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NOTATIONS
T, : the Teichmiiller space of curves of genus g with n marked points (29 —2+n > 0)

Cyn : the Teichmiiller curve over T, with the projection 7 : Cy, — T, , which has n
sections Py, ..., P, corresponding to n marked points

Q¢, . (resp. Q) : the sheaf of holomorphic 1-forms on Cy (resp. Tyn)

WCyn/Tym = Qlcg,,, /”*Qng,n : the sheaf of relative differential forms on Cj,

max
Mi= A ROl g, (1= DPL+ -+ Po))
: the determinant line bundle \; on T, (I € N)

For a point s € T,

S := m71(s) a compact smooth curve
S0:= 85— {Py(s),...,Pn(s)}
Py:=Py(s)(p=1,...,n)

Romwg p (=1)(Pi+-- +Pu))ls

=I(S, K& ® Og(P, + - - - + P,)®0"D)

~{meromorphic [ differentials on S with possibly poles of order at most [ — 1 only at the
marked points}



41

§1. The index theorem for the fazﬁily of curves
—Introduction to the Weil-Petersson metric

Pick a basis of local holomorphic sections ¢y, ..., baq)
for Romw§ p (L= 1)(Py+--+Py)), where

d(l):{ g (1=1)
-1)g-1)+{-Dn (I>1).

(64,85 // 6% 0: (6,5 = 1,...,dQ))

the Petersson product, where pgo is the hyperbolic area element on S°.

We set
61 A~ A dayllze = [det({ds, 65)) M2

1 A~ Adapllg = lld1 A+ A dayllze Zso(l)2

(1 >2. For I =1, employ Z(1) in place of Zgo(1) = 0.) Here, Zgo(l) denotes the special
value of Zgo(-) on S° at [ integer.

At — T, is a Hermitian holomorphic line bundle equipped with the Quillen metric
| - llo- Here

Zo(s) =] H — e (s+m)I) )

{7} m=1

is the Selberg Zeta function for S° Re (s) > 1, where v runs over all oriented prim-
itive closed geodesics on S° and L(v) denotes the hyperbolic length of . It extends
meromorphically to the whole plane in s.

In the late 80’s, we have discovered the following important formulas for the curvature
forms of the determinant line bundles with respect to the Quillen metrics.

Theorem 1 (Belavin-Knizhnik+Wolpert(1986)).

612 —6l+1
e (A, || - le) = —12—7r—2—~wwp (n=0).

Theorem 2 (Takhtajan-Zograf (1988, 1991)).

612 — 61+ 1 1
wwp — —Wrz (TL > 0)

a(s - lle) = RN 9

Here, wwp,wrz are the Kihler forms of the Weil-Petersson, the Takhtajan-Zograf metrics
respectively.
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Here remind us of the definitions of the Weil-Petersson and the Takhtajan-Zograf
metrics. By the deformation theory of Kodaira-Spencer and the Hodge theory, for [S?] €
Tg,m

TisojTgpn =~ HB(SO),

where HB(S°) is the space of harmonic Beltrami differentials on S°.

By the Serre duality,

Tiso Ty = Q(SY),
where Q(S°) is the space of holomorphic quadratic differentials on S° with finite the
Petersson-norm, which is dual to HB(S°).

The inner product of the Weil-Petersson metric at TisoT} , is defined to be

(@, Bywp([S°) := /./so ap pso,

where «, 8 are in HB(S°) ~ Tis0Ty .
The inner products of the Takhtajan-Zograf metrics are defined to be

(@ 85(15% = [[ oBE(.2) oo

(p=1,...,n). Here, E,(-,2) is the Eisenstein series associated with the p-th marked point
with index 2. Moreover, we set
n

(@, B)rz([S°) =) _{a, B)5([S°)-

p=1

The Eisenstein series associated with the p-th marked point with index 2 is defined
to be
Ep(2,2):= ) {Im(c;'A(z )}?, for z € H,
A€T,\T'
where H is the upper-half plane, I is a uniformizing Fuchsian group and I, is the parabolic
subgroup associated with the p-th marked point, and o, € PSL(2, R) is a normalizer.

Ey(2z,2) assumes the infinity at the p-th marked point and vanishes at the other marked
points. In addition, the Eisenstein series satisfy

AE,(z,2) = 2E,(z,2),

where A is the negative hyperbolic Laplacian on S°. E,(z,2) is a positive subharmonic
function on S°.

