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1. INTRODUCTION

Let $\mathcal{A}$ be a unital ring with the unit $I$ . Recall that an additive map $\delta$ from $\mathcal{A}$ into itself is called

a derivation if $\delta(AB)=\delta(A)B+A\delta(B)$ for all $A,$ $B\in \mathcal{A}$. As well known, derivations are very

important maps both in theory and applications, and were studied intensively. The question

under what conditions that an additive map becomes a derivation attracted much attention of

many mathematicians. Over the past years considerable attention has been paid to the question

of determining derivations through their action on the zero-product elements $A,$ $B\in \mathcal{A}$ with

$AB=0$ (see [2, 3, 4]). One popular topic is to characterize maps behaving like derivations when

acting on zero-product elements, that is, a map 6: $\mathcal{A}arrow \mathcal{A}$ satisfying

$\delta(A)B+A\delta(B)=0$ for any $A,$ $B\in \mathcal{A}$ with $AB=0$ . (1.1)

It was shown in [3, 4] that every additive map $\delta$ satisfying Eq.(l.l) on a unital prime ring

containing a nontrivial idempotent must have the form $\delta(AB)=\delta(A)B+A\delta(B)-\delta(I)AB$ for

any $A,$ $B$ , where $\delta(I)$ is a central element. Thus every map $\delta$ satisfying Eq.(l.l) on a unital prime

ring containing a nontrivial idempotent if and only if there exists an additive derivation $\tau$ and

a central element $C$ such that $\delta(A)=\tau(A)+CA$ for all $A$ . A similar result was obtained in [1]

for maps on the triangular rings. These results reveal that every map behaves like a derivation

on zero-product elements (a local structure) is in fact a derivation (a global structure) when it

vanishes at $I$ . Motivated by these results, more generally, in this paper we describe additive

maps $\delta$ : $\mathcal{A}arrow \mathcal{A}$ which satisfy $\delta(A)B+A\delta(B)=\delta(AB)$ for every $A,$ $B\in \mathcal{A}$ with $AB=Z$ on
a unital ring containing a nontrivial idempotent $P$ , where $Z=0,$ $P$ or $I$ respectively, and new
characterizations of derivations are got.

Recall that a ring $\mathcal{A}$ is said to be prime if $a\mathcal{A}b=0$ implies that $a=0$ or $b=0$ . To recall

the notion of triangular rings, let $\mathcal{A}$ and $\mathcal{B}$ be two unital rings (or algebras) with unit $I_{1}$ and
$I_{2}$ respectively, and let $\mathcal{M}$ be a faithful $(\mathcal{A}, \mathcal{B})$ -bimodule, that is, $\mathcal{M}$ is an $(A, \mathcal{B})$-bimodule
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satisfying, for $A\in \mathcal{A},$ $A\mathcal{A}\Lambda=\{0\}\Rightarrow A=0$ and for $B\in \mathcal{B},$ $\Lambda 4B=\{0\}\Rightarrow B=0$ . The ring (or
algebra)

$\mathcal{T}=$ Tri $(\mathcal{A}$ , At, $\mathcal{B})=\{(\begin{array}{ll}X W0 Y\end{array}) : X\in A, W\in M, Y\in \mathcal{B}\}$

under the usual matrix addition and formal matrix multiplication is called a triangular ring (or
algebra) over rings (algebras) $\mathcal{A}$ and $\mathcal{B}$ (ref. [5]). It is obvious that the triangular rings are unital

and contain a nontrivial idempotent $P=(\begin{array}{ll}I_{1} 00 0\end{array})$ , which we call it the standard idempotent.

Let $A$ be a unital ring containing a nontrivial idempotent $P$ and satisfying that PAPA(I-
$P)=\{0\}$ and $PA(I-P)B(I-P)=\{0\}$ will imply $PAP=0$ and $(I-P)B(I-P)=0$,
respectively. Note that, the set of above rings contains all unital prime rings with a nontrivial
idempotent and all triangular rings. Let $\delta$ : $\mathcal{A}arrow \mathcal{A}$ be an additive map. In Section 2, we
show that, if $\delta$ satisfies Eq.(l.l), then $\delta(I)=C$ belongs to the center of $\mathcal{A}$ , and there exists an
additive derivation $\tau$ such that $\delta(A)=\tau(A)+CA$ for all $A\in A$ . Thus this result generalizes the
corresponding results in [1, 3, 4]. Particularly, a linear map on a factor von Neumann algebra
satisfies Eq.(l.l) if and only if it has the form $A\mapsto TA-AT+\lambda A$ , where $T$ is an element in the
algebra and $\lambda$ is a scalar. In Section 3, we assume that, for every $A\in A$ , there is some integer $n$

