
Shift-and-Merge Technique for the DP Solution of
the Time-Constrained Backpacker Problem

Department of Computer Science, The National Defense Academy
Yokosuka, Kanagawa 239-8686, Japan

Byungjun You, Takeo Yamada
{g48095, yamada} \copyright nda. ac.jp

1 Introduction
We are concemed with a variation of the knapsack problem (KP, [10, 11]), as well as of the 2-dimensional

$KP(2K, [12,17])$, where a ‘backpacker’ travels ffom a origin to a destination on a directed acyclic graph
(DAG, [1, 6]). He collects items en route within the capacity ofhis knapsack and within a fixed time limit.

To formulate this problem, let $G=(V, E)$ be a DAG with node set $V=\{v_{1},v_{2}, \cdots,v_{n}\}$ and arc set $E=$
$\{e_{1}, e_{2}, \cdots, e_{m}\}\subseteq V\cross V$. Node v_{1} is the origin, and v_{n} is the destination, and we assume that there exists at least
one path ffom v_{1} to v_{n} . Each node $v_{j}\in V$ is associated with an item j ofweight w_{j} and profit p_{j} , the capacity
ofthe backpacker’s knapsack is W, and the time limit is T . For $e=(v, v’)\in E$, we write $\partial^{+}e=v$ and $\partial^{-}e=v’$,
and for $v\in V$ define the sets of incoming and outgoing arcs as $E^{\pm}(v)=\{e\in E|\partial^{\pm}e=v\}$ respectively. Each
arc $e\in E$ is associated with non-negative time t_{e} to traverse, and the backpacker wishes to travel ffom v_{1} to v_{n}

within the time limit of T . Let us introduce decision variables as follows: $x_{j}=1$ ifthe backpacker accepts item
j, and $x_{j}=0$ otherwise. Similarly, $y_{e}=1$, ifhe takes a path that includes arc e , and $y_{e}=0$ otherwise.

Then, the time-constrained backpackerproblem (TCBP) is formulated mathematically as follows.
TCBP:

Maximize
$\sum_{j\epsilon V}p_{j}x_{j}$ (1)

subject to $\sum_{j\in V}w_{j}x_{j}\leq W$
, (2)

$\sum_{e\in E}t_{e}y_{e}\leq T$, (3)

$\sum_{e\epsilon E^{+}(v_{j})}y_{e}-\sum_{e\in E^{-}(v_{j})}y_{e}=\{\begin{array}{ll}-11, ifj=nifj=1,0, otherwise\end{array}$ (4)

$x_{j} \leq\sum_{e\in E^{-}(v_{j})}y_{e},$

$\forall j\in V\backslash \{1\}$, (5)

$x_{j},y_{e}\in\{0,1\},\forall j\in V,$ $\forall e\in E$. (6)

Here, (1) and (2) are as in ordinary KP, and (3) is the time constraint. Together with the flow conservation
law (4), (6) determines a 0-1 vector that corresponds 1 to 1 to a path from v_{1} to v_{n} . Inequality (5) means
that only items on the path can be accepted. Without much loss of generality, we assume that problem data
$w_{j},p_{j}(\forall j\in V),$ $t_{e}(\forall e\in E),$ W and T are all positive integers, $w_{j}\leq W(\forall j\in\eta,$ $\sum_{j\in V}w_{j}>W$, and $t_{e}\leq$

$T(\forall e\in E),$ $\sum_{e\in E}t_{e}>T$, since otherwise the problem is trivial. TCBP is NP-hard, since it includes KP which
is already NP-hard [8].

