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Loewner matrices of matrix convex and monotone functions
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Some results in [3, 6] were reported. Here we collect results from them. For the
detail, please see the papers.

1 Characterisations by Bhatia-Sano

In this section, we consider a C! function f from the interval (0,00) into itself,
with f(0) = lim; o+ f(¢) = 0. Given any n distinct points py,...,p, in (0,00), let
L¢(p1,...,pn) be the n X n matrix defined as

f(pz) —f(pj)J _ (11)
Di — D5
When i = j the quotient in (1.1) is interpreted as f'(p;). Such a matrix is called a
Loewner matrix associated with f.
For the function f(t) = ¢" where r > 0, we use the symbol L, for a Loewner matrix
associated with this function. Thus

L - [B=) .

The function f is said to be operator monotone on [0, ) if for two positive semidef-
inite matrices A and B (of any size n) the inequality A = B implies f(A) = f(B).
Here, as usual, A 2 B means that A — B is positive semidefinite (p.s.d. for short).

-Karl Lowner (later Charles Loewner) in [9] showed that f is operator monotone
if and only if for all n, and all pi,...,p,, the Loewner matrices L¢(p,...,p,) are
p.s.d. and that the function f(t) = t" is operator monotone if and only if 0 < r <
1. Consequently, if 0 < r £ 1, then the matrix (1.2) is p.s.d., and therefore all its
eigenvalues are non-negative.

Recall the notion of operator convexity: Assume that f is a C? function from (0, co)
into itself, f(0) = 0 and f'(0) = 0. We say that f is operator convez if

fFA=t)A+tB) = (1 -t)f(A) +tf(B), 0=t

Ly(p1,....pn) = [



106

for all p.s.d. matrices A and B (of any size n).

Let H™ be the subspace of C" consisting of all z = (z1, ..., z,) for which ) z; =0.
i=1
An n x n Hermitian matrix A is said to be conditionally positive definite (c.p.d. for

short) or almost positive if
(z,Az) 20 forall z € H",

and conditionally negative definite (c.n.d. for short) if —A is c.p.d. We refer the reader
to [1, 4, 8] for properties of these matrices.
We proved:

Theorem 1.1. Let f be an operator convex function. Then all Loewner matrices
associated with f are conditionally negative definite.

Theorem 1.2. Let f(t) = tg(t) where g is an operator convex function. Then all
Loewner matrices associated with f are conditionally positive definite.

Theorem 1.3. Let L, be the n x n Loewner matrix (1.2) associated with distinct
points py, ..., p,. Then

(i) L, is conditionally negative definite for 1 £ r £ 2, and conditionally positive definite
for2<r 3.

(ii) L, is nonsingular for 1 <r < 2 and for 2 < r < 3.

(iii) As a consequence, for 1 < r < 2 the matrix L, has one positive and n — 1 negative
eigenvalues, and for 2 < r < 3 it has one negative and n — 1 positive eigenvalues.

Here is the converse of Theorems 1.1 and 1.2:

Theorem 1.4.  Let f be a C? function from (0, 00) into itself with f(0) = f'(0) = 0.
Suppose all Loewner matrices Ly are conditionally negative definite. Then f is operator
convex.

Theorem 1.5. Let f be a C? function from (0, c0) into itself with f(0) = f/(0) =
f"(0) = 0. Suppose all Loewner matrices Ly are conditionally positive definite. Then
there exists an operator convex function g such that f(¢) = tg(¢).

Remark. Theorems 1.1, 1.2, 1.4 and 1.5 together say the following. Let f be a
C3 function from (0, c0) into itself with f(0) = 0. Let g(¢) = tf(¢), h(t) = t2f(¢). Then
the following three conditions are equivalent.
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(i) All Loewner matrices Ