpha\in M$ such that $\operatorname{SSy}(\beta)=\operatorname{SSy}(\alpha)$. Then, $p(x)=\{[\theta(x)]\in\operatorname{code}(\alpha)\to\forall z\theta(\langle\bar{a}_{i-1},x,z\rangle)\mid\theta(x)\in\Sigma_n\}$ is a recursive type over M. To show that p(x) is finitely satisfiable, let $\theta_0(x),\ldots,\theta_{l-1}(x)\in\Sigma$ such that $N\models\bigwedge_{k< l}\forall z< b\theta_k(\langle\bar{c}_i,z\rangle)$. Then, $N\models\forall y< b\exists x\leq\max\{\bar{c}_{i-1}\}\bigwedge_{k< l}\forall z\leq y\theta_k(\langle\bar{c}_{i-1},x,z\rangle)$. Since $\{a_j\}_{j< i}$ and $\{c_j\}_{j< i}$ satisfy the desired conditions, we have $M\models\forall y\exists x\leq\max\{\bar{a}_{i-1}\}\bigwedge_{k< l}\forall z\leq y\theta_k(\langle\bar{a}_{i-1},x,z\rangle)$ (note that there is a Σ_n formula which is equivalent to $\exists x\leq\max\{\bar{a}_{i-1}\}\bigwedge_{k< l}\forall z\leq y\theta_k(\langle\bar{a}_{i-1},x,z\rangle)$ over $\mathbb{B}\Sigma_n^0$. Then, by $M\models\mathbb{B}\Sigma_{n+1}^0$, we have $M\models\exists x\leq\max\{\bar{a}_{i-1}\}\bigvee_{k< l}\forall z\leq y\theta_k(\langle\bar{a}_{i-1},x,z\rangle)$. Thus, $M\models\exists x\leq\max\{\bar{a}_{i-1}\}\bigwedge_{k< l}\forall z\theta_k(\langle\bar{a}_{i-1},x,z\rangle)$, which means that p(x) is finitely satisfiable. Take a solution a' of p(x), and define $a_i=a'$. Then $\{a_j\}_{j\leq i}$ and $\{c_j\}_{j\leq i}$ satisfy the desired conditions.

Define a function $f: M \to N$ as $f(a_i) = c_i$. Then, we can easily check that f is the desired embedding.

Note that in the previous proof, we only used $M \models B\Sigma_{n+1}^0$ and $N \models B\Sigma_n^0$.

Theorem 2.3. Let M be a countable recursively saturated model of $B\Sigma_{n+1}$. Then, there exists a self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$ and f is an elementary embedding with respect to Π_n formulas.

Proof. Let M be a countable recursively saturated model of $\mathrm{B}\Sigma_{n+1}$, and let N be a copy of M, i.e., $M \cong N$. Define a recursive type p(x) over M as $p(x) = \{\exists y \theta(y) \to \exists y < x \theta(y) \mid \theta \in \Pi_n\}$. Then, there exists $b \in N$ such that $N \models p(b)$. Define $a = 0 \in M$ and $c = 0 \in N$, then, M, N, a, b, c enjoy the requirements of the previous lemma.

Theorem 2.4. Let \bar{A} be a finite set of unary predicates, and let $M = (M; \bar{A}^M)$ be a countable recursively saturated model of $I\Sigma_1^0$. Then, $M \models B\Sigma_{n+1}^0$ if and only if there exists a self-embedding $f: M \to M$ such that $f(M) \subsetneq_e M$ and f is an elementary embedding with respect to Π_n^A formulas.

Proof. The proof of the forward direction is an easy generalization of the previous lemma and theorem. We will prove the reverse direction by induction on n. Assume that there exists a self-embedding $f: M \to M$ such that $f(M) \subsetneq_e M$ and f is an elementary embedding with respect to

 $\Pi_n^{\bar{A}}$ formulas. By induction hypothesis, we have $M \models \mathrm{B}\Sigma_n^0$. Then, the triple (M,M,f) is a model of $\mathrm{BNS} + \Pi_n^0 \mathrm{TP} + (V^s,V^* \models \mathrm{I}\Sigma_{n-1}^0)$. Thus, we have $M \models \mathrm{B}\Sigma_{n+1}^0$ by Theorem 2.1.

Corollary 2.5. BNS + Π_n^0 TP + $(V^s, V^* \models I\Sigma_{n-1}^0)$ and BNS + Π_n^0 TP + $(V^s, V^* \models B\Sigma_{n+1}^0)$ are conservative extensions of $B\Sigma_{n+1}^0$ (with respect to $\mathcal{L} \cup \bar{A}$ -sentences). In other words, for any $\mathcal{L} \cup \bar{A}$ -sentence φ , the following are equivalent.