Remark 1 Node $v_{j}\in V$ is maximal if $E^{-}(v_{j})=\emptyset$, and minimal if $E^{+}(v_{j})=\emptyset$. We assume that v_{1} is the
only one maximal node, and v_{n} is the only one minimal node. That is, for all intermediate nodes we have
$E^{\pm}(v_{j})\neq\emptyset(i=2, \cdots,n-1)$. since otherwise no path exists from v_{1} to v_{n} via v_{j} . I

数理解析研究所講究録
第 1734巻 2011年 93-100 93

KP on a directed graph has been studied as the precedence-constrained KP (PCKP, [19]), or a lree KP

(TKP, [5, 9]). Here, (partial) order relations are assumed among items, and there is a wide range of applications
for these problems [15, 16]. However, in the backpacker problem we need to determine a set of items to be
accepted, as well as a feasible path from v_{1} to v_{n} . To our knowledge, no previous literamre treated these two
aspects simultaneously.

Since TCBP is a linear 0-1 programming problem, small instances may be solved using mixed integer
programming (MIP, [18]) solvers such as CPLEX [7] or XPRESS-MP. For larger instances, however, it is
often difficult to obtain exact solutions by such an approach. In this article, we first present a dynamic pro-
gramming (DP) algorithm to solve TCBP. This is a pseudo-polynomial time algorithm which can solve only
small-sized instances in practice. To solve larger instances, we present an improved ‘shift-and-merge’ DP al-
gorithm (SMDP). This is an extension ofthe list-type DP [3, 13], which has been successfully applied to solve
l-dimensional KPs, to the 2-dimensional case.

Let TCBP be denoted explicitly as TCBP(W, T) . Then, we note that DP and SMDP algorithms solve all
TCBP$(w, t)’ s(w\leq W, t\leq T)$ in one-pass. Contrary to this, by using MIP solvers, we need to solve TCBP(w, t)

Rom scratch for each values of $(w, t)\in[0, W]\cross[0, T]$.

2 A dynamic programming algorithm

Without loss of generality, the nodes of G are assumed to be topologically sorted [6, 14], in the sense that
$(v_{i}, v_{j})\in E\Leftrightarrow i<j$. For node $v_{i}\in V$, we introduce $G_{i.k}=(V_{i,k}, E_{i.k})$ (See Figure 1) as the subgraph of G

with the nodes and arcs restricted to the downstream of v_{i} through the first k arcs of $E^{+}(v_{i})$. More precisely,
let $E^{+}(v_{i})$ be explicitly written as $E^{+}(v_{i})=fe_{i}^{1},$ $e_{i}^{2},$

$\cdots,$ $e_{i}^{m}]$, where $m_{j}=|E^{+}(v_{i})|$. We say that $v\in V(e\in E$,

respectively) is in the k-downstream of v_{i} if (i) there exists a path Rom v_{i} to v (e , resp.), and (ii) the first arc in
the path belongs to $\{e_{i}^{1},e_{i}^{2},$ $\cdots,e_{i}^{k}|$. Let $V_{i,k}$ ($E_{i_{\text{畝}},k}$, resp.) be the set ofk-downstream nodes (arcs, resp.), and we
define $G_{i.k}=(V_{i,k}, E_{i,k})$. We introduce a subproblem of TCBP on $G_{i.k}$ as follows.

TCBP$i_{;}k(w, t)$:

$Maximize\sum_{j\epsilon V_{i\lambda}}p_{J^{X_{j}}}$

(7)

subject $to\sum_{j\epsilon V_{i\lambda}}w_{j}x_{j}\leq w$
, (8)

$\sum_{e\epsilon E_{\lambda}}t_{e}y_{e}\leq t$
, (9)

$\sum_{e\epsilon E^{+}(v_{j})}y_{e}-\sum_{e\epsilon E^{-}(v,)}y_{e}=\{\begin{array}{ll}1, ifj =i-1, ifj =n,0, otherwise\end{array}$ (10)

$x_{j} \leq\sum_{e\epsilon E^{-}(v,)}y_{e}$
, $\forall j\in V_{i,k}\backslash \{i\}$, (11)

$x_{j},y_{e}\in\{0,1\}$, $\forall j\in V_{i,k},\forall e\in E_{i\lambda}$. (12)

Here w is the remaining knapsack capacity, and t is the remaining travelling time for this subproblem. Let
$z_{i.k}^{\star}(w, t)$ be the optimal objective value to $TCBP_{j.k}(w, t)$.

