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Nonstandard arguments and recursive arguments

Keita Yokoyama*
(Mathematical Institute, Tohoku University)

Abstract

We give a new nonstandard method for conservation proofs over BE3 using a combination
of recursion theory and nonstandard analysis.

1 Introduction

Techniques from nonstandard analysis play an important role in Reverse Mathematics. In [12, 13],
Keisler gives nonstandard characterizations for the big five subsystems of second-order arithmetic.
In [16, 20, 21, 22|, several nonstandard techniques for analysis in second-order arithmetic are
developed, and in (8, 17}, Impens and Sanders show that several theorems of nonstandard analysis
are equivalent to the II;-transfer principle. Also, combinatorics is an important topic in Reverse
Mathematics (see, e.g., [18, 19]). Especially, Ramsey’s theorem for pairs (RT2) plays an important
role in Reverse Mathematics as an intermediate axiom between RCAg and ACAq. There are many
theorems of combinatorics and model theory that are provable from RT3 (see, e.g., [3, 5, 6]). Thus,
determining the exact strength of RT3 is very important. It is well-known that RT?2 implies BxY.
On the other hand, Cholak, Jockusch and Slaman ([1]) show that RCAq + RT3 + IX9 is a IT1-
conservative extension of RCAg + IZ3, i.e., the first-order part of RT?2 is not stronger than I29.
Then, the question arises: is RCAg + RT3 + BX a IT}-conservative extension of RCAq + BEY?
A partial answer to this question is given by Slaman, Chong and Yang ([2]). They showed that
RCA, + COH + BZJ, RCAq + ADS + BE and RCAq + CAC + B are IT}-conservative extensions
of RCAq + BE). Here, COH, ADS and CAC are all combinatorial principles weaker than RT2.

In this paper, we will introduce a new approach for conservation proofs over BE9. We will show
how to use recursion-theoretic arguments within nonstandard arithmetic and give new proofs of
the conservation theorems for WKL and COH over RCAg + BX§ (see [4] and [2] for the original
proofs, respectively). It is well-known that the nonstandard approach works well for combinatorics
(see, e.g., [7]). For Ramsey’s theorem, the nonstandard proof of ACAy implies RT(k) is known
(14, Theorem 2.2.16]. This proof can be formalized in the system of non-standard second-order
arithmetic corresponding to ACAg introduced in [23]. In this proof, the I19-transfer principle is the
key element. In the nonstandard arithmetic, the I19-transfer principle is conservative over BX9,
and this fact plays a key role for the conservation proofs in this paper.

Nonstandard arithmetic

Let £ be the language of first-order arithmetic, and let £, be the language of second-order arith-
metic. For a finite set of unary predicates A, an £ U A-structure is a pair M = (M; AM)
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where AM C M for any A € A. Let L£* be the language of nonstandard arithmetic, i.e.,
L* = LU{V®,V* /} where V5 and V* are unary predicate symbols denoting the standard and
nonstandard universe respectively, and 4/ is a function symbol denoting the embedding from the
standard universe into the nonstandard universe. An £* U A structure is a triple M = (M, M*, /)
such that M = ({z | M=z € V°}; AM) and M* = ({z | M =z € V*}; AM") are LU A-structures
and 4/ is a mapping from M to M*. We usually use the identification M = /(M) C M*, i.e.,
identify a € M with /(a) € M*.

An LU A-structure M is said to be a model of IZ0 (resp. BEY) if (M, AM) |= I (resp. BE?)
as a second order structure. In other words, (M; A) satisfies the induction axioms (resp. bounding
axioms) for Ef formulas.

Definition 1.1. For a finite set of unary predicates A, we define axioms for £* U A as follows:
e BNS consists of the following:

— 4/ is an embedding (with respect to +, x, A-structures) from V* to V*,
— V* is an end extension of /(V®),
— Vs =189 and V* = IX9.

o IIOTP: VI € VS(V® = (%, A) & V* |= (%, A)) for any ¢ € [T formulas.

Note that we can easily show that BNS implies IIJTP.