Mod, ,, denotes the mapping class group of curves of genus g with n marked points.
Then the moduli space Mg, of curves of genus g with n marked points is described
as My, = Tgn/Modyn. A and all metrics we defined are compatible with the action of
Mody », thus they all naturally descend down to M, ,, as orbifold line sheaves and orbifold
metrics respectively.

There are several basic results for the second cohomology groups of the moduh spaces
of curves and the Weil-Petersson and the Takhtajan-Zograf Kihler forms.



43

Theorem 3 (Weng (2001)).
We have an isometric decomposition of the determinant line bundle with appropriate

hermitian metrics (29 — 2 +n > 0,n > 0).
2 _ —_
)\l®12 ~ A%,SL 6141 ® AT%?

w 4
ca(Awp) = —g, a(Arz) = Fwrz:

Awp, Arz: the Weil-Petersson line bundle, the Takhtajan-Zograf line bundle respectively.

Theorem 4 (Wolpert (1986), Takhtajan-Zograf (1991)).

For g > 2,
w
H*(M,,2) > Z = ([“5F]),
4
H (Mg, 2) = 2% = ([“5F], [Gura]).
Here, Mg = M,,.

Theorem 5 (Weng (2001), Wolpert (2007), Albin-Rochon (2009)).

For2g—-2+n>0,n>0, .
a(by) = [gwp]-

Here, A, denotes the line bundle associated with the p-th marked point over Ty . wp
denotes the Kdhler form of the Takhtajan-Zograf metric associated with the p-th marked
point.

Theorem 6 (Weng (2001), Wolpert (2007) + Harer).
Forg>2n>0,

H* (Mg, Z) ~ 27!
4

= ([252], 5ol ., [n] )

Let M, denote the Deligne-Mumford compactification of M gn- We have known
the relations of the Lz——cohomo_logy of Mg, with respect to the Weil-Petersson metric
and the second cohomology of My ,,.

Theorem 7 (Saper (1993)).
Forg>1,n=0, L
Hiy)(My,wwe) = H*(M,, R).

Here, the left hand side is the L?—cohomology with respect to the Weil-Petersson metric.

The proof of Theorem 7 is based on the asymptotic behavior of the Weil-Petersson
metric near the boundary of the moduli space which we will review now.
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Consider the asymptotic behavior of the W-P metric and the T-Z metric near the
boundary of M, ,. Here we set

D := M, ,\M,,, : the compactification divisor

Ry € D : a stable curve of genus g with n marked points and k nodes
(we regard the marked points as deleted from the surface.)

Each node ¢; (i = 1,2, ..., k) has a neighborhood
N.,' = {(z,-,w,—) € C2 | lZiI, I’U)z| < l,z,-wi = 0}

R; denotes the smooth surface gotten from R, after cutting and pasting N; under the
relation zw; = t;, |t;| small. Then, D is locally described as {t; - - - t, = 0}.

D has locally the pinching coordinate (t,s) = (t1,...,tk, Sk+1,- - -, S3g—3+n) around
[Ro]. Set o; = 0/0t;, B, = 0/0s, € Tis,6)(Ty,n). We define the Riemannian tensors for the
Weil-Petersson metric

gﬁ(t’ 3) = (a‘i’ aj>WP(t1 3)’

g‘iﬁ(ta S) = <a‘ia:8p,>WP(t) 5))
gp,'v'(t) S) = <:Bu) ﬂu)WP(ta 3)7
(,7=1,2,...,k, p,v=k+1,...,3g—3+n).

Furthermore, we define the Riemannian tensors for the Takhtajan-Zograf metric
hi3(t, s) := (o, a;j)1z(t, s),

hin(t, ) := (o, Bu)T2(t, 5),
huv(ta S) = (:Bu, /BV>TZ(t’ S)a

(h,j=1,2,....;k, yv=k+1,...,3g—3+n).
The following theorem is a pioneering result for the asymptotic behavior of the W-P
metric near the boundary of the moduli space.