We put

$z_{i.0}^{*}(w, t)\equiv 0$, (13)

and for simplicity we write

$z_{i}^{\star}(w, t)=z_{i.m}^{\star},(w, t)$. (14)

Then, Rom the principle ofoptimality [4, 6], we have the following recurrence relation.

$z_{i,k}^{\star}(w, t)= \max\{z_{i,k-1}^{\star}(w, t),z_{j}^{*}(w, t-l_{i}^{k}),p_{i}+z_{j}^{*}(w-w_{i}, t-l_{i}^{k})|$ (15)

94

where $j=\partial^{-}e_{i}^{k}$ and $l_{i}^{k}=t_{e_{t}^{k}}$.
This means that the optimal objective value to $TCBP_{i,k}(w, t)$ is given as the maximum ofthe following three

altematives.

$A_{1}.Donott\mathbb{A}e\epsilon_{i}^{k}z_{i,k-l}^{\star}(w, t).\cdot$

In this case an arc in $1e_{i}^{1},$ \cdots , e_{l}^{k-1} } is adopted with the corresponding objective value

A_{2} . Take e_{i}^{k} and go to node v_{j} without accepting item i .
A_{3} . Accept item i, and take e_{i}^{k} to go to node v_{j} .
For $i=n$ we have $z_{n}^{\star}(w, t)=p_{n}$ if $b\geq w_{n}$, and $z_{n}^{\star}(w, t)=0$ otherwise. We compute (15) backward for

$i=n-1,n-2,$ \cdots , 1. Then, $z_{1}^{\star}(WT)$ gives the optimal objective value to the original TCBP. Thus, TCBP is
solved in $O(mWT)$ time and space. We call this Algorithm DP.

3 Shift-and-Merge method
In the DP algorithm for the ordinary KP, the optimal objective value $z_{i}^{\star}(w)$ is a non-decreasing step-fimction

of w. Then, in list-type DP, instead ofcomputing $z_{i}^{\star}(w)$ for all $w\in[0, W]$, we maintain the list ofdiscontinuity
points of $z_{i}^{\star}(w)$, and update this list as we compute backward for $i=n,n-1,$ \cdots , 1.

Similarly, it is clear that in TCBP $z_{if}^{\star}(w, t)$ is a non-decreasing 2-dimensional step-fimction of (w, t) . We
call this terracefunction (Figure 1). For a terrace fimction $z(w, t)$ defined on $[0, W]\cross[0, T]$, we call (w, t,p) a
cornerpoint if $p=z(w, t),$ $z(w-1, t)<p$ and $z(w, t-1)<p$. Then, $z_{i,k}^{\star}(w, t)$ is completely charactenized by
the set of comer points ofthis fimction. We assume that this set of comer points is lexicographically ordered
in the non-decreasing order of (w, t) , i.e., if $C=(w,t,p)$ and $C’=(w’, t’,p’)$ are comer points, we define
$C\preceq C’$ if $t<l$, or $t=t’$ and $w\leq w’$. By $\ovalbox{\tt\small REJECT}_{u}$ we denote the set of comer points of $z_{i,k}^{\star}(w, t)$ arranged in the
non-decreasing order of \leq . Thus, $\ovalbox{\tt\small REJECT}_{u}$ is the list representation of$z_{l,k}^{\star}(w, t)$.

$z_{i,k}^{\star}(w,$ $t)$ Corner point

lV

Figure 1: Terrace fimction and comer points

We now translate (15) in the language of lists as follows. Let $\ovalbox{\tt\small REJECT}_{i,k}^{1}$ and $\ovalbox{\tt\small REJECT}_{k}^{2}$ be the list representations of
$z_{j}^{\star}(w,t-t_{i}^{k})$ and $p_{i}+z_{j}^{\star}(w-w_{l}, t-l_{i}^{k})$, respectively. These can be obtained ffom $\ovalbox{\tt\small REJECT}_{j}$, the list representation of
$z_{j}^{\star}(w,t)$, by applying shift operations as follows :