(depending on $A$ ) such that nl-A is invertible. Then $\delta$ satisfies that $\delta(AB)=\delta(A)B+A\delta(B)$

for any $A,$ $B\in \mathcal{A}$ with $AB=P$ if and only if it is a derivation. As a consequence, one sees that
every additive map behaving like a derivation at nontrivial idempotent-product elements on a
unital prime Banach algebra is a derivation. Section 4 is devoted to characterizing the additive
maps behaving like derivations at unit-product elements. Assume that the characteristic of $\mathcal{A}$

is not 3 with $\frac{1}{2}I\in A$ , and, for every $A\in \mathcal{A}$ , there is some integer $n$ (depending on $A$ ) such that
nl–A is invertible. If $\delta$ satisfies $\delta(AB)=\delta(A)B+A\delta(B)$ for every $A,$ $B\in \mathcal{A}$ with $AB=I$ ,
then $\delta$ is a Jordan derivation, that is, $\delta(A^{2})=\delta(A)A+A\delta(A)$ for all $A\in A$ . Particularly,
for the cases $\mathcal{A}$ is a prime ring or a triangular ring, then $\delta$ is a derivation. As a corollary of
above results, we obtain that an additive map on a factor von Neumann algebra behaving like
a derivation at nonzero idempotent-product elements if and only if it is a derivation.

It is worth mentioning here that the applications of our main results to Banach and operator
algebras do not require any topology. It is therefore surprising to have purely algebraic results
carry over directly to analytical results with no modification.

2. MAPS BEHAVING LIKE DERIVATIONS AT ZERO-PRODUCT ELEMENTS

In this section, we characterize additive maps behaving like derivations at zero-product ele-
ments on unital rings containing a nontrivial idempotent.

The following is our main result.
Theorem 2.1. Let $A$ be a unital ring with the unit I. Assume that $A$ contains a nontrivial

idempotent $P$ such that PAPA$(I-P)=\{0\}$ and $P\mathcal{A}(I-P)B(I-P)=\{0\}$ imply $PAP=0$
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and $(I-P)B(I-P)=0$ , respectively. Then an additive map $\delta$ : $\mathcal{A}arrow A$ satisfies

$\delta(A)B+A\delta(B)=0$ for any $A,$ $B\in \mathcal{A}$ with $AB=0$ (2.1)

if and only if there exist an additive derivation $\tau$ and a centml element $C$ of $A$ such that

$\delta(A)=\tau(A)+CA$ for all $A\in A$ .

Because a prime ring satisfies the hypotheses of Theorem 2.1 if it contains a nontrivial idem-

potent, the following result is immediate from Theorem 2.1, which was obtained in [3, 4].

Theorem 2.2. Let $A$ be a unital preme ring containing a nontrivial idempotent $P$ , and let
$\delta$ : $\mathcal{A}arrow \mathcal{A}$ be an additive map. Then $\delta$ satisfies $Eq.(2.1)$ if and only if there exist an additive

derivation $\tau$ and a centml element $C$ of $\mathcal{A}$ such that $\delta(A)=\tau(A)+CA$ for all $A\in \mathcal{A}$ .

As an application to operator algebra theory, recall that a von Neumann algebra $\Lambda 4$ is a

subalgebra of some $\mathcal{B}(H)$ , the algebra of all bounded linear operators acting on a complex

Hilbert space $H$ , which satisfies the double commutant property: $\mathcal{M}’’=\mathcal{M}$ , where $\mathcal{M}’=$

$\{T|T\in \mathcal{B}(H)$ and $TA=AT\forall A\in \mathcal{M}\}$ and $\mathcal{M}’’=\{\mathcal{M}’\}’$ . $\mathcal{M}$ is called a factor if its center
$\mathcal{M}\cap \mathcal{M}’=\mathbb{C}I$ . Note that every linear derivation of a von Neumann is inner and thus continuous.