2 BX3 and INTP

In this section, we prove that BNS + II{TP is a (first-order) conservative extension of BXJ. To
prove this, we use a version of Friedman’s self-embedding theorem.

From now on, we identify an LU A formula ¢ with an £*U A formula ¢®, where ¢® is a formula
constructed by replacing Vz (resp. 3z) in ¢ into Vz € V*® (resp. Iz € V3).

Theorem 2.1. Let n > 1. Then, BNS + II2TP + (V=,V* |= 1L _,) proves BEY,,. In other
words, for any finite set of unary predicates A, if M = (M; AM) and M* = (M*; AM") are models
of IX0 | such that M* is an elementary end extension of M with respect to Hf formulas, then M
is a model of BEY , ;.

Proof. This proof is essentially due to Theorem B of [15]. Let M = (M; AM) and M* = (M*; AM")
are models of BX.2 such that M* is an elementary end extension of M with respect to Hf formulas.
Let 6(z,y) = Vz6p(z,y,z) be a [I2 formula, and let @ € M such that M k= Vz < aJyf(z,y).
We will show that there exists b € M such that M | Vz < a3y < bf(z,y). By I2TP, for
any ¢ € M*\ M, we have M* |= Vz < a3y < cf(z,y). Take d € M*\ M. Then, for any
c € M*\ M, we have M* = Vz < a3y < ¢Vz < dbp(z,y,z). Then, there exists b € M such
that M* = Vz < a3y < bVz < dby(z,y, z) by underspill for Z;‘f”l formula, which is available from
M* EI28_,. (Note that Yz < a3y < bVz < dy(z,y,2) is equivalent to a Z‘f_l formula since
M* =129_,.) Thus, we have M |= Vz < a3y < bf(x,y). This means that M satisfies BII9, which

is equivalent to BXY ;. 0O

The following lemma is a modification of a version of Friedman’s self-embedding theorem. See
also {11, page 166, Exercise 12.2]
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Lemma 2.2. Let M and N be countable recursively saturated models of BES ,, such that SSy(M) =
SSy(N). Let a € M and b,c € N such that M |= Jxy(z,a) implies N |= 3z < by(z,c) for any I,
formulas y(x,y). Then, there exists an embedding f : M — N such that f(M) Ce N, f(M) < b,
f(a) = c and f is an elementary embedding with respect to Il,, formulas.

Proof. We will construct sequences {a;}i<w, = M and {¢; }icw Ce N<p such that ag = a, cp = cand
M = 3zy(z,d;) implies N |= 3z < by(z, &) for any II,, formulas by a back and forth argument,
where @; = (ao,...,a;) and & = (co,...,¢;). We fix enumerations M = {px}rew and N = {gx }kew
such that each element of d € N occurs infinitely often in {qx}keu -

Assume that we have already constructed {a;};<i and {¢;};<; which satisfy the desired condi-
tions. If i = 2k + 1, put a; = px. By recursive saturation, there exists a € M such that for any
0(z) € I1,, [6(z)] € code(a) < 320({&;, z)). Since SSy(M) = SSy(N), there exists B € N such
that SSy(a) = SSy(B). Then, q(y) = {[6(z)] € code(B) — 320((¢i-1,y,2)) Ay < b| 8(z) € 1.} is
a recursive type over N (we can easily check that g(y) is finitely satisfiable). Take a solution ¢’ of
q(y), and define ¢; = ¢’. Then {a;};<i and {c;},<i satisfy the desired conditions.

Ifi = 2k +2 and g > max{&-1}, put ¢; = cp and a; = ap. If i = 2k + 2 and q; <
max{C;—1}, put ¢; = qx. By recursive saturation, there exists 8 € N such that for any 6(z) € &,
[6(z)] € code(B) +» Vz < bO((&,z2)). Since SSy(N) = SSy(M), there exists o € M such that
SSy(B) = SSy(a). Then, p(z) = {[6(z)] € code(a) — V20({(@;-1,z, z)) | 6(z) € £,} is a recursive
type over M. To show that p(x) is finitely satisfiable, let 6y(z),...,0,—1(z) € ¥ such that N |=
AeciVz < bOx((Gi,2)). Then, N |= Vy < b3xr < max{Gi-1} Ap;Vz < y0k((Ci-1,2,2)). Since
{a;}i<i and {c;};<: satisfy the desired conditions, we have M |= Vy3z < max{@i_1} Az, V2 <
Y0x((@i-1,z, 2)) (note that there is a ,, formula which is equivalent to 3z < max{@;_1} A, Vz <
Y0x({thi-1,7, z)) over BE2). Then, by M |= BE, |, we have M = 3z < max{a:—1}Vydy >
Y Arat V2 £ ¥'0k((8i-1,7,2)). Thus, M |= 3z < max{a@;_1} A\, Y20k ({(@i-1, 7, 2)), which means
that p(z) is finitely satisfiable. Take a solution o’ of p(z), and define a; = a’. Then {a;};<; and
{¢j}j<i satisfy the desired conditions.

Define a function f : M — N as f(a;) = ¢;. Then, we can easily check that f is the desired
embedding. a

Note that in the previous proof, we only used M |= BEJ,;, and N |= BE0.

Theorem 2.3. Let M be a countable recursively saturated model of BX,,+1. Then, there exists a
self-embedding f : M — M such that f(M) Ce M and f is an elementary embedding with respect
to I1,, formulas.

Proof. Let M be a countable recursively saturated model of BY, ;;, and let N be a copy of M,
i.e., M = N. Define a recursive type p(z) over M as p(z) = {Iyf(y) — Jy < z6(y) | 6 € I1,,}.
Then, there exists b € N such that N = p(b). Definea =0€ M and c =0 € N, then, M, N,a,b,c
enjoy the requirements of the previous lemma. ]

Theorem 2.4. Let A be a finite set of unary predicates, and let M = (M; AM) be a countable
recursively saturated model of INY. Then, M |= BXY , if and only if there exists a self-embedding
f: M — M such that f(M) Ce M and f is an elementary embedding with respect to I17 formulas.

Proof. The proof of the forward direction is an easy generalization of the previous lemma and
theorem. We will prove the reverse direction by induction on n. Assume that there exists a self-
embedding f : M — M such that f(M) C. M and f is an elementary embedding with respect to



H;f formulas. By induction hypothesis, we have M |= BX2. Then, the triple (M, M, f) is a model
of BNS + IIDTP + (V*,V* =1£%_,). Thus, we have M |= BE, by Theorem 2.1. O

n~1

Corollary 2.5. BNS + IINTP + (V*5,V* |= IS9_;) and BNS + II3TP + (V3,V* |= B2, ;) are
conservative extensions of BES , , (with respect to LU A-sentences). In other words, for any LU A-
sentence p, the following are equivalent.

1. BE2 ., Fo.
2. BNS 4+ IOTP + (V&,V* = I50_ ) - (V5 k= ).
3. BNS + IOTP + (V*,V* = BSY, ) - (V* k= o).

Proof. We have proved 1 — 2 in Theorem 2.1, and 2 — 3 is trivial. We will show =1 — =3.
Let ¢ be an £ U A-sentence such that BX? +1 I/ v. Then, there exists a countable model M, =
BX? . ; + . We can easily construct an elementary extension M 2 My such that M is recursively
saturated. By the previous lemma, there exists a H;‘Li elementary embedding f : M — M. Then,
the triple (M, M, f) is a model of BNS + IISTP + (VS,V* = BE2 ;) + (V5 = —p). Thus,
BNS + II9TP + (V*,V* |= B2 1) I (VS k= o). O

Note that the previous corollary implies that BNS+IISTP+ (V®,V* |= BE? ) (as a system of
nonstandard second-order arithmetic) is a I1} conservative extension of BX)  , as a second-order
theory. In fact, BNS + II9TP + (V*,V* = WKLo + BX9) is a (full second-order) conservative
extension of WKLq + BEJ. In general, it is not known whether BNS +II2TP + (V5,V* = BX2 )
is a full second-order conservative extension of B 4+1 or not. Tin Lok Wong kindly informed
the author that by Theorem B of [15], we have BNS + II2TP is a full second-order conservative
extension of BEY.