$\ovalbox{\tt\small REJECT}_{i,k}^{1}=\ovalbox{\tt\small REJECT}_{j}\oplus(0,t_{i}^{k},0))$

$=\{(w,t+t_{i}^{k},p)|(w,t,p)\in\ovalbox{\tt\small REJECT}_{j}, t+l_{i}^{k}\leq T\}$,
$\ovalbox{\tt\small REJECT}_{i,k}^{2}=\ovalbox{\tt\small REJECT}_{j}\oplus(w_{i}, l_{i}^{k},p_{j}))$

$=\{(w+w_{i}, t+t_{i}^{k},p+p_{i})|(w,t,p)\in\ovalbox{\tt\small REJECT}_{j},$ $t+l_{i}^{k}\leq T,w+w_{i}\leq W|$.

95

Next, we merge to obtain $\ovalbox{\tt\small REJECT}_{i,k}’=\ovalbox{\tt\small REJECT}_{i,k-1}\cup\ovalbox{\tt\small REJECT}_{l,k}^{1}\cup\ovalbox{\tt\small REJECT}_{i,k}^{2}$. However, simple merger does not work, since this may
include dominated elements, and we have

$\ovalbox{\tt\small REJECT}_{ifi}=\ovalbox{\tt\small REJECT}_{i\acute fi}\backslash g_{tX}$, (16)

where \mathscr{E}_{if} is the set ofdominated elements as defined below.

$\mathscr{E}_{i,k}=\{(w,t,p)\in\ovalbox{\tt\small REJECT}_{l,k}’|$ ョ$(w’,t’,p’)\in\ovalbox{\tt\small REJECT}_{i,k}’$

s.t. $w\geq w’,t\geq t’,p\leq p’,$ $(w,t,p)\neq(w’, t’,p’)|$.

We compute (16) for $i=n-1,$ \cdots , 1 and for all $k\in E^{+}(l)$: Thus TCBP is solved by the following shift-
and-merge DP (SMDP) algorithm.

To efficiently compute (16) and output the merged result $\ovalbox{\tt\small REJECT}_{lfi}$ in the non-decreasing order of \leq without
explicitly applying sort operations, we propose the scanning-wall method as follows. Let $\ovalbox{\tt\small REJECT}_{u}’$ be explicitly
wnitten as $|C^{0},$ $C^{1},$ \cdots , $C^{r}\}$, where $C^{0}=(0,0,0),$ $C^{l}=(\sqrt C’ d_{c},p_{c}^{l})$ and $C^{l-1}\leq C^{l}(l=1,2, \cdots , r)$. By $\overline{z_{l}}(w,t)$

we denote the terrace function corresponding to the (non-dominated) set of points $\{C^{0},C^{1},$ \cdots , $C^{l-1}|$, and
$\hat{z}_{l}(w)=\overline{z_{l}}(w,t_{l})$ is the cross-section of $\overline{z_{l}}(w, t)$ at the vertical scanning wall $t=t_{l}$ (See Figure 2). Then, $\hat{z}_{l}(w)$

is a non-decreasing step-fmction of w, which is completely characterized by the set of discontinuity points
$\mathcal{D}=\{D^{0},D^{1}, \cdots , D^{s}\}$ with $D^{h}=(w_{D}^{h},p_{D}^{h}),0=w_{D}^{0}<w_{D}^{1}<\cdots<w_{D}$ and $0=p_{D}^{0}<pb<\cdots<p_{D}^{s}$.

We make use ofthis information to determine if C^{l} is dominated, and update \mathcal{D} as we move from C^{l} to C^{l+1}

in the following way. That is, if there exists some $D^{h}\in \mathcal{D}$ such that $w_{D}^{h}\leq\sqrt c$ and $p_{D}^{h}\geq p_{C}^{l},$
C^{l} is dominated,

and otherwise C^{l} is $non-dom\dot{m}$ated. If C^{l} is non-dominated, we output C^{l} as an element of $\ovalbox{\tt\small REJECT}_{1,k}$, and insert it
into \mathcal{D} . At the same time all those elements of \mathcal{D} which are dominated by C^{l} are removed ffom \mathcal{D} , and we
move to the next C^{l+1} . Thus, in Step 4 of SMDP, the scanning-wall method can be written $explicm_{y}$ as follows.