- 1. $B\Sigma_{n+1}^0 \vdash \varphi$.
- 2. BNS + Π_n^0 TP + $(V^s, V^* \models I\Sigma_{n-1}^0) \vdash (V^s \models \varphi)$.
- 3. BNS + Π_n^0 TP + $(V^s, V^* \models B\Sigma_{n+1}^0) \vdash (V^s \models \varphi)$.

Proof. We have proved $1 \to 2$ in Theorem 2.1, and $2 \to 3$ is trivial. We will show $\neg 1 \to \neg 3$. Let φ be an $\mathcal{L} \cup \bar{A}$ -sentence such that $B\Sigma_{n+1}^0 \not\vdash \varphi$. Then, there exists a countable model $M_0 \models B\Sigma_{n+1}^0 + \neg \varphi$. We can easily construct an elementary extension $M \supseteq M_0$ such that M is recursively saturated. By the previous lemma, there exists a $\Pi_n^{\bar{A}}$ elementary embedding $f: M \to M$. Then, the triple (M, M, f) is a model of BNS $+\Pi_n^0 TP + (V^s, V^* \models B\Sigma_{n+1}^0) + (V^s \models \neg \varphi)$. Thus, BNS $+\Pi_n^0 TP + (V^s, V^* \models B\Sigma_{n+1}^0) \not\vdash (V^s \models \varphi)$.

Note that the previous corollary implies that $\mathrm{BNS} + \Pi_n^0 \mathrm{TP} + (V^s, V^* \models \mathrm{B}\Sigma_{n+1}^0)$ (as a system of nonstandard second-order arithmetic) is a Π_1^1 conservative extension of $\mathrm{B}\Sigma_{n+1}^0$ as a second-order theory. In fact, $\mathrm{BNS} + \Pi_1^0 \mathrm{TP} + (V^s, V^* \models \mathsf{WKL}_0 + \mathrm{B}\Sigma_2^0)$ is a (full second-order) conservative extension of $\mathrm{WKL}_0 + \mathrm{B}\Sigma_2^0$. In general, it is not known whether $\mathrm{BNS} + \Pi_n^0 \mathrm{TP} + (V^s, V^* \models \mathrm{B}\Sigma_{n+1}^0)$ is a full second-order conservative extension of $\mathrm{B}\Sigma_{n+1}^0$ or not. Tin Lok Wong kindly informed the author that by Theorem B of [15], we have $\mathrm{BNS} + \Pi_n^0 \mathrm{TP}$ is a full second-order conservative extension of $\mathrm{B}\Sigma_n^0$.

3 First jump control and Π_1^0 TP

In this section we will show that several conservation results over $B\Sigma_2^0$ can be proved by combining some well-known first jump control arguments from the recursion theory, such as a version of the finite injury priority argument, with the transfer principle. In a model $\mathfrak{M}=(M,M^*,\mathrm{id}_M)$ of BNS + Π_1^0 TP, we can use methods of nonstandard analysis by considering M as the standard universe and M^* as the nonstandard universe which satisfies the restricted transfer principle.

The following notion of resplendency plays a key role to use our constructions in Subsections 3.1 and 3.2 repeatedly.

Definition 3.1 (Resplendency). Let \mathcal{L}_0 be a first-order language, and let M be an \mathcal{L}_0 -structure. Then, M is said to be *resplendent* if for every $\bar{a} \in M$, for every new unary predicate symbol A and for every $\mathcal{L}_0 \cup \{A\}$ -formula $\psi(\bar{x}, A)$ such that $\text{Th}(M; \mathcal{L}_0 \cup M) \cup \{\psi(\bar{a}, A)\}$ is consistent, M can be expanded into $\mathcal{L}_0 \cup \{A\}$ -structure $(M; A^M)$ such that $(M; A^M) \models \psi(\bar{a}, A)$.

M is said to be *chronically resplendent* if for every $\bar{a} \in M$, for every new unary predicate symbol A and for every $\mathcal{L}_0 \cup \{A\}$ -formula $\psi(\bar{x}, A)$ such that $\mathrm{Th}(M; \mathcal{L}_0 \cup M) \cup \{\psi(\bar{a}, A)\}$ is consistent, M can be expanded into $\mathcal{L}_0 \cup \{A\}$ -structure $(M; A^M)$ such that $(M; A^M) \models \psi(\bar{a}, A)$ and $(M; A^M)$ is resplendent.

Theorem 3.1 (Chronical resplendency and recursive saturation [11, 14]). Let $\mathfrak A$ be a first-order structure with a finite language. Then, the following are equivalent.

- 1. A is recursively saturated.
- 2. A is resplendent.
- 3. A is chronically resplendent.