Corollary 2.3. Let $\mathcal{M}$ be a factor von Neumann algebm, and let $\delta$ : $\mathcal{M}arrow \mathcal{M}$ be a linear

map. Then $\delta$ satisfies $Eq.(2.1)$ if and only if there exists an element $T\in M$ and a complex

number $\lambda$ such that $\delta(A)=TA-AT+\lambda A$ for all $A\in$ M.
Theorem 2.1 is also a refine of a result in [1] by omitting the assumption that $\delta(I)$ is a central

element.
Theorem 2.4. Let $A$ and $\mathcal{B}$ be unital rings and $\Lambda 4$ be a faithful $(A, \mathcal{B})$ -bimodule. Let

$\mathcal{T}=$ Tri $(A, M, \mathcal{B})$ be the triangular ring. Assume that $\delta$ : $Tarrow \mathcal{T}$ is an additive map. Then $\delta$

satisfies $Eq.(2.1)$ if and only if there exist a centml element $C$ of $\mathcal{T}$ and an additive derivation
$\tau$ : $\mathcal{T}arrow \mathcal{T}$ such that $\delta(T)=\tau(T)+CT$ for all $T\in \mathcal{T}$ .

Gilfeather and Larson introduced a concept of nest subalgebras of von Neumann algebras,

which is a generalization of Ringrose’s original concept of nest algebras. Let $\mathcal{R}$ be a von Neumann

algebra acting on a complex Hilbert space $H$ . A nest $\mathcal{N}$ in $\mathcal{R}$ is a totally ordered family of

orthogonal projections in $\mathcal{R}$ which is closed in the strong operator topology, and which includes
$0$ and $I$ . A nest is said to be non-trivial if it contains at least one non-trivial projection. If
$P$ is a projection, we let $P^{\perp}$ denote $I-P$. The nest subalgebra of $\mathcal{R}$ associated to a nest $\mathcal{N}$,

denoted by $Alg\wedge f$, is the set of all elements $A\in \mathcal{R}$ satisfying $PAP=AP$ for each $P\in \mathcal{N}$ . When
$\mathcal{R}=\mathcal{B}(H)$ , the algebra of all bounded linear operators acting on a complex Hilbert space $H$ ,
$Alg^{(}$ is the usual one on the Hilbert space $H$ .

$\mathbb{R}om$ Theorem 2.4, we get a characterization of additive maps behaving like derivations at

zero-product elements between nest subalgebras of factor von Neumann algebras.
Corollary 2.5. Let $\mathcal{N}$ be a non-trivial nest in a factor von Neumann algebm $\mathcal{R}$ , and let

Algr be the associated nest algebm. Assume that $\delta$ : $Alg\mathcal{N}arrow A1\infty$ is an additive map. Then
$\delta$ satisfies $Eq.(2.1)$ if and only if there enst a derivation $\tau$ of Algr and a scalar $\lambda$ such that

$\delta(A)=\tau(A)+\lambda A$ for all $A\in Alg\mathcal{N}$ .
To prove Theorem 2.1, we need the following lemma.
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Lemma 2.5. Assume that $A$ is a ring in Theorem 2.1 and $\delta$ : $Aarrow A$ is an additive map
which satisfies $Eq.(2.1)$ . Then $\delta(P)=\delta(P)P+P\delta(P)-\delta(I)P$ and $\delta(I)P=P\delta(I)$ for every
idempotent $P\in A$ .

Proof For any idempotent $P$ , as $(I-P)P=0$ , we have $\delta((I-P)P)=(\delta(I)-\delta(P))P+$

$(I-P)\delta(P)=0$ , that is $\delta(P)=\delta(P)P+P\delta(P)-\delta(I)P$ . Similarly, $P(I-P)=0$ implies that
$\delta(P)=\delta(P)P+P\delta(P)-P\delta(I)$ . So the lemma follows. $\square$

The sketch of proof of Theorem 2.1 The “if’ part is obvious, we only check the “only
if’ part.

Let $P=P_{1}$ be a nontrivial idempotent in $A$ , and $P_{2}=I-P_{1}$ . Set $A_{\eta j}=P_{i}\mathcal{A}P_{j},$ $i,j=1,2$ ,
then $\mathcal{A}=A_{11}+\mathcal{A}_{12}\dotplus A_{21}\dotplus A_{22}$ . Also, we regard $P_{1}=I_{1}$ and $P_{2}=I_{2}$ as the unit of $\mathcal{A}_{11}$ and $A_{22}$ ,
respectively. Since $\delta$ is additive, for any $A_{ij}\in A_{j}$ , we can write $\delta(A_{ij})=\delta_{11}(A_{ij})+\delta_{12}(A_{ij})+$

$\delta_{21}(A_{ij})+\delta_{22}(A_{ij})$ , where $\delta_{11}$ : $\mathcal{A}_{ij}arrow A_{11},$ $\delta_{12}$ : $\mathcal{A}_{ij}arrow \mathcal{A}_{12},$ $\delta_{21}$ : $A_{ij}arrow A_{21}\delta_{22}$ : $A_{ij}arrow A_{22}$ are
additive maps, $i,j\in\{1,2\}$ .