The behavior ofthis scanning-wall method is depicted in Figure 2.

Remark2 SMDP compues the optimal objective value $z_{i}^{\star}(w, t)$, but produces neither optimal $x_{t}^{*}(w,t)$ nor
$y_{e}^{\star}(w,t)$. To obtain these, we make elements ofeach list be of the $fom(w, t,p,x^{\star},y^{\star})$, where (x^{\star},y^{\star}) is the

96

p

$C^{()}$

t_{l}

w

Figure 2: The scanning-wall method.

optimal solution to $TCBP_{i.k}(w, t)$ at the comer point (w,t,p) . Then, in computing (16), (x^{\star},y^{\star}) is inherited
$p_{om}\ovalbox{\tt\small REJECT}_{u-1}$, in case ofA_{1} , while this is given as $(0, e_{i}^{k})$ and $($ 1, $e_{i}^{k})$, corresponding to the cases $ofA_{2}andA_{3}$,
respectively. 1

Remark 3 We may accelerate SJa)P by skipping some computation asfollows. $Let_{-}j$ be the shortest timefiom
v_{1} to v_{i} . Then, in (ii) ofthe scanning-wall method if $t_{C}^{l}+\underline{t}^{i}>T$ is satisfiedfor $C^{l}=(\sqrt c, d_{C},p_{C}^{l})$, we can skip
thispoint andgo to the next C^{l+1} . We call this Shortest-Path test. I

4 Numerical experiments
We implemented SMDP in ANSI-C language and conducted computation on a Dell Precision T7400 work-

station (CPU: Xeon X5482 $Quad-Core\cross 2,3.20GHz$) for various types and sizes ofinstances. We also compare
the performance ofthis algorithm against the direct solution by CPLEX [7].

4.1 Design of experiments
The instances tested are WIDE and TALL. These are prepared as follows.. WIDE. For each pair $(i,])$ satisfying $1\leq i<j\leq n$, we generate an arc (v_{i},v_{j}) randomly with probability

$d/(n-1)$.. TALL. For each pair (i_{J}) satis$\theta ing1\leq i<j\leq\min${ $n,$ $i+d$. Intvl}, we generate an arc (v_{t},v_{j}) randomly
with probability $1/Intvl$. Here Itvl is a parameter to control the range of arcs as $|j-i|\leq d$. Intvl.

Also, d is an integer parameter that controls the number of arcs in G . Since we have $n(n-1)/2$ pairs ofnodes,
at this stage we have about $m\approx nd/2$ arcs, and the average degree at each node is approximately d for WIDE
instances. For TALL instances, this is approximately $m\cong nd$, and thus, we call d the degree parameter. Next,
for each maximal node $v_{i}\neq v_{1}$, we pick up node $v_{j}0<\iota$) at random and add arc (v_{j},v_{i}) to E . Thus, no maximal
nodes remain in G other than v_{1} . Similarly, we make all nodes other than v_{n} non-minimal. For a DAG, let height
and dist be the maximum and minimum numbers ofsteps between v_{1} and v_{n} , respectively. Then, Table 1 gives
a summary of the characteristics of WIDE and TALL instances, where Itvl is fixed at 100. Thus, the height
increases with n in TALL instances, while it remains relatively small in WIDE case, as seen in Figure 6.

We generate the data for items according to the following scheme. The weight w_{j} is dishibuted uniformly
random (RAND) over the integer interval [1, 100], and profit p_{j} is related to w_{j} in the following ways.. Uncorrelated case (UNCOR): pj $:=$ RAND [1, 100], independent of w_{j} .. Weakly correlated case (WEAK): p_{j} $:=w_{j}+$ RAND[1, 20].. Strongly correlated case (STRONG): p_{j} $:=w_{j}+20$.

