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Bayesian multiple stopping problem on geometric random walk!
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‘ Department of Mathematical Sciences
Shibaura Institute of Technology

Abstract

This paper studies the optimal multiple stopping times for the Bayesian multiple stopping
problem on geometric random walk, where the upward probability, p, is assumed to be
unknown. We assume that the prior distribution of p is Beta. Under some conditions, we
show that optimal stopping times are of threshold type, and it is optimal to exercise if the
number of upward below some threshold value.

1 Introduction

Image that an investor wants to invest and maximize the expected cumulative discounted return
from a certain project. He is allowed to invest a project at most m different times. We try to
impose investor’s subjective view for future performance. The performance (discounted cash
flow) of the investment to the project varies according to the geometric random walk, and the
upward probability, p, of the random walk is unknown. Assume that the prior distribution of p
is Beta. What are the optimal multiple stopping (exercise) times? How to solve them? These

are main interesting subjects of this paper. Let {S,}Y_; be a geometric random walk;
Sp = Son, 8p = sX1T T e N, -(L.1)

where So = s, P(X, =1)=p=1- P(X,, = —1),0 < p < 1. Upward probability p is unknown.
Assume that prior distribution of p is Beta(a,3). For example, if investor believes that the
upward probability is between 0.5 and 0.8 with his subjective probability 0.9, then he can select
the parameters («, 8) satisfying P(0.5 < p < 0.8) = 0.90. Note that these values, («, 3), are
not unique pair. Let N is the last time. Under some conditions, we show that optimal stopping
times are of threshold type, and it is optimal to exercise if the number of upward below some

threshold value that is unique root of a certain equation.

J

2 Formulation

We suppose random sampling from the distribution with unknown parameter 6, that is, for
given 0, fn(x1, - ,2q|0) = f(21|0) - - - f(xn]f). It is nice to sce that if a sufficient statistic exists,
then the prior and posterior distributions are in the same distribution family (cf. DeGroot

(1971)). The definition of the sufficient statistics is as follows; for any prior density g(6), the

'This paper is an abbreviated version of Ano [1].



posterior density can be expressed by g(0|Zn) = g(0|Yn(Zrn)). We denote a sufficient statistics
for {f(x|6),6 € R} by Y,(Zn). Our problem is

VIml(Z,16,) == sup Ez, |, [ZaTkG(XTk), (2.1)

n<Tm < <11 <N =1

where in this paper we specify the reward function as G(z) = (z — K)* motivated by American
put option. Let Un ](znle ):= stopping reward, that is, conditional maximum expected reward

when investor observed X; = z1,--- , X, = z, he can exercise at most m times, and he exercises
at time n, then

UM (Z0l0n) = a"G(xn) + B, (VT (K ni100s1)]. (2.2)

Optimality equations for our finite horizon Bayesian optimal multiple stopping problem are
given by for each k,

VI (#016n) = max{UM (£,10,), Bz, 0, [V (Xns110ns1)]}, 0< R <N -1, (2.3)

where VN](:c NION) = ,[51(5N|<9N) = aVG(z ) for each k. Generally, it is not easy to solve these
optimality equations because these equations include the history of the observations. However,
we can obtain the reduced optimality equations generated from the sufficient statistics sequence
{Ys }nen as follows; for Y, =y, Yo =0,

Vi (y16,) = max{UM(y|6n), y.(,n[ W (Yasr|ne )]} (2.4)
UMyl6,) = a"G(y) +Eys, [V, YYi1l0ns1)])), n=0,1,--- ,N =1, (2.5)

where V,gc](wa) = Ul[\lf](yw]v) = aVG(y) for each k = 1,2,--- ,m. So we have the optimal
stopping region: for each k

N
B = | | B, BM = {y: UlF(y/6.) = V;H(yl6n)} (2.6)

n=1

But (2.6) gives us no any useful information, since Vék](ylen) is implicit.
We specify the probability density function g(p) of p Beta, that is,

a—1 8-1
*(1-p)
= ] , 2.7
g(p) Be(a, ﬁ) {0<p<1} ( )
where Be(a, 3) := fol p® (1 — p)?~ldp, (0 < p < 1) is Beta function. After observing &, =
(€1,--- ,T,), the posterior distribution, for which we denote the density by g9(Zn), is again
Beta(ons1, Bns1) distribution with parameters ani1 = a + yn,Bns1 = B+ 10 — Yn, where

Yn := 21~ I{z,=1}is the number of upward among {X1, X2, -, Xn}. Indeed, yn is the sufficient
statistics satisfying g(p|Z.) = g(p|y»)- Since the number of downward until time n is n — yn, it
follows that S, = Sgs%¥» ™. '
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3 How to solve
3.1 Single stopping
Define a new operator £!(y|6,) given Y, =y by
LRI (Y1) = Eyjg, [a"7°G (Yosa)] — a"G(y). (3.1)
This may be regarded as a discrete version of an infinitesimal generator (cf. Abdel-Hameed [4]).

Theorem 3.1 For the Bayesian single stopping problem, the optimal stopping region is given
by B = Uf:[:l BE], where for Y, =y

T7—1
B = {y : Eyjo, {Z £l v,)6,)

{=n

< 0} (3.2)

and Bl[\ll] ={y: G(y) > 0}. The optimal stopping time is 77 = inf{n € {0,1,--- ,N}: Y, € BE]}
. The mazimum ezpected reward is Ey;jg, [at G(Yz;)]

Proof. B,ll1  follows immediately from a discrete version of Dynkin formula (cf. Abdel-Hameed [4]);

for any finite (a.s) stopping time 7,

!
—

Ey6.la"G(Y;)] = a"G(y) + Eyp, { cM(ve16.)

n

Ya=u. (3.3)

o~
Il

g

Lemma 3.1 By[bl] - BEL»” =1,2,---,N.

Proof.  Since Bl — {y : a”G(y) > Eyp,[Vas1(Y[6,)]} and B,[llil = {y : a""'G(y) >
Eyi6,1 [Var2(Y]0n41)]}, it suffices to show that

Eyjo, [Va+2(Y105)] < aByjg, ., [Vas1(Y|0ns1)in =1,2,--- \N — 1. (3.4)
By backward induction on n, we can prove this inequality. O
Consider the following conditions. For each n = 1,2,--- N — 1, ¥;; = y and any integer

jeN
(A1): y— Eyp, [ZL” [,[41] (Yg]()n)] changes sign at most once from positive to nonposi-

tive.

(A2): y— Eyp, [ZZ:n ﬁ[el](ngn)] changes sign at most once from negative to nonnega-
tive.
These conditions ensure that there is a unique root, y,[l1 ]*, of the equation, E ., Z;; ELI] (Yel6r)
= 0. Under (A1), when E,g. [ é:n El[zl](ngn)] > 0 (> 0) for all y, we set yill]* = x (—o0,

respectively). Under (A2), when E, 4 [ z:n Egl](ngn)] < 0 (< 0) for all y, we set y,[ll]* =
00 (—oo,Tesp.).
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Corollary 3.1
(i) If (A1) holds, then BY = {y : y >
= inf{n € {0,1,+ N} : Y > ).

(it) If (A2) holds, then Bl ={y:y < 1]*}, {yg]*}ﬁ;l is nondecreasing sequence and
7 =inf{n € {0,1,--- ,N}: ¥, < L”*}.

[1]*} {ym }N_| is nonincreasing sequence and

| V

Proof. For the proof of (i), use Theorem 3.1, Lemma 3.1 and

BY C B, e {y:y> ™ C {yiy 2 o)

3.2 Multiple stopping
Define an operator E%CI (y) given Y;, = y as follows;foreach{ = 1,2--- ,N-nand k=1,2,--- ,m
LI 10n) = By, [U11 (Yar1)] - U (w). (35)

Theorem 3.2 For the Bayesian multiple stopping problem, the optimal stopping region is given
by B = U71¥=1 B,[Lk] for each k =1,2,--- ,m, as for Y, =y
< 0} (3.6)

Bl = {y Eyjo, {}: £8(¥26)
=

and Bw = {y : G(y) > 0}. The optimal stopping time is 7; = inf{n € {0,1,--- N} : Y, €

Lk]}. The mazimum ezpected reward is By, [ pey a* G(Y7:)].