Theorem 8 (Masur (1976)). Ast;, s, — 0,

1
1) gs(t,s)=
) 9a(t,s) |t:|2(— log [t:])®
.. 1
i) g;(t,s)=0 ( |t:]t;] (log |t:])3 (log [¢;])3 )
fori,j < k,i# 3,
e s 1
i) 05(t9)= 0 (s )
fOT'i S kal-‘L 2 k+1’
w) Guo(t,s) — guw(0,0) forp,v>k+1.

fori <k,

Recently, we updated Masur’s result by improving Wolpert’s formula for the asymp-
totic of the hyperbolic metric for degenerating Riemann surfaces.
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Theorem 9 (O. and Wolpert (2008)). We can improve iv) in Theorem 8 as follows;

4 kK
iv)’g,w(t,s)=gw<o,s)+i§-§=;aogstin (B (Bt Bia)f),, (0,9)+ O(3 (g} )

ast — 0, foru,v>k+1.

Here, E;1, E; 5 denote a pair of the Fisenstein series with index 2 associated with the i-th
node of the limit surface Ry.

That is, the Takhtajan-Zograf metrics have appeared from degeneration of the Weil-
Petersson metric! On the other hand, we have a result for asymptotics of the Takhtajan-
Zograf metric near the boundary of the moduli space.

Theorem 10 (O.-To-Weng (2008)). As (t,s) — 0, we observe the followings:
i) For any e > 0, there exists a constant Cy . such that

Cre ,
» < k-
hi(t, s) < G log L) fori <k

For any € > 0, there exists a constant Ca such that

C?e .
u <
halts$) 2 TR T og e Ttk

and the node ¢; adjacent to punctures;

i) hg(t.s) = O ( [t4]1t;1(log [t:])2 (og [¢5])° )

fori,j < k,i# j;

P 1
ii1) hig(t,s) = O ( 1t:] (= log |£:])3 )

fori<k,pu>k+1;
w) hup(t,s) — huw(0,0) forp,v>k+1.

Open problems

L.x* Determine Hpy (Mgn,wrz) for general (g, n), originally asked by To and Weng. For
that, we need more informations on precise asymptotics of degenerating Eisenstein series.

2.x Is it possible that the index theorem for punctured surfaces could be derived from the
one for compact surfaces through degeneration? —Bismut-Bost (1990) studied a related
problem.

3.xxx Is the curvature of the Takhtajan-Zograf metric negative?

4 xxx If the answer to the question 3. is YES, study —Ric wrz.
— Recently, K. Liu, X. Sun & S.-T. Yau (2004, 2005, 2008-) find good geometry of the
moduli of curves using —Ric ww p, which we will survey later.

d.xx* Does the Takhtajan-Zograf Kahler form have a global representation formula?

— The Weil-Petersson Kahler form has a global representation formula in terms of the
Fenchel-Nielsen global coordinates, which reveals the symplectic nature of the Te1chmuller
space. (S.A. Wolpert (1982, 1983, 1985))
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§2. Several metrics on the moduli space

We will review properties of other metrics on the moduli space and their relations to
the W-P metric. Two metrics wy,,wg,0n a manifold (orbifold) are called equivalent, if

for a positive constant C'
-1
C w91.-<- Wy -<— Cwyr

Liu-Sun-Yau, McMullen et als. proved that the Teichmiiller space has various equiv-

alent metrics.
McMullen (2000) defined the McMullen metric

= 13

= —i6) 89 Log+

wpys wwp 16 66 Ogl,,’
ly<e

where the sum is taken over primitive short geodesics v on the curve, and €,4 > 0 are
suitable small constants, and Log is a suitably modified logarithmic function.

McMullen (2000) used wys to give an affirmative answer to the conjecture by Gromov
that M, , is Kéhler hyperbolic. Remember the definition of Kahler-hyperbolicity.

(X, g): a Kahler manifold (orbifold).
An n-form a is d(bounded) if o = d for some bounded (n — 1)-form 3.

(X, g) is Kahler hyperbolic if:

1. On the universal cover X, the Kahler form of the pull-back metric § is d(bounded);
2. (X, g) is complete and of finite volume;

3. The sectional curvature of (X, g) is bounded;

4. The injectivity radius of (X,§) is bounded below.

Since the Ricci curvature of the W-P metric is shown to be bounded above by a
negative constant, we can define the Ricci metric

w, := —Ric (wwp).
Moreover, Liu-Sun-Yau (2004) has defined the perturbed Ricci metric
ws := —Ric (wwp) + Cwwp,
where C is a positive constant.