97

Table 1: Instance characteristics.

$\frac{dn\frac{WIDE}{mheightdist}\frac{TALL}{5946568mheightdist}}{320004283265}$

8000 17023 32 6 24587 182 10

$\frac{32000681583979845170810}{62000661532510506556}$

8000 26575 40 5 46349 182 9

$\frac{3200010641845619024269911}{92000937737514266625}$

8000 37739 42 5 67926 200 11
32000 151182 51 6 284020 716 12

4.2 MIP results
Table 2 summanizes the computation using MIP solver CPLEX 11.1 [7]. We set the time limit at ISOO

seconds, and for instances with $n\geq 32000$, the solver ffequently failed to produce optimal solutions within this
time limit.

Table 2: CPLEX results $(d=3,$ $W=500,$ $T=500$, Intvl $=100)$ as average over 10 instances.

$\frac{TYPEnm\frac{U.NCOR}{zCPU}\frac{WEAK}{zCPU}\frac{s.moNG}{zCPU}}{WIDE40008494866.03.08660.37.2677887.40}$

16000 34118 886.0 67.64 670.5 98.43 797.1 54.70
TALL 4000 12200 10417 1491 6935 5303 8320 3611

16000 49135 1244.5 213.607 726.7 203.20 872.0 384.40

4.3 SMDP results
Tables 3 and 4 give the result of computation of SMDP for larger instances with $n\leq 64000$. Here we fix

base case parameters at $d=3$, Intvl $=100,$ $W=500$ and $T=500$, and each row of the tables is average over
10 randomly generated instances. By $0/oaccept$ we mean the percentage of items accepted along the optimal
path. When solved to optimality, both of CPLEX and SMDP produced identical optimal values, although the
solution obtained were sometimes distinct. Thus, SMDP solves larger instances much Mter than CPLEX.

Table 3: SMDP result for WIDE instances.

\overline{UNCOR}WBAK STRONG
$z/oacceptCP\cup z/acceptC^{\backslash }PU\overline{z/\cdot\cdot cceptCPU}$

4000 8494 866.0 82.58 0.62 660.3 82.75 0.66 778.8 91.13 0.71
8000 17023 929.2 81.84 1.24 677.7 82.36 1.35 801.3 81.59 1.46

16000 34118 886.0 81.91 2.45 670.5 84.84 2.56 797.1 88.91 2.69
32000 68158 945.5 85.71 4.92 677.3 78.76 5.00 788.8 86.23 5.09
64000 136376 9418 7962 983 6674 67.96 991 7953 8554 1003

4.4 Sensitivity analysis
We now examine sensitivity ofthe SMDP algorithm with respect to the parameters $W,$ T,d and the instance

types $(WIDE/TALL)$. Figure 3 depicts the CPU time of SMDP for WEAK case with the degree parameter

98

Table 4: SMDP result for TALL instances.

\overline{UNCOR}WEAK STRONG
$\backslash _{\frac{nm\overline{Zw_{Q}/acceptC^{\backslash }PU}\overline{z0/oacceptCPU}\overline{z/oacceptCPU}}{200059461094.779040.47700.081.800.65832.085200.92}}$

4000 12200 10417 75.72 0.89 693.5 73.77 0.94 832.0 77.47 1.02
8000 24587 1025.6 71.64 1.78 696.9 71.05 1.83 833.7 75.48 1.89

16000 49135 1244.5 65.74 3.56 726.7 70.04 3.69 872.0 7187 3.90
32000 98451 1232.4 64.76 7.18 732.5 69.99 7.54 885.4 72.81 8.03
64000 197706 1119.1 71.03 14.25 706.76111917.337103142570676733 1450 8653 8317 1478

varied ffom $d=3$ to $d=9$. CPU time increases with d, since for larger d we have TCBP of larger m . TALL
instances become harder to solve for $d=9$, and in Figure 3 (b) it took longer CPU time for $n=32000$ than for
$n=64000$. This is because more comer points were generated in the fomer case than in the latter.