Proof. It is as same as the proof of Theorem 3.1. O

Corollary 3.2 For eachk=1,2,--- ,m—1andn=1,2,---,N, B,[lk] - B[kH]

Proof. Since Bl = {y: a"G(y) > Eyq, [Vryﬂl(Y) - VTEi—ll](Y)]}, it suffices to prove that for all
Y
Eyjo, Vi (V) = VI (V)] 2 By, (VIS () = VEL (V) (3.7)

We can show this inequality by induction on k. O
Corollary 3.3 For eachk=1,2,--- ,mandn=1,2,--- ,N — 1, Bﬂc] C B,[lkil.
Proof. Slnce B = {y: a"G(y) > Ey6., [V,E’_ﬂl V,yill ]} and BLkll = {y : a""!G(y) >
]Eywnﬂ[ n+2 — V,E’:LQI]]}, it suffices to prove that

k] k-1
IEyI()n+1[V11[, - n+2 ]< C“IEyI() [ n+1 er[,+1 ]]' (3-8)

By induction on n, we can prove this. O

Consider the following conditions. For each k =1,2,--- ,mandn=1,2,--- N-1,Y, =y
and any integer j € N
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(B1): y = Eyj, [Zzzn EE’C](YAOn)} changes sign at most once from positive to nonposi-
tive.

(B2): y > Eyg, [ Ln [,Ek] (ngn)] changes sign at most once from negative to nonnega-
tive.
These conditions ensure that there is a unique root, y,[}]*, of the equation, Eg, [Z;;; EL’“] (Ye|6r)
= 0. Under (B1), when Eq, [ zzn E[gk](YgIGn)] > 0 (> 0) for all y, we set y,[lk]* = oo (—oo,

respectively). Under (B2), when E, o, [ Ln L‘L”(Yg]ﬁn)} < 0 (£ 0) for all y, we set yLk]* =

00 (—oo,Tesp.).

Corollary 3.4

(i) If (B1) holds for each k, then B = Uf:’zl Blzk], k) — {y:y> yllk]*}, Tr = inf{n €
{0,1,--- N} : Y, > y,[lk]*} where yw* is nonincreasing in n and k, and the mazimum
ezpected reward is By g [ZZ;I aTk*G(YTI:)] .

(ii) If (B2) holds for each k, then B¥ = JN_ BF B® — (y .y < ¥} 7 = inf{n €
{0,1,--- ,N} : Y, < yLk]*} where yy[f]* is mondecreasing in n and k, and the mazimum
ezpected reward is Ey g, [Z;"zl aT‘“*G(YT;)] .

Foreachk=1,2,--- mand¢=2,3,--- ,N —n,

k k k k
Bltj—l,n+€ = {Yn+1 ¢ By[lj.la e ,Yn+l—1 ¢ BLj_g_lv Yn+€ € B'Ellé}’
k k
Br[zll,nﬂ = {Yan € BLL

Lemma 3.2 For each k=1,2,--- ,m,

N-n-1¢-1
(] = cl (k~1] 4
En (yw") - ‘Cn (yw") + ]Ey|6" ; jgo £n+1+j(yn+1+]len)IBLTll.]nﬂIBLkJ:llﬁ]nﬂw
Proof. See Ano [1]. 0

Corollary 3.5 If (A1) holds, then (B1) satisfies. If (A2) holds then (B2) satisfies.
Proof. They follow from Lemma 3.2. g

4 Multiple stopping problem on geometric random walk

Let us calculate ELI ] (y|a, B) for our Bayesian multiple stopping problem on geometric random

walk with unknown upward probability.

Ey|(x./1[an+lG(Yn+1)] = o {/jo G(y " $n+1)f($n+l|y)d$n+l}
o 1
= gl { / Gy + Tns1) /0 f(:vn+11p)g(ply)dpd$n+1}

a"*! { /0 1 [ Z G(y + Tns1)f (xn+1lp)g(p|y)dwn+1dp}
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From f(z|p) = pl{z=1} + ql{z=0}, it follows that for G(y) = (sB—n+l . Kyt

1 1
Eyjasla™ ' G(Ynt1)] = o™ {/O p(s¥ " — K)’ g(ply)dp+/0 g(s®¥ ™ — K)*Q(ply)dp}

1 a+y—1, 6+n—-y-1
= "+l {/ S2y~n+2 — K)* p q d
op( ) Be(a+y,8+n—y) P

1 0 . pa+y—1qﬁ+n—y—l
+ sV M- K : d
/0 al ) Be(a+y,8+n~y) p}
n+1{Be(a+y+lB+n y)( 2y—n+2
B (a+y,ﬁ+n y)
Be(a+y7ﬂ+n_y+l) 2y—n +
Be(a+y,8+n—1y) (s K)

Bea+y+kﬁ+n y+1—k) ~
n+1 2y—n+2k __ +
Z( ) Be(a+y,34+n—1y) (s k)"

- K)*

Therefore,

o Be(a+y+k.p+n-y+1-k _n
EE](ylaﬁ B +1Z(> y(a+.?/,ﬁ+ngy) )(321/ +2k_K)+

—a

n(s2y—n+l _ K)+. (4'1)
Therefore by Corollaries 3.4 and 3.5, we have

Theorem 4.1 Suppose that G(y) = (s®¥ ! — K)*.

(i) If (A1) holds, then for each k = 1,2, ,m () BW = UM, B, B = {y:y > 4H).
(ii) 75 = inf {n €[0,N]: S, > s%n '"*1} = inf {n €[O,N]:Y, > y[k] }, where y,[l] is
nonincreasing in n and k. (iii) Mazimum expected reward is Eg,|q (> _jey a™ (Sn, — K)*).

(i) If (A2) holds, then for each k = 1,2,-- ,m (i) B® = UN_ B¥, B = {y:y <y}
(ii) 75 = inf {n €[0,N]: 8, < 52-’/%]*_""'1} =inf{ne€[0,N]: Y, < y[k] } where y[k] is

nondecreasing in n and k. (iii) Mazimum ezpected reward is Egyq (> peq ™ (Sr — K) T

In the same way, we have

Theorem 4.2 Suppose that G(y) = (K — s2¥~ 71>,

(i) If (A1) holds, then for each k = 1[,“2,~-~ ,m (i) BI¥ = UN B, BY = ={y:y> y[k]*}.
(i) 77 = inf {n € [0,N]: S, > s¥n _"+1} = inf {n €[0,N]:Y, > y[k] }, where yF* is

nonincreasing in n and k. (iii) Mazimum ezpected reward is Egyjq (> peq a™ (K — S7,) "]

(1) If (A2) holds, then for each k = 1,2,- i) B = Un_ B[k] k) — ={y:y< y[ ]*}.
(i) 7y = inf {n €0,N]: S5, < 82y[ " ’”*1} mf {n €[0,N]:Y, < y[k] }, where yl* s
nondecreasing in n and k. (iii) Mazimum ezpected reward is Egyjq s[> ey a™ (K = Sr,)7].



211

References

(1] K. Ano, (2010). Bayesian multiple stopping problem on geometric random walk.

[2] K. Ano, (2000). Mathematics of Timing—Optimal Stopping Problem, (in Japanese), Asakura
Publ., Tokyo.

(3] K. Ano, (2009). Optimal stopping, Free Boundary Problem and Mathematical Finance (in
Japanese) Lecture Note. Tokyo Institute of Technology

[4] M. Abdel-Hameed, (1977). Optimality of the one step look-ahead stopping times, J. Appl.
Prob. 14, 162-169.

[5] R. Carmona and N. Touzi, Optimal multiple stopping and valuation of swing options, Math.
Finan., 18 (2008), pp. 239-268.

[6] F.Black ad R. Litterman, (1992). Global portfolio optimization, Financial Analysts Journal,
48, 28-43.

[7] M. H. DeGroot, (1970). Optimal Statistical Decisions. Wiely, New Jersey.

. B. Dynkin, . Optimal selection of stopping time for a Markov process. Dokl. Adol.
8] E. B. Dynkin, (1963). Optimal selecti f i ime f Mark Dokl. Adol
Nauk. USSR 150, 238-240, (English translation in Soviet Math. 4, 627-629).

[9] T.S. Ferguson, (2007). Optimal Stopping and Applications. Electronic Text at http://www.
math.ucla.edu/~tom/Stopping/Contents.html.

(10] A. Mundt, (2007). Dynamic risk management with Markov decision processes. Ph.D Dis-
sertation.

[11] J. Neveu, (1975). Discrete-Parameter Martingales. North-Holland, New York.

[12] A. N. Shiryaev, (1970). Statistical Sequential Analysis - Optimal Stopping Rules. Transla-
tions of Mathematical Monographs, 38, Amer. Math. Society.

[13] A. N. Shiryaev, (1999). Essentials of Stochastic Finance. World Scientific, River Edge.