Theorem 11 (McMullen, Liu-Sun-Yau, et als.). We can observe basic properties of the
metrics on the moduli spaces.

® Wwp,wWrz,WMm,wr,ws are Kahler metrics.
® wy,wr,wsz are complete, but wwp,wrz are incomplete on Mgp,.

e The holomorphic sectional, Ricci and scalar curvatures of wwp are bounded from
negative constants.

e The bisectional and sectional curvatures of wwp are negative.
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o The curvature of wwp is not bounded below.

e The holomorphic sectional, the bisectional and the Ricci curvatures of w,,ws are
bounded from above and below.

o For nice C, the holomorphic sectional and the Ricci curvatures of wz are negatively
pinched.

® wy,wr,ws are equivalent each other.

® Wy, wyr,ws have Poincaré growth and thus Mgy, has finite volumes with respect to
those metrics.

o The injectivity radii of Ty, with respect to wyr, wr,ws are bounded from below.

Furthermore, M, , has some other metrics!

By Cheng-Yau, there is a unique complete Kéhler-Einstein metric wgg on Ty,
whose Ricci curvature is —1. The canonical bundle of T , naturally induces the Bergman
metric wp on T, ,. Both wkg,wp are invariant under the action of Modg , thus naturally
descend to the metrics on Mg, denoted by the same symbols.

Here we set
"~ Ap: the disk centered at 0 with radius R in C
Hol(A, B): the space of holomorphic maps from a domain A to a domain B

The Carathéodory and the Kobayashi norms of v € Tjs0T,, are defined to be

lvllc == sup  [|fsvllasbyps
FEHO(Tg m,A1)

2
in —.
FEHOAR,Ty,n),f(0)=[S%),f'(0)=v R
Royden showed that, on Ty ,, the Kobayashi metric coincides with the Teichmiiller
metric. Recently we have

lvllx =

Theorem 12 (Liu-Sun-Yau (2004-5)).
On Mgp, wym,ws, ws,wkE,wp, the Teichmiller-Kobayashi metric and the Carathéodory

metric are all equivalent.
The curvature of wi g is bounded and the injectivity radius of wxp s bounded from below.

The proof of the second statement in Theorem 12 is based on the Kahler-Ricci flow.

Open problems

6.xxx Does the Kobayashi metric gx coincide with the Carathéodory metric go ?
—It is already known that gc < gx in general, and gc = gx on some loci (Kra (1981)).

7.% Give a new proof for the Kéhler hyperbolicity of M, , using other metrics than wys, wp.
—The original proof was much involved with Teichmiiller theory.

8.xx Investigate curvature of wg, wyy.
—There seems to exist less results on them.

9.+ make a better metric on M ,!.
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§3. Applications of metrics to the geometry of the moduli space

We will survey applications of metrics by Liu-Sun-Yau to the geometry of the moduli
space.

Theorem 13 (Liu-Sun-Yau (2008+preprint)). The metrics on the logarithmic cotangent
bundle T3 (log D) over My, induced from wwp,w,,w; are good in the sense of Mum-

ford. Thusg’the Chern forms of those metrics, as currents, are equal to the Chern classes
ofT;—Ag (log D).

Here we will summarize some definitions and remarks needed to state Theorem 13.
For the local pinching coordinates (¢, s) around a nodal curve in D, a local holomorphic
frame of T%d-g (log D) is

)

(thlla Tty %tfadsk-{—l)' v ,dsm)'
On the other hand, the logarithmic tangent bundle ngm(— log D) has a local frame
(i, ,tk(—%,bﬁ,--- , 50 )- Here m = 3g — 3+ n.

We cover a neighborhood of the boundary D by finitely many polydiscs (m = 3g—3+n)
{Us = (A™, (t1, - »tky Ska1s - »Sm)) Jaca Such that Vo = Uy \ D = (A*)F x A™F,
Namely, U, (D = {t1---tx =0}. Set V = Uyeca Va-

On each V,, we have the local Poincaré metric

—1/ Kk dt; AdE; I
_ V-logdtindt ds; A d‘-).
WPa 2 (,;1 |t log t;|? + i:%a o A%

Let 1 be a smooth local p-form defined on V.
e 1) has Poincaré growth if there is a constant C, > 0 depending on 7 such that

p
In(vi, -+, vp)[> < Co [T Iuill2,, for any point z € V, and any v; € T;V,.
i=1 '

e 7 is good if n and dn has Poincaré growth. . B
Let E be a holomorphic vector bundle of rank r on My, and and E = E|p,,.