Proof. See [11, Theorem 15.7, Corollary 15.13] and [14, Propositions 1.9.2, 1.9.3, 1.9.4]. □

We next define the fix notation $\Phi_{e,s}^{\tau}$ to simulate recursive arguments using oracles in nonstandard arithmetic. Let \bar{A} be a finite set of predicates. We fix a universal Π_1^0 formula $\Phi(e,x,\bar{X},Y) \equiv \forall n\Theta(n,x,\bar{X}[n],Y[n]), i.e.$, for any Π_1^0 formula $\varphi(x,\bar{X},Y)$, there exists $e < \omega$ such that $I\Sigma_1^0 \vdash \Phi(e,x,\bar{X},Y) \leftrightarrow \varphi(x,\bar{X},Y)$.

Within $M=(M,\bar{A}^M)\models \mathrm{I}\Sigma_1^0$, given $s,e=(e',a)\in M$ and $\tau\in 2^{< M}$ such that $\mathrm{lh}(\tau)\geq s$, we write $\Phi_{e,s}^{\bar{A},\tau}\uparrow$ for $\forall n\leq s\Theta(e',a,\bar{A}^M[n],\tau\uparrow n)$, and we write $\Phi_{e,s}^{\bar{A},\tau}\downarrow$ for $\neg(\Phi_{e,s}^{\bar{A},\tau}\uparrow)$. We often omit \bar{A} and write $\Phi_{e,s}^{\tau}\uparrow$ if the oracle \bar{A} is fixed. Then, for any Π_1^0 formula $\varphi(x,\bar{X},Y)$ for any $a\in M$ and for any $G^M\subseteq M$, there exists $e'<\omega$ such that $M^G=(M;G^M)\models \varphi(a,\bar{A}^M,G^M)\Leftrightarrow M^G\models \forall s\Phi_{(e',a),s}^{G^M[s]}\uparrow$.

The next lemma shows that controlling the first jump implies controlling Π_1 transfer principle.

Lemma 3.2. Let \bar{A} be a finite set of unary predicates, and let $M = (M, \bar{A}^M)$ and $M^* = (M^*, \bar{A}^{M^*})(\supseteq M)$ be $\mathcal{L} \cup \bar{A}$ structures such that $\mathfrak{M} = (M, M^*, \mathrm{id}_M) \models \mathrm{BNS} + \Pi_1^0\mathrm{TP}$. Let G be a new unary predicate, and let $G^{M^*} \subseteq M^*$, $G^M \subseteq M$ such that $G^M = M \cap G^{M^*}$. Define expansion of M and M^* as $M^G = (M; G^M)$ and $M^{*G} = (M^*; G^{M^*})$. Then, the following are equivalent.

- 1. For any $e \in M$, either $(\exists s \in M \ M^{*G} \models \Phi_{e,s}^{\bar{A},G^{M^{\bullet}}[s]} \downarrow)$ or $(M^{*G} \models \forall s \Phi_{e,s}^{\bar{A},G^{M^{\bullet}}[s]} \uparrow)$ holds.
- 2. $\mathfrak{M}^G = (M^G, M^{*G}, \mathrm{id}_M) \models \mathrm{BNS} + \Pi^0_1 \mathrm{TP}$ as an $\mathcal{L}^* \cup \bar{A} \cup \{G\}$ -structure.

Proof. In this proof, we omit \bar{A} for Φ . The implication $2 \to 1$ is trivial. Note that for any $e \in M$, the assertion $(\exists s \in M \ M^{\star G} \models \Phi_{e,s}^{G^{M^{\star}}[s]} \downarrow)$ is equivalent to $(M^G \models \exists s \Phi_{e,s}^{G^M[s]} \downarrow)$ since $G^{M^{\star}}[s] = G^M[s]$ for any $s \in M$.

To show $1 \to 2$, we only need to show that for any Π_1^0 formula $\forall n \varphi(n, x, \bar{X}, Y)$ and $a \in M$, $M^G \models \forall n \varphi(n, a, \bar{A}^M, G^M)$ implies $M^{*G} \models \forall n \varphi(n, a, \bar{A}^{M^*}, G^{M^*})$. Let $\forall n \varphi(n, x, \bar{X}, Y)$ be a Π_1^0 formula, and let $a \in M$. Then, there exists $e' < \omega$ such that $I\Sigma_1^0 \vdash \forall n \varphi(n, x, \bar{X}, Y) \leftrightarrow \forall s(\Phi_{(e',x),s}^{\bar{X},Y[s]} \uparrow)$. Let $e = (e', a) \in M$. Then $\exists s \in M$ $M^{*G} \models \Phi_{e,s}^{G^{M^*}[s]} \downarrow$ means that $M^G \models \exists n \neg \varphi(n, a, \bar{A}^M, G^M)$, and $M^{*G} \models \forall s\Phi_{e,s}^{G^{M^*}[s]} \uparrow$ means that $M^{*G} \models \forall n \varphi(n, a, \bar{A}^{M^*}, G^{M^*})$. This completes the proof. \square

Finally, we prepare a basic property for Δ_1^0 definable sets.