3 First jump control and TP

In this section we will show that several conservation results over BL9 can be proved by combining
some well-known first jump control arguments from the recursion theory, such as a version of the
finite injury priority argument, with the transfer principle. In a model 9 = (M, M* idps) of
BNS + IIYTP, we can use methods of nonstandard analysis by considering M as the standard
universe and M* as the nonstandard universe which satisfies the restricted transfer principle.

The following notion of resplendency plays a key role to use our constructions in Subsections 3.1
and 3.2 repeatedly.

Definition 3.1 (Resplendency). Let Lo be a first-order language, and let M be an Lgy-structure.
Then, M is said to be resplendent if for every a € M, for every new unary predicate symbol A and
for every Lo U {A}-formula 9(Z, A) such that Th(M; Lo U M) U {¥(a, A)} is consistent, M can be
expanded into Lo U {A}-structure (M; AM) such that (M; AM) = (@, A).

M is said to be chronically resplendent if for every @ € M, for every new unary predicate symbol
A and for every Loy U {A}-formula 9¥(Z, A) such that Th(M; Lo U M) U {(a, A)} is consistent, M
can be expanded into Lo U {A}-structure (M; AM) such that (M; AM) k= (&, A) and (M; AM) is
resplendent.

Theorem 3.1 (Chronical resplendency and recursive saturation [11, 14]). Let 2 be a first-order
structure with a finite language. Then, the following are equivalent.

155



156

1. A is recursively saturated.
2. 2 is resplendent.
3. A is chronically resplendent.
Proof. See [11, Theorem 15.7, Corollary 15.13] and (14, Propositions 1.9.2, 1.9.3, 1.9.4]. O

We next define the fix notation ® ; to simulate recursive arguments using oracles in nonstan-
dard arithmetic. Let A be a finite set of predicates. We fix a universal II{ formula ®(e,z, X,Y) =
YnO(n,z, X[n],Y[n]), i.e., for any I formula (z, X,Y), there exists e < w such that IX9 F
B(e,z,X,Y) & o(z,X,Y).

Within M = (M, AM) | 129, given s,e = (¢/,a) € M and 7 € 2<M such that Ih(7) > s, we
write Qf,’; 1 for Yn < sO(e,a, AM[n),7 | n), and we write <I>§g | for —-(<I>§:f 1). We often omit
A and write @7 ; 1 if the oracle A is fixed. Then, for any II9 formula o(z, X,Y) for any a € M
and for any GM C M, there exists ¢’ < w such that M® = (M;GM) = p(a, AM,GM) & MC
VsBE 05 1

The next lemma shows that controlling the first jump implies controlling IT; transfer principle.

Lemma 3.2. Let A be a finite set of unary predicates, and let M = (M,AM) and M* =
(M*,AM*)(2 M) be LU A structures such that MM = (M, M*,idp) = BNS + [I8TP. Let G
be a new unary predicate, and let GM~ C M*, GM C M such that GM = M N GM". Define
ezpansion of M and M* as M® = (M;GM) and M*C = (M*;GM"). Then, the following are
equivalent.

1. For any e € M, either (3s € M M*C |= <I>§,;GM'["’] 1) or (M*C = Vstbf,;,cwlsl 1) holds.
2. MCE = (MG, M*Cidpr) |= BNS + II{TP as an £L* U AU {G}-structure.

Proof. In this proof, we omit A for ®. The implication 2 — 1 is trivial. Note that for any e € M, the
assertion (Is € M M*C = @Sf""] 1) is equivalent to (M€ = 33@224[3] 1) since GM"[s] = GMs]
for any s € M.

To show 1 — 2, we only need to show that for any I19 formula Vny(n,z,X,Y) and a € M,
M€ = Vnp(n,a, AM,GM) implies M*C |= Ynp(n,a,AM",GM"), Let Ynp(n,z, X,Y) be a 119
formula, and let a € M. Then, there exists ¢’ < w such that I I Ynp(n,z,X,Y) & Vs(d)fz,’,};[)i 1
). Let e = (€’,a) € M. Then 3s € M M*C | ng‘ls] | means that M€ |= 3n-p(n,a, AM GM),
and M*C |= Vs‘bg'::p (s + means that M*C |= Vne(n,a, AM”,GM™). This completes the proof. O

Finally, we prepare a basic property for A definable sets.

Lemma 3.3. Let A be a finite set of unary predicates. Let M = (M; AM) be a model of BLY, and
let BM ¢ AY(M,AM). Then, (M; AM U {BM}) is a model of BE2. Moreover, if M = (M; AM)
is recursively saturated, then (M; AM U {BM}) is recursively saturated.

Proof. We can easily show that for any E‘fU{B} formula ¢, there exists a Ef formula 7 such that
(M; AMU{BM}) = p > o O



3.1 Conservation proof for WKL

In this part, we will prove that WKLo + BX is a II} conservative extension of RCAg 4+ BX3. We
will combine the proof of the low basis theorem for binary trees with the previous nonstandard
arguments.

Lemma 3.4. Let A be a finite set of unary predicates. Let M = (M; AM) be a countable recursively
saturated model of BEY and let T € AM be an infinite binary tree in M. Then, there exists G C M
such that (M; AU {G}) is recursively saturated and

(1) (M; AM U{G}) = BZ) + (G is a path of T).

Proof. By Theorem 3.1, if we find GM C M which satisfies (1), then we can redefine G such that
(M; AM U {G}) is recursively saturated and G satisfies () again. Thus, we only need to construct
GM C M which satisfies (1).

By Theorem 2.4, take a II{l-elementary end extension M* = (M*; AM") |= IZ9 of M. Then,
M = (M,M*,idy) = BNS + IIITP. We write T* for a set {a € M* | M* |= a € A7} where
Ar € A such that T = Ar™. We will imitate the first jump control construction to take a path of
T* which is low within M* = (M*, AY(M*; AM")) |= RCA,. In M*, we can construct a sequence
(n(e,s) € 2| e < s,s € M*) which satisfies the following:

For any s,
— if there exists e < s such that
n(e,s) =0A-~(37r € T* |7| = s AVi < e(n(i,s) =0 - ®], 1)), 1)
then, ep = min{e < s | e satisfies (1)} and

n(i,s) i<eg

77(2,3+1)= 1 1= €
0 eg<i<s,
— otherwise,
1,8) 1<s
nGi,s+1) = 4709 .
1=S8

Let n¢ := (n(i,s) [ i < e) € 2¢7!, and let I, := {n € 261! | Is € M*n = n¢}. Define 7¢ := max I, as
the lexicographic order on 7, and s, := min{s € M* | n¢ = 7°}. Then, by II9TP, e € M implies
Se € M since 7j° € M and (3s n¢ = 7°) can be expressed by a i formula within M*. We can

easily check the following:
e i < jimplies s; < s; and 7* C 7.

® 3. <t implies 77° = 7.

Te={reT|Vi<e(n(ise) =0~ @7, M} is infinite as a subset of M*.

e i < j implies T; C Tj.

If n(e,se) =1, 7 € Te and |7| > s, then ®7I2e |.
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Let « € M* \ M. By Harrington’s forcing argument for M*, there exists GM~ C M* such
that (M*; AM" U {GM"}) k= 12 and GM’ is a path of T®. Define GM := GM" N M, and define
LUAU{G}-structures MC and M*C as MC = (M; AM U{GM}) and M*C = (M*; AM"U{GM"}).
Then, for any n € M, we have GM[n] = GM"[n] which is in T* N M C T. Thus, GM is a path of
T.

Finally, we show that M = (MY, M*% idy) = I TP, which implies (M; AMU{GM}) |= BL3
by Theorem 2.1. Note that for any e € M and for any n € M*, we have GM~ [n] € T. sincea > s, €
M and T, C T,. Then, for any e € M, we have QSZ (o] 1 if n(e,se) = 1, and we have @Sf.[sl T
for any s € M* if n(e,s.) = 0. Thus, by Lemma 3.2, we have MC = (MG,M"G,idM) = INTP.
This completes the proof. 0

Theorem 3.5. WKLg + BE3 is a II} conservative extension of RCAg + BE3.