An Hermitian metric h on E is good in the sense of Mumford if: for all z € V,
assuming z € V,, and all basis (e, ,e,) of E over U,

k 2d
e For some C,d > 0, h;; = h(e;, e;) satisfy |h|, (det h)™" < C’( > log It,;]) ;
i=1

e The local 1-form (Oh - h™1), is good on V.
Recently we found some new aspects of L2— cohomology of several metrics on the
moduli spaces.

Theorem 14 (Liu-Sun-Yau (preprint)).
We can observe

H(*Z)((Mg’ wr )y (Ta,, wwp)) = H*(M,, T;qg(— log D)),

H(02,;I((M9"-‘)r)a (Tm,,wwp)) =0
unless ¢ = 3g — 3.

Thus (Mg, D) is infinitesimally rigid, which was originally proved by Hacking.
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Theorem 15 (Ji-Liu-Sun-Yau (preprint)).
The Gauss-Bonnet theorem holds on M equipped with w,, ws, wkEg:
By

/Mg cag-3(wr) = /Mg c3g-3(ws) =/Mg c3g-3(wkE) = Xx(My) = m

Here x(My) is the orbifold Euler characteristic and Bay is the Bernoulli number.

Open problems

10.++ Does it still hold true that the metrics on T%; (log D) over Mg, induced from
g,

wkEg,wp are good in the sense of Mumford?
§4. The Weil-Petersson geometry of the universal Teichmiiller space

We survey Takhtajan-Teo’s results on the universal Teichmiiller space.
D:={z2€Cl|z| <1}, D*:={z€ C||2] > 1}
L>®(D*) := {u(z)% measurable on D* | ||u
Here |uo- := sup u(2)].

D~<OO}

Let L*°(ID*); be the unit open ball in L*(D*). Extend p € L*(D*); to be 0 outside D*.
Consider the unique q.c. mapping w* : C — C which satisfies the Beltrami equation
w§ = p w# ,the condition f(0) =0, f/(0) = 1, f”(0) = 0.
For p,v € L®(D*),, set p ~ v if wh|p = w’|p.
The universal Teichmiiller space is defined as a set of equivalence classes of normalized
q.c. mappings
T(1) := L>®(D*),/ ~. }
We set Ao (D) := {¢ holomorphic on D| ||¢||ec < 00}, [|Blleo := sup |(1 — |2|2)2¢(2)|.
D

The Bers embedding 3 : T(1) — Aw(D) is defined as follows. The Schwarzian
derivative of a conformal map f is given by
o fzzz 3 fzz 2
=7 2(fz) ‘
For p € L*°(D*)y, set B([n]) = S(w#|p). Here [u] is the equivalent class of p for ~.

T(1) has a Banach structure naturally induced from A., (D) which is not a Hilbert
structure. Takhtajan-Teo have given T'(1) a Hilbert structure to define the Weil-Petersson
metric. They proved that the tangent space of T'(1) at [0] can be identified with a Hilbert
space HV(D*) = {u = p~'¢ | ¢ holomorphic on D*, |ullz < oco}. Here ||u|3 :=

ffD* #[210, p : hyperbolic on D*.
The inner product of the W-P metric at [0] of T'(1) is defined to be

(1, V)wp = //D uop, for p,v € H™HH(D*) = TiyT(1).

The Weil-Petersson metric wyp on T(1) is real-analytic and Kéahlerian. Takhtajan-Teo
gave the following surprising observation.
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Theorem 16 (Takhtajan-Teo (2006)).
T(1) is a Kahler-Einstein manifold with negative constant Ricci curvature,

Ricw = 13w
icwwp = 127 wWP-

The sectional and the holomorphic sectional curvatures of wwp are negative.

Open problems

11.xx Formulate the index theorem for T'(1).
12.% Define and study other metrics on T'(1).

13.%x Is it true that the Weil-Petersson metrics on the infinite-dimensional Teichmiiller
spaces other than T'(1) are Kéhler-Einstein?

14.x Is the Weil-Petersson metric on 7'(1) complete or not?
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