The proofs are finished by intensive study of additive maps $\delta_{i,j},$ $i,j\in\{1,2\}$ , and we mainly
check the following two claims.

Claim 1. $\delta(I)$ is a central element.
Define $\tau(A)=\delta(A)-\delta(I)A$ , then $\tau$ also satisfies Eq.(2.1) and $\delta(I)=0$ . Therefore we may

assume that $\delta(I)=0$ . Next we show $\delta$ is a derivation.
Claim 2. $\delta_{ij}$ satisfies the following conditions $i,j\in\{1,2\}$ .
(1) $\delta_{22}(X)=0,$ $\delta_{12}(X)=X\delta_{12}(I_{1}),$ $\delta_{21}(X)=\delta_{21}(I_{1})X$ $\forall X\in A_{11}$ ;
(2) $\delta_{11}(W)=0,$ $\delta_{12}(W)=-\delta_{12}(I_{1})W,$ $\delta_{21}(W)=-W\delta_{21}(I_{1})$ $\forall W\in A_{22}$ ;
(3) $\delta_{11}(Y)=-Y\delta_{21}(I_{1})$ , $\delta_{21}(Y)=0$ , $\delta_{22}(Y)=\delta_{21}(I_{1})Y$ $\forall Y\in \mathcal{A}_{12}$ ;
(4) $\delta_{22}(Z)=Z\delta_{12}(I_{1})$ , $\delta_{12}(Z)=0,$ $\delta_{11}(Z)=-\delta_{12}(I_{1})Z$ $\forall Z\in A_{21}$ ;
(5) $\delta_{12}(XY)=\delta_{11}(X)Y+X\delta_{12}(Y)$ , $\delta_{11}(X_{1}X_{2})=\delta_{11}(X_{1})X_{2}+X_{1}\delta_{11}(X_{2})$ $\forall X_{1},$ $X_{2}\in$

$\mathcal{A}_{11},$ $Y\in \mathcal{A}_{12}$ ;
(6) $\delta_{12}(YW)=\delta_{12}(Y)W+Y\delta_{22}(W)$ , $\delta_{22}(W_{1}W_{2})=\delta_{22}(W_{1})W_{2}+W_{1}\delta_{22}(W_{2})$ $\forall W_{1},$ $W_{2}\in$

$A_{22},$ $Y\in \mathcal{A}_{12}$ ;
(7) $\delta_{21}(ZX)=\delta_{21}(Z)X+Z\delta_{11}(X)$ , $\delta_{21}(WZ)=\delta_{22}(W)Z+W\delta_{21}(Z)$ $\forall X\in \mathcal{A}_{11},$ $W\in$

$A_{22},$ $Z\in A_{21}$ ;
(8) $\delta_{11}(YZ)=\delta_{12}(Y)Z+Y\delta_{21}(Z)$ , $\delta_{22}(ZY)=\delta_{21}(Z)Y+Z\delta_{12}(Y)\forall Y\in A_{12},$ $Z\in A_{21}$ .
Now it is easy to check that $\delta$ is a derivation by claim 2.

3. MAPS BEHAVING LIKE DERIVATIONS AT NONTRIVIAL IDEMPOTENT-PRODUCT ELEMENTS

In this section we characterize the additive maps behaving like derivations at nontrivial
idempotent-product elements on unital rings. The following is the main result.

Theorem 3.1. Let $A$ be a unital $nng$ with unit I. Assume that, for every $A\in \mathcal{A}$ , there exists
some integer $n$ such that nl–A is invertible, and assume further that $A$ contains a nontrivial
idempotent $P$ such that $PAP\mathcal{A}(I-P)=0$ and $P\mathcal{A}(I-P)B(I-P)=0$ implies respectively
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that $PAP=0$ and $(I-P)B(I-P)=0$ . Then an additive map $\delta$ : $\mathcal{A}arrow A$ satisfies

$\delta(AB)=\delta(A)B+A\delta(B)$ for any $A,$ $B\in \mathcal{A}$ with $AB=P$ (3.1)

if and only if $\delta$ is a derivation.
In particular, we have the following corollaries.
Corollary 3.2. Let $A$ be a unital pntme ring. Assume that, for every $A\in A$ , there exists

some integer $n$ such that nl–A is invertible. If an additive map $\delta$ : $\mathcal{A}arrow A$ satisfies $Eq.(3.1)$

for some nontrivial idempotent $P\in A$ , then $\delta$ is a derivation.