Proof. Let ¢(X) be an arithmetical formula such that RCAg + BXJ I/ VXy(X). Then there
exists a countable recursively saturated model (M, S) and Ay € S such that (M,S) = RCAp +
B + —p(Ao). Starting from a first-order countable recursively saturated model (M; Ag), we use
Lemma 3.3 and Lemma 3.4 w-times and construct a sequence {A; C M}, such that for each
N < w, (M;{A;}i<n) is recursively saturated and satisfies BE3 and (M, {4;}i<w) = WKLg. Then,
we have (M, {A;}icu) = WKLo + BEJ + —p(Ag), which means that WKLy + BE§ I/ VX (X). O

3.2 Conservation proof for COH

In this part, we will prove that RCAg + COH + BE] is a I1} conservative extension of RCAg + BX).
For this, we will imitate the first jump control construction for a low; cohesive set in [1] with the
nonstandard arguments. (Jockusch and Stephan first constructed a low, cohesive set in [9]. See
also [10].)

We first define the notion of cohesiveness. Let R C M and M = (M;R) = I£Y. Fori € M,
define R; = {x € M | (z,i) € R}. For X, Y C M, we write X C Yif M Iz Vy > z(ye X —
y €Y). Then, G C M is said to be R-cohesive if M |= Vi(G Ca R; VG Ca R;€). The axiom COH
of second-order arithmetic asserts that VX3Y (Y is X-cohesive).

Lemma 3.6. Let A be a finite set of unary predicates. Let M = (M; AM) be a countable recursively
saturated model of BEY and let R € AM. Then, there exists G C M such that (M; AU {G}) is
recursively saturated and

(1) (M; AM U{G}) = BX3 + (G is R-cohesive).

Proof. By Theorem 3.1, if we find GM C M which enjoys (1), then we can redefine G such that
(M; AM U {G}) is recursively saturated and G enjoys (1) again. Thus, we only need to construct
GM C M which enjoys (1).

By Theorem 2.4, take a [I{l-elementary end extension (M*; AM") |= IX9 of M. Then, M =
(M, M*,idp) = BNS + II9TP. We write R* for a set {a € M* | M* |= a € Ag} where Ap € A
such that R = AgM. Note that R; = M N R} for any i € M. Take & € M* \ M, and define a
sequence 0 € 2* as 0(i) = 1 ¢+ a € R}. For p € 259, define R as

R;:( N R;)n( N R;‘c).
p(1)=1,i<|p| p(i)=0,i<|pl



Then, for any n € M, Rypn = R},
and IIYTP. We will do the first jump control construction using a nonstandard oracle o to take an
R-cohesive set within M* = (M*, AY(M*; AM")) |= RCA,. The idea of the following construction
is essentially due to Theorem 4.3 of [1].

For 7 € 2<M" | define card(7) := card({i < |7| | 7(i) = 1}). For 7,7/ € 2<M" and X C M*, we
write 7’ € (1, X)if ' Cror 7 DT AVi < |7|(7’(i) =0Vi < |r|Vie X). In M*, we construct
sequences (n(e,s) € 3| e < s,s € M*) and (7(e,s) € 2<° | e < 3,5 € M*) as follows:

N M is unbounded in M. This can be proved by a € R*

oln

(t1) Let 7(=1,0) = (). For each s, we do one of the following.
(I) If there exists e < min{s, ||} such that
7)(61 S) =1A Ve’ <e n(e,a S) :/‘é OA3T € (T(ea S), R;[e+1)(IT| S sA ¢2,11'| *L), (2)

then, let ep = min{e < s | e satisfies (2)}, 70 = min{7 € (7(e,s), R}.4,) | ®7 s 4} and
define

1,8) 1<eg
(i, ) 7(i,s) i<eg

n(i,s+1) =<2 i=eg T(i,s+1) = .
T0 eg <1< s.
0 e <1i<s,

(II) If (I) is false case and there exists e < min{s, |o|} such that
n(e,s) =0AVe <en(e,s) #0A3r e (r(e,s), Ryte1)(I7] < sAcard(r) 2 €), (3)

then, let eg = min{e < s | e satisfies (3)}, 7o = min{r € (7(e, s), R},,) | card(r) > e}

and define
1,8) 1<e
) (i) 0 ) 7(i,s) 1<eg
n(i,s+1) =<1 i=eg T(i,s+1) = .
To0 ep<1<s
0 ep <t<s,
(III) Otherwise, we define
1,8) i<s 7(, s 1< 8
n{i,s+1) = (i s) (i, s+ 1) = (irs) .
i=s, T(s—1,5) e <i<s.