CPU..σ CPU. .

$n(x 1000)$ $n(\cross 1000)$

(a) WIDE instances (b) TALL instances

Figure 3: Sensitivity analysis ofparameter d

Finally Figure 4 gives the CPU time of SMDP for WEAK case with $n=4000$ and $d=6$ as the fimction of
the knapsack capacity W for various values of T . In this case, CPU time increases moderately both with W and
T .

CPU..c

8–

300 500 700 900 IV

(a) WIDE instances

CPU..c

300 SOO 700 900 IV

(b) TALL instances

Figure 4: Sensitivity with respect to W and T .

5 Conclusion
We have fonnulated the TCBP and presented a SMDP algorithm to solve this problem to optimality. This

is an extension of the list-type DP, which has been successffil for l-dimensional KPs, to the 2-dimensional

99

case. The algorithm was implemented in ANSI-C language, and numerical experiments were camied out to
evaluate the performance of the developed algorithm. We were able to solve TCBPs with up to 64000 items
of various instance types within a few minutes in an $ordinal\gamma$ computing environment. Computation was not
much inlluenced by the change of the parameters $W,$ T,d and instance types (WIDE/TALL), and this algorithm
over-performed computation by MIP solvers.

References
[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice-

Hall, Englewood Cliffs, NJ, 1983.

[2] S. Balev, N. Yanev, A. Freville, R. Andonov, A dynamic programming based reduction procedure for the
multidimensiona10$arrow$ 1 knapsack problem, European Joumal ofOperational Research 186 (2008) 63-76.

[3] D. El Baz, M. Elkihel, Load balancing methods and parallel dynamic programming algorithm using
dominance technique applied to the 0-1 knapsack problem, Joumal ofParallel and Distributed Computing
65 (2005) 74-84.

[4] R. Bellman, Dynamic Pro$\Psi^{am\min g}$, Princeton University Press, Princeton, NJ, 1957.

[5] G. Cho, D.X. Shaw, A depth-first dynamic programming algorithm for the tree knapsack problem, IN-
FORMS Joumal on Computing 9 (1997) 431-438.

[6] T.H. Comten, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd Edition, MIT Press,
MA, 2001.

[7] CPLEX 11.1, LOG, $h\mathfrak{n}p://www$.ilog.$com/$ products/cplex, 2009.

[8] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman and Company, San Francisco, CA, 1979.

[9] D.S. Johnson, K.A. Niemi, On knapsacks, partitions, and a new dynamic programming technique for
trees, Mathematics ofOperations Research 8 (1983) 1-14.

[10] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.

[11] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations, John Wiley and
Sons, New York, NY, 1990.

[12] S. Martello, P. Toth, An exact algorithm for the two-constraint 0-1 knapsack problem, Operation $Rese\mathfrak{U}ch$

51(2003) 826-835.

[13] G.L. Nemhauser, Z. Ullmam, Discrete dynamic proyamming and capital allocation, Management Sci-
ence 15 (1969) 494-505.

[14] R. Sedgewick, Algorithms in C, 3rd Edition, Addison-Wesley, Reading, 1998.

[15] D.X. Shaw, G. Cho, H. Chang, A depth-first dynamic programming procedure for the extended tree

knapsack problem in local access network design. Telecommunication Systems 7 (1997) 29A3.

[16] K.E. Stecke, I. Kim, A study ofpart type selections approaches for short-term production planning, Inter-
national Joumal ofFlexible $manu\hslash ctu\dot{n}ng$ Systems 1 (1988) 7-29.

[17] B. Thiongane, A. Nagih, G. Plateau, Lagrangian heuristics combined with optimization for the 0-1 bidi-
mensional knapsack problem, Discrete Applied Mathematics 154 (2006) 2200-2211.

[18] L.A. Wolsey, Integer Proyamming, John Wiley & Sons, New York, NY, 1998.

[19] B.-J. You, T. Yamada, A pegging approach to the precedence-constrained knapsack problem, European
Joumal ofOperational Research 183 (2007) 618-632.

100