If $A$ is unital (real or complex) Banach algebra, then nl–A is invertible whenever $n>\Vert A\Vert$ .
So, the following corollaries are immediate from Corollary 3.2 without any more additional
assumptions.

Corollary 3.3. Let $\mathcal{A}$ be a unital prime Banach algebm. Then every additive map satisfies
$Eq.(3.1)$ for some nontntvial idempotent in $A$ if and only if $\delta$ is a derivation.

Corollary 3.4. Let $\mathcal{A}$ be a factor von Neumann algebm. Then every additive map satisfies
$Eq.(3.1)$ for some nontrivial idempotent in $\mathcal{A}$ if and only if $\delta$ is a derivation.

For triangular rings (algebras), by Theorem 3.1. we have
Theorem 3. $5.Let\mathcal{A}$ and $\mathcal{B}$ be unital rings with units $I_{1}$ and $I_{2}$ , respectively, and ,14 be a

faithful $(A, \mathcal{B})$ -bimodule. Let $\mathcal{T}=$ Tri $(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be the triangular ring and $P$ be the standard
idempotent of it. Assume that, for every $A\in A$ , there is some integer $n$ such that $nI_{1}-A$ is

invertible. Then every additive map $\delta$ : $\mathcal{T}arrow \mathcal{T}$ satisfies Eq. (3.1) for the standard idempotent in
$\mathcal{A}$ if and only if $\delta$ is a derivation.

Thus by Theorem 3.5, we get
Corollary 3.6. Let $\mathcal{N}$ be a non-trivial nest in a factor von Neumann algebm $\mathcal{R}$ and $A$ ]$gr$ be

the associated nest algebm. Then an additive map $\delta$ : AlglV $arrow Algf$ satisfying $Eq.(3.1)for$ an
idempotent element $Q$ satisfying $PQ=Q$ and $QP=P$ for some nontrivial projection $P\in \mathcal{N}$ if
and only if $\delta$ is a derivation.

The sketch of proof of Theorem 3.1 We use the decomposition and notations in section
2. By investigation $AB=P$, we prove Claim 2 in section 2 is true for $\delta_{ij}(i,j=1,2)$ . Then it

is easy to check $\delta$ is a derivation.

4. MAPS BEHAVING LIKE DERIVATIONS AT UNIT-PRODUCT ELEMENTS

In this section, we discuss the additive maps behaving like derivations at unit-product elements

on unital rings with a non-trivial idempotent.

The following is the main result. Note that here we assume, in addition, that the ring is of

characteristic not 3 and contains the half of unit. We do not know if these assumptions may be

deleted.
Theorem 4.1. Let $\mathcal{A}$ be a unital ring with unit I and of chamcteristic not 3. Assume that

$A$ satisfies the following conditions:
(i) $\frac{1}{2}I\in A$;
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(ii) there exists a non-trivial idempotent $P\in A$ such that, for any $A\in A,$ $PAPA(I-P)=\{0\}$

and $PA(I-P)A(I-P)=\{0\}$ imply $PAP=0$ and $(I-P)A(I-P)=0$ , respectively;
(iii) for any $A\in \mathcal{A}$ , there exists some integer $n$ such that nl–A is invertible.
If $\delta$ : $Aarrow \mathcal{A}$ us an additive map satisfying

$\delta(AB)=\delta(A)B+A\delta(B)$ for any $A,$ $B\in A$ with $AB=I$ , (4.1)

then $\delta$ is a Jordan derivation.
A well known result due to Herstein [6] states that every Jordan derivation $hom$ a prime

ring of characteristic not 2 into itself is a derivation. Since every unital ring containing $\frac{1}{2}I$ is of
characteristic not 2, the following result is immediate from Theorem 4.1.