Let 7¢ := (n(i,s) | i < e) € 3°*!, and let I, := {n € 3°+! | Is € M*n = n¢}. Define 7° := max I,
as the lexicographic order on I, s, := min{s € M* | n¢ = 77¢}, and 7° := 7(e, Se¢).

We will show that e € M implies s, € M. Fix *¢ € M. Define *c =0 [ *e+1 € M, and
do the construction ({1) by replacing o with *o. Let *7(, s), *7(4,s), *Si,. . . be the results of this
construction. By IX in M*, we can easily show that Vi < *e(n(i, s) = *n(i, s) A 7(4, s) = *7(i, s))
for any s € M*. Thus, for i < *e, we have *s; = min{s € M* | *ni = *i* = 7"} = s;. Then, by
9TP, s; = *s; € M for i < *e since “Is *ni = *7*” can be expressed by a v4 formula within M*.

We can easily check the following:

o |7¢] <se

e i < j implies s; < sj, 7t C % and 77 C 7.
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e s, <t implies 7j¢ = 7¢ and 7¢ = 7(e, t).

o If n(e, se) > 1, then card(7¢) > e.

o If (e, sc) = 2 and i > e, then &7 % |.

o If 7)(e, s¢) = 1, then Vr' € (7%, R}y 1) ©7), 1

Let 8 = min{e | n(e, se) = 0} U {a}. We will show that 8 € M*\ M by way of contradiction.
Assume 8 € M. Then, we have |7#| < sg € M, card(7%) > card(7%-1) > B — 1, and V' €
(78, RZ141) card(r’) < B. Therefore, for any n € R}, ,, we have n < sg. This contradicts the
fact that M N R} 5., is unbounded in M.

Finally, we will define LU AU{G}-structures MS = (M; AMU{GM}) and M*C = (M*; AM" U
{GM"}), and show that GM is R-cohesive and MM = (MC, M*C,idy) k= IOTP. Let GM™ =
{ne M |n< | A7P(n) =1}, and let GM = GM" N M. Then, GM is unbounded in M
since GM[s.] D 7¢ and card(7¢) > e for any e € M. For any e € M and for any t € M* such
that t > s, we have GM"[t] € (7%, R}, ) since 7 € (7¢, R},,,,). This implies MG = GM C,
R;VGM C, R for any e € M. This means that GM is R-cohesive in MC, and we also have
M*C Vs@ec,:r["] 1 for any e € M such that n(e,s.) = 1. On the other hand, if e € M and
n(e, se) = 2, then M*C = vs(cpff 5] 1). Thus, we have S = II9TP by Theorem 3.2, which
implies (M; AM U {GM}) |= BE§ by Theorem 2.1. This completes the proof. O

Theorem 3.7. RCAq + COH + BX) is a IT} conservative extension of RCAg + BEY.

Proof. Let ¢(X) be an arithmetical formula such that RCAg + BXJ If VX@(X). Then there
exists a countable recursively saturated model (M,S) and Ay € S such that (M, S) |= RCAq +
B + —p(Ap). Starting from a first-order countable recursively saturated model (M; Ap), we use
Lemma 3.3 and Lemma 3.6 w-times and construct a sequence {Ai € M}ic., such that for each
N < w, (M;{A;}i<n) is recursively saturated and satisfies BL and (M, {Ai}i<w) E RCAg+COH.
Then, we have (M, {A;}i<.) = RCAg + COH + BX + —p(A), which means that RCAg + COH +
BZI VX o(X). O
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