Lemma 3.3. Let \bar{A} be a finite set of unary predicates. Let $M=(M;\bar{A}^M)$ be a model of $B\Sigma_n^0$, and let $B^M\in \Delta_1^0(M,\bar{A}^M)$. Then, $(M;\bar{A}^M\cup\{B^M\})$ is a model of $B\Sigma_n^0$. Moreover, if $M=(M;\bar{A}^M)$ is recursively saturated, then $(M;\bar{A}^M\cup\{B^M\})$ is recursively saturated.

Proof. We can easily show that for any $\Sigma_1^{\bar{A} \cup \{B\}}$ formula φ , there exists a $\Sigma_1^{\bar{A}}$ formula ψ such that $(M; \bar{A}^M \cup \{B^M\}) \models \varphi \leftrightarrow \psi$.

3.1 Conservation proof for WKL

In this part, we will prove that $WKL_0 + B\Sigma_2^0$ is a Π_1^1 conservative extension of $RCA_0 + B\Sigma_2^0$. We will combine the proof of the low basis theorem for binary trees with the previous nonstandard arguments.

Lemma 3.4. Let \bar{A} be a finite set of unary predicates. Let $M=(M;\bar{A}^M)$ be a countable recursively saturated model of $B\Sigma_2^0$ and let $T\in \bar{A}^M$ be an infinite binary tree in M. Then, there exists $G\subseteq M$ such that $(M;\bar{A}\cup \{G\})$ is recursively saturated and

(†)
$$(M; \bar{A}^M \cup \{G\}) \models B\Sigma_2^0 + (G \text{ is a path of } T).$$

Proof. By Theorem 3.1, if we find $G^M \subseteq M$ which satisfies (†), then we can redefine G such that $(M; \bar{A}^M \cup \{G\})$ is recursively saturated and G satisfies (†) again. Thus, we only need to construct $G^M \subseteq M$ which satisfies (†).

By Theorem 2.4, take a $\Pi_1^{\bar{A}}$ -elementary end extension $M^* = (M^*; \bar{A}^{M^*}) \models \mathrm{I}\Sigma_1^0$ of M. Then, $\mathfrak{M} = (M, M^*, \mathrm{id}_M) \models \mathrm{BNS} + \Pi_1^0\mathrm{TP}$. We write T^* for a set $\{a \in M^* \mid M^* \models a \in A_T\}$ where $A_T \in \bar{A}$ such that $T = A_T^M$. We will imitate the first jump control construction to take a path of T^* which is low within $\mathcal{M}^* = (M^*, \Delta_1^0(M^*; \bar{A}^{M^*})) \models \mathrm{RCA}_0$. In \mathcal{M}^* , we can construct a sequence $\langle \eta(e,s) \in 2 \mid e < s, s \in M^* \rangle$ which satisfies the following:

For any s,

- if there exists e < s such that

$$\eta(e,s) = 0 \land \neg(\exists \tau \in T^* \mid \tau \mid = s \land \forall i \le e(\eta(i,s) = 0 \to \Phi_{i,s}^{\tau} \uparrow)), \tag{1}$$

then, $e_0 = \min\{e < s \mid e \text{ satisfies } (1)\}$ and

$$\eta(i,s+1) = egin{cases} \eta(i,s) & i < e_0 \ 1 & i = e_0 \ 0 & e_0 < i \leq s, \end{cases}$$

- otherwise,

$$\eta(i,s+1) = egin{cases} \eta(i,s) & i < s \ 0 & i = s. \end{cases}$$

Let $\eta_s^e := \langle \eta(i,s) \mid i \leq e \rangle \in 2^{e+1}$, and let $I_e := \{ \eta \in 2^{e+1} \mid \exists s \in M^* \eta = \eta_s^e \}$. Define $\bar{\eta}^e := \max I_e$ as the lexicographic order on I_e , and $s_e := \min \{ s \in M^* \mid \eta_s^e = \bar{\eta}^e \}$. Then, by $\Pi_1^0 \text{TP}$, $e \in M$ implies $s_e \in M$ since $\bar{\eta}^e \in M$ and $(\exists s \ \eta_s^e = \bar{\eta}^e)$ can be expressed by a $\Sigma_1^{\bar{A}}$ formula within M^* . We can easily check the following:

- $i \leq j$ implies $s_i \leq s_j$ and $\bar{\eta}^i \subseteq \bar{\eta}^j$.
- $s_e \le t$ implies $\bar{\eta}^e = \eta_t^e$.
- $T^e = \{ \tau \in T^* \mid \forall i \leq e(\eta(i, s_e) = 0 \rightarrow \Phi^{\tau}_{i, |\tau|} \uparrow) \}$ is infinite as a subset of M^* .
- $i \leq j$ implies $T_i \subseteq T_j$.
- If $\eta(e, s_e) = 1$, $\tau \in T_e$ and $|\tau| > s_e$, then $\Phi_{e, s_e}^{\tau \upharpoonright s_e} \downarrow$.

Let $\alpha \in M^* \setminus M$. By Harrington's forcing argument for \mathcal{M}^* , there exists $G^{M^*} \subseteq M^*$ such that $(M^*; \bar{A}^{M^*} \cup \{G^{M^*}\}) \models \mathrm{I}\Sigma^0_1$ and G^{M^*} is a path of T^{α} . Define $G^M := G^{M^*} \cap M$, and define $\mathcal{L} \cup \bar{A} \cup \{G\}$ -structures M^G and M^{*G} as $M^G = (M; \bar{A}^M \cup \{G^M\})$ and $M^{*G} = (M^*; \bar{A}^{M^*} \cup \{G^{M^*}\})$. Then, for any $n \in M$, we have $G^M[n] = G^{M^*}[n]$ which is in $T^{\alpha} \cap M \subseteq T$. Thus, G^M is a path of T.

Finally, we show that $\mathfrak{M}^G = (M^G, M^{*G}, \mathrm{id}_M) \models \Pi_1^0\mathrm{TP}$, which implies $(M; \bar{A}^M \cup \{G^M\}) \models \mathrm{B}\Sigma_2^0$ by Theorem 2.1. Note that for any $e \in M$ and for any $n \in M^*$, we have $G^{M^*}[n] \in T_e$ since $\alpha > s_e \in M$ and $T_\alpha \subseteq T_e$. Then, for any $e \in M$, we have $\Phi_{e,s_e}^{G^{M^*}[s_e]} \downarrow$ if $\eta(e, s_e) = 1$, and we have $\Phi_{e,s}^{G^{M^*}[s]} \uparrow$ for any $s \in M^*$ if $\eta(e, s_e) = 0$. Thus, by Lemma 3.2, we have $\mathfrak{M}^G = (M^G, M^{*G}, \mathrm{id}_M) \models \Pi_1^0\mathrm{TP}$. This completes the proof.

Theorem 3.5. WKL₀ + B Σ_2^0 is a Π_1^1 conservative extension of RCA₀ + B Σ_2^0 .

Proof. Let $\varphi(X)$ be an arithmetical formula such that $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 \not\vdash \forall X\varphi(X)$. Then there exists a countable recursively saturated model (M,S) and $A_0 \in S$ such that $(M,S) \models \mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \neg \varphi(A_0)$. Starting from a first-order countable recursively saturated model $(M;A_0)$, we use Lemma 3.3 and Lemma 3.4 ω -times and construct a sequence $\{A_i \subseteq M\}_{i<\omega}$ such that for each $N < \omega$, $(M; \{A_i\}_{i< N})$ is recursively saturated and satisfies $\mathsf{B}\Sigma_2^0$ and $(M, \{A_i\}_{i<\omega}) \models \mathsf{WKL}_0$. Then, we have $(M, \{A_i\}_{i<\omega}) \models \mathsf{WKL}_0 + \mathsf{B}\Sigma_2^0 + \neg \varphi(A_0)$, which means that $\mathsf{WKL}_0 + \mathsf{B}\Sigma_2^0 \not\vdash \forall X\varphi(X)$. \square

3.2 Conservation proof for COH

In this part, we will prove that $RCA_0 + COH + B\Sigma_2^0$ is a Π_1^1 conservative extension of $RCA_0 + B\Sigma_2^0$. For this, we will imitate the first jump control construction for a low₂ cohesive set in [1] with the nonstandard arguments. (Jockusch and Stephan first constructed a low₂ cohesive set in [9]. See also [10].)

We first define the notion of cohesiveness. Let $R \subseteq M$ and $M = (M; R) \models I\Sigma_1^0$. For $i \in M$, define $R_i = \{x \in M \mid (x, i) \in R\}$. For $X, Y \subseteq M$, we write $X \subseteq_{al} Y$ if $M \models \exists x \ \forall y \ge x (y \in X \rightarrow y \in Y)$. Then, $G \subseteq M$ is said to be R-cohesive if $M \models \forall i (G \subseteq_{al} R_i \lor G \subseteq_{al} R_i^c)$. The axiom COH of second-order arithmetic asserts that $\forall X \exists Y (Y \text{ is } X\text{-cohesive})$.

Lemma 3.6. Let \bar{A} be a finite set of unary predicates. Let $M=(M;\bar{A}^M)$ be a countable recursively saturated model of $B\Sigma_2^0$ and let $R\in \bar{A}^M$. Then, there exists $G\subseteq M$ such that $(M;\bar{A}\cup \{G\})$ is recursively saturated and

(†)
$$(M; \bar{A}^M \cup \{G\}) \models B\Sigma_2^0 + (G \text{ is } R\text{-cohesive}).$$

Proof. By Theorem 3.1, if we find $G^M \subseteq M$ which enjoys (†), then we can redefine G such that $(M; \bar{A}^M \cup \{G\})$ is recursively saturated and G enjoys (†) again. Thus, we only need to construct $G^M \subseteq M$ which enjoys (†).

By Theorem 2.4, take a $\Pi_1^{\bar{A}}$ -elementary end extension $(M^*; \bar{A}^{M^*}) \models I\Sigma_1^0$ of M. Then, $\mathfrak{M} = (M, M^*, \mathrm{id}_M) \models \mathrm{BNS} + \Pi_1^0\mathrm{TP}$. We write R^* for a set $\{a \in M^* \mid M^* \models a \in A_R\}$ where $A_R \in \bar{A}$ such that $R = A_R^M$. Note that $R_i = M \cap R_i^*$ for any $i \in M$. Take $\alpha \in M^* \setminus M$, and define a sequence $\sigma \in 2^{\alpha}$ as $\sigma(i) = 1 \leftrightarrow \alpha \in R_i^*$. For $\rho \in 2^{\leq \alpha}$, define R_o^* as

$$R_{\rho}^* = \left(\bigcap_{\rho(i)=1, i < |\rho|} R_i^*\right) \cap \left(\bigcap_{\rho(i)=0, i < |\rho|} R_i^{*c}\right).$$

Then, for any $n \in M$, $R_{\sigma \upharpoonright n} = R_{\sigma \upharpoonright n}^* \cap M$ is unbounded in M. This can be proved by $\alpha \in R_{\sigma \upharpoonright n}^*$ and $\Pi_1^0 \text{TP}$. We will do the first jump control construction using a nonstandard oracle σ to take an R-cohesive set within $\mathcal{M}^* = (M^*, \Delta_1^0(M^*; \bar{A}^{M^*})) \models \text{RCA}_0$. The idea of the following construction is essentially due to Theorem 4.3 of [1].

For $\tau \in 2^{< M^*}$, define $\operatorname{card}(\tau) := \operatorname{card}(\{i < |\tau| \mid \tau(i) = 1\})$. For $\tau, \tau' \in 2^{< M^*}$ and $X \subseteq M^*$, we write $\tau' \in (\tau, X)$ if $\tau' \subseteq \tau$ or $\tau' \supseteq \tau \wedge \forall i < |\tau'|(\tau'(i) = 0 \vee i < |\tau| \vee i \in X)$. In \mathcal{M}^* , we construct sequences $\langle \eta(e, s) \in 3 \mid e < s, s \in M^* \rangle$ and $\langle \tau(e, s) \in 2^{< s} \mid e < s, s \in M^* \rangle$ as follows:

- (††) Let $\tau(-1,0) = \langle \rangle$. For each s, we do one of the following.
 - (I) If there exists $e < \min\{s, |\sigma|\}$ such that

$$\eta(e,s) = 1 \land \forall e' < e \ \eta(e',s) \neq 0 \land \exists \tau \in (\tau(e,s), R^*_{\sigma \upharpoonright e+1}) (|\tau| \leq s \land \Phi^{\tau}_{e,|\tau|} \downarrow), \tag{2}$$

then, let $e_0 = \min\{e < s \mid e \text{ satisfies } (2)\}, \ \tau_0 = \min\{\tau \in (\tau(e,s), R^*_{\sigma \upharpoonright e+1}) \mid \Phi^{\tau}_{e,s} \downarrow\}$ and define

$$\eta(i,s+1) = egin{cases} \eta(i,s) & i < e_0 \ 2 & i = e_0 \ 0 & e_0 < i \leq s, \end{cases} \hspace{0.5cm} au(i,s+1) = egin{cases} au(i,s) & i < e_0 \ au_0 & e_0 \leq i \leq s. \end{cases}$$

(II) If (I) is false case and there exists $e < \min\{s, |\sigma|\}$ such that

$$\eta(e,s) = 0 \land \forall e' < e \ \eta(e',s) \neq 0 \land \exists \tau \in (\tau(e,s), R^*_{\sigma(e+1)})(|\tau| \leq s \land \operatorname{card}(\tau) \geq e), \quad (3)$$

then, let $e_0 = \min\{e < s \mid e \text{ satisfies (3)}\}, \ \tau_0 = \min\{\tau \in (\tau(e, s), R^*_{\sigma \restriction e + 1}) \mid \operatorname{card}(\tau) \geq e\}$ and define

$$\eta(i,s+1) = egin{cases} \eta(i,s) & i < e_0 \ 1 & i = e_0 \ 0 & e_0 < i \leq s, \end{cases} \qquad au(i,s+1) = egin{cases} au(i,s) & i < e_0 \ au_0 & e_0 \leq i \leq s. \end{cases}$$

(III) Otherwise, we define

$$\eta(i,s+1) = egin{cases} \eta(i,s) & i < s \ 0 & i = s, \end{cases} \qquad au(i,s+1) = egin{cases} au(i,s) & i < s \ au(s-1,s) & e_0 \leq i \leq s. \end{cases}$$

Let $\eta_s^e := \langle \eta(i,s) \mid i \leq e \rangle \in 3^{e+1}$, and let $I_e := \{ \eta \in 3^{e+1} \mid \exists s \in M^* \eta = \eta_s^e \}$. Define $\bar{\eta}^e := \max I_e$ as the lexicographic order on I_e , $s_e := \min \{ s \in M^* \mid \eta_s^e = \bar{\eta}^e \}$, and $\bar{\tau}^e := \tau(e, s_e)$.

We will show that $e \in M$ implies $s_e \in M$. Fix ${}^*e \in M$. Define ${}^*\sigma = \sigma \upharpoonright {}^*e + 1 \in M$, and do the construction (††) by replacing σ with ${}^*\sigma$. Let ${}^*\eta(i,s), {}^*\tau(i,s), {}^*s_i, \ldots$ be the results of this construction. By $I\Sigma_0^0$ in \mathcal{M}^* , we can easily show that $\forall i \leq {}^*e(\eta(i,s) = {}^*\eta(i,s) \wedge \tau(i,s) = {}^*\tau(i,s))$ for any $s \in M^*$. Thus, for $i \leq {}^*e$, we have ${}^*s_i = \min\{s \in M^* \mid {}^*\eta_s^i = {}^*\bar{\eta}^i = \bar{\eta}^i\} = s_i$. Then, by $\Pi_1^0 TP$, $s_i = {}^*s_i \in M$ for $i \leq {}^*e$ since " $\exists s {}^*\eta_s^i = {}^*\bar{\eta}^i$ " can be expressed by a $\Sigma_1^{\bar{A}}$ formula within M^* .

We can easily check the following:

- $|\bar{\tau}^e| \leq s_e$
- $i \leq j$ implies $s_i \leq s_j$, $\bar{\eta}^i \subseteq \bar{\eta}^j$ and $\bar{\tau}^j \subseteq \bar{\tau}^j$.

- $s_e \leq t$ implies $\bar{\eta}^e = \eta_t^e$ and $\bar{\tau}^e = \tau(e, t)$.
- If $\eta(e, s_e) \geq 1$, then $\operatorname{card}(\bar{\tau}^e) \geq e$.
- If $\eta(e, s_e) = 2$ and $i \ge e$, then $\Phi_{e,s_e}^{\bar{\tau}^i \upharpoonright s_e} \downarrow$.
- If $\eta(e, s_e) = 1$, then $\forall \tau' \in (\bar{\tau}^e, R^*_{\sigma \upharpoonright e+1}) \Phi^{\tau'}_{e, |\tau'|} \uparrow$.

Let $\beta = \min\{e \mid \eta(e, s_e) = 0\} \cup \{\alpha\}$. We will show that $\beta \in M^* \setminus M$ by way of contradiction. Assume $\beta \in M$. Then, we have $|\bar{\tau}^{\beta}| \leq s_{\beta} \in M$, $\operatorname{card}(\bar{\tau}^{\beta}) \geq \operatorname{card}(\bar{\tau}^{\beta-1}) \geq \beta - 1$, and $\forall \tau' \in (\bar{\tau}^{\beta}, R^*_{\sigma \upharpoonright \beta + 1}) \operatorname{card}(\tau') < \beta$. Therefore, for any $n \in R^*_{\sigma \upharpoonright \beta + 1}$, we have $n \leq s_{\beta}$. This contradicts the fact that $M \cap R^*_{\sigma \upharpoonright \beta + 1}$ is unbounded in M.

Finally, we will define $\mathcal{L} \cup \bar{A} \cup \{G\}$ -structures $M^G = (M; \bar{A}^M \cup \{G^M\})$ and $M^{*G} = (M^*; \bar{A}^{M^*} \cup \{G^{M^*}\})$, and show that G^M is R-cohesive and $\mathfrak{M}^G = (M^G, M^{*G}, \mathrm{id}_M) \models \Pi_1^0 \mathrm{TP}$. Let $G^{M^*} = \{n \in M^* \mid n < |\bar{\tau}^\beta| \land \bar{\tau}^\beta(n) = 1\}$, and let $G^M = G^{M^*} \cap M$. Then, G^M is unbounded in M since $G^M[s_e] \supseteq \bar{\tau}^e$ and $\mathrm{card}(\bar{\tau}^e) \ge e$ for any $e \in M$. For any $e \in M$ and for any $e \in M^*$ such that $e \in M$ and for any $e \in M$ and for any $e \in M$ such that $e \in M$ and $e \in M$ and we also have $e \in M$. This means that $e \in M$ is $e \in M$ and we also have $e \in M$. Then, $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ such that $e \in M$ and $e \in M$ such that $e \in M$ such that $e \in M$ and $e \in M$ such that $e \in M$ su

Theorem 3.7. $RCA_0 + COH + B\Sigma_2^0$ is a Π_1^1 conservative extension of $RCA_0 + B\Sigma_2^0$.

Proof. Let $\varphi(X)$ be an arithmetical formula such that $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 \not\vdash \forall X\varphi(X)$. Then there exists a countable recursively saturated model (M,S) and $A_0 \in S$ such that $(M,S) \models \mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \neg \varphi(A_0)$. Starting from a first-order countable recursively saturated model $(M;A_0)$, we use Lemma 3.3 and Lemma 3.6 ω -times and construct a sequence $\{A_i \subseteq M\}_{i<\omega}$ such that for each $N < \omega$, $(M; \{A_i\}_{i< N})$ is recursively saturated and satisfies $\mathsf{B}\Sigma_2^0$ and $(M, \{A_i\}_{i<\omega}) \models \mathsf{RCA}_0 + \mathsf{COH}$. Then, we have $(M, \{A_i\}_{i<\omega}) \models \mathsf{RCA}_0 + \mathsf{COH} + \mathsf{B}\Sigma_2^0 \not\vdash \forall X\varphi(X)$.

Acknowledgments

The author would like to thank Dr. Sam Sanders and Dr. Tin Lok Wong for useful comments. This work was supported by Grant-in-Aid for Young Scientists (B) 21740061.

References

- [1] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. *Journal of Symbolic Logic*, 66(1):1–55, 2001.
- [2] C. T. Chong, Theodore A. Slaman, and Yue Yang. Π_1^1 -conservation of combinatorial principles weaker than Ramsey's theorem for pairs. to appear.
- [3] Damir D. Dzhafarov and Jeffry L. Hirst. The polarized Ramsey's theorem. Archive for Mathematical Logic, 48(2):141-157, 2009.

- [4] Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arithmetic. Springer-Verlag, Berlin, 1993. XIV+460 pages.
- [5] Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles weaker than Ramsey's theorem for pairs. *Journal of Symbolic Logic*, 72(1):171–206, 2007.
- [6] Denis R. Hirschfeldt, Richard A. Shore, and Theodore A. Slaman. The atomic model theorem and type omitting. *Transactions of the American Mathematical Society*, 361(11), 2009.
- [7] Joram Hirshfeld. Nonstandard combinatorics. Studia Logica, 47(3):221-232, 1988.
- [8] Chris Impens and Sam Sanders. Transfer and a supremum principle for ERNA. *Journal of Symbolic Logic*, 73(2):689–710, June 2008.
- [9] Carl Jockusch and Frank Stephan. A Cohesive Set which is not High. *Mathematical Logic Quarterly*, 39:515–530, 1993.
- [10] Carl Jockusch and Frank Stephan. Correction to "A Cohesive Set which is not High". *Mathematical Logic Quarterly*, 43:569, 1997.
- [11] Richard Kaye. *Models of Peano Arithmetic*. Oxford Logic Guides, 15. Oxford University Press, 1991. x+292 pages.
- [12] H. Jerome Keisler. Nonstandard arithmetic and reverse mathematics. *The Bulletin of Symbolic Logic*, 12(1):100–125, 2006.
- [13] H. Jerome Keisler. Nonstandard arithmetic and recursive comprehension. *Annals of Pure and Applied Logic*, 161(8):1047–1062, 2010.
- [14] Roman Kossak and James H. Schmerl. The structure of models of Peano arithmetic. Oxford Logic Guides, 50. Oxford University Press, Oxford, 2006. xiv+311 pages.
- [15] J. B. Paris and L. A. S. Kirby. Σ_n -collection schemas in arithmetic. In Logic Colloquium '77 (Proc. Conf., Wroclaw, 1977), volume 96 of Stud. Logic Foundations Math., 1978.
- [16] Nobuyuki Sakamoto and Keita Yokoyama. The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic. Archive for Mathematical Logic, 46:465–480, July 2007.
- [17] Sam Sanders. ERNA and Friedman's reverse mathematics. to appear in *Journal of Symbolic Logic*.
- [18] Richard A. Shore. Reverse mathematics: the playground of logic. Bulletin of Symbolic Logic, 16(3):378-402, 2010.
- [19] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer-Verlag, 1999. XIV+445 pages; Second Edition, Perspectives in Logic, Association for Symbolic Logic, Cambridge University Press, 2009, XVI+444 pages.
- [20] Keita Yokoyama. Reverse mathematics for non-standard analysis. preprint.
- [21] Keita Yokoyama. Non-standard analysis in ACA₀ and Riemann mapping theorem. *Mathematical Logic Quarterly*, 53(2):132–146, April 2007.

- [22] Keita Yokoyama. Standard and Non-standard Analysis in Second Order Arithmetic. Doctoral thesis, Tohoku University, December 2007. available as Tohoku Mathematical Publications 34, 2009.
- [23] Keita Yokoyama. Formalizing non-standard arguments in second order arithmetic. *Journal of Symbolic Logic*, 75(4):1199–1210, December 2010.