Theorem 4.2. Let $A$ be a unital prime ring with unit I and of chamcteristic not 3. Assume
that $A$ contains $\frac{1}{2}$I and a non-trivial idempotent $P$ and, for every $A\in A$ , there exists some
integer $n$ such that $nI-A$ is invertible. Then $\delta$ : $Aarrow \mathcal{A}$ is an additive map satisfying Eq. $(4\cdot 1)$

if and only if $\delta$ is a derivation.
In particular, applying above result to operator algebras, we have
Corollary 4.3. Let $A$ be a unital prime Banach algebm containing a non-trivial idempotent

$P$ , and let $\delta$ : $Aarrow A$ be an additive map. Then $\delta$ satisfies $Eq.(4\cdot 1)$ if and only if $\delta$ is a
derivation.

For triangular rings, by Theorem 4.1 we get
Corollary 4.4. Let $A$ and $\mathcal{B}$ be unital rings of chamcteristic not 3 with units $I_{1}$ and $I_{2}$ ,

respectively, and $\mathcal{M}$ be a faithful $(\mathcal{A}, \mathcal{B})$ -bimodule. Let $\mathcal{T}=$ Tri $(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be the triangular ring.
Assume that $\frac{1}{2}I_{1}\in \mathcal{A}$ and $\frac{1}{2}I_{2}\in \mathcal{B}$ , and further for any $A\in A,$ $B\in \mathcal{B}$ , there are some integers
$n_{1},$ $n_{2}$ such that $n_{1}I_{1}-A$ and $n_{2}I_{2}-B$ are invertible. Then every additive map $\delta$ : $\mathcal{T}arrow \mathcal{T}$

satisfies $Eq.(4\cdot 1)$ if and only if $\delta$ is a derivation.
From Corollary 4.4, we have
Corollary 4.5. $Let\mathcal{N}$ be a non-trivial nest in a factor von Neumann algebm $\mathcal{R}$ and let $A$ ]$gr$

be the associated nest algebm. Then every additive map $\delta$ : $Algrarrow Algr$ satisfies $Eq.(4\cdot 1)$ if
and only if $\delta$ is a derivation.

From Corollary 3.6 and Corollary 4.5, we obtain
Corollary 4.6. Let $\mathcal{N}$ be a non-tnvial nest in a factor von Neumann algebm $\mathcal{R}$ and let $Alg($

be the associated nest algebm. Then every additive map $\delta$ satisfies $\delta(AB)=\delta(A)B+A\delta(B)$ for
any $A,$ $B\in \mathcal{A}$ with $AB=Q$ for some nonzero idempotent element $Q$ with $PQ=Q$ and $QP=P$

for some nonzero projection $P\in \mathcal{N}$ if and only if $\delta$ is a derivation.
$\mathbb{R}om$ Corollary 3.4 and Corollary 4.3, we get
Corollary 4.7. Let $\mathcal{A}$ be a factor von Neumann algebm. Then every additive map on $\mathcal{A}$

satisfies $\delta(AB)=\delta(A)B+A\delta(B)$ for any $A,$ $B\in \mathcal{A}$ with $AB=P$ for some nonzem idempotent
element $P\in A$ if and only if $\delta$ is a derivation.

The sketch of proof of Theorem 4.1 We use the decomposition and notations in section
2. By investigation $AB=I$ , we prove (1) $-(2)$ and (5)$-(8)$ of Claim 2 in section 2 is true for $\delta_{ij}$
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$(i,j=1,2)$ . We obtain the following equalities for any $Y\in \mathcal{A}_{12}$ and $Z\in \mathcal{A}_{21}$ ,

$\delta_{11}(Y)=-Y\delta_{21}(I_{1})$ , $\delta_{22}(Y)=\delta_{21}(I_{1})Y$, $Y\delta_{21}(Y)=\delta_{21}(Y)Y=0$ ,
(4.2)

$\delta_{21}(XY)=\delta_{21}(Y)X$ , $\delta_{21}(YW)=W\delta_{21}(Y)$ , $\forall X\in A_{11},$ $Y\in A_{12},$ $W\in \mathcal{A}_{22}$ .

$\delta_{22}(Z)=Z\delta_{12}(I_{1})$ , $\delta_{11}(Z)=-\delta_{12}(I_{1})Z$ , $\delta_{12}(Z)Z=Z\delta_{12}(Z)=0$ ,
(4.3)

$\delta_{12}(ZX)=X\delta_{12}(Z)$ , $\delta_{12}(ZW)=\delta_{12}(Z)W,$ $\forall X\in \mathcal{A}_{11},$ $Z\in \mathcal{A}_{21},$ $W\in \mathcal{A}_{22}$ .

Then it is to check $\delta$ is a Jordan derivation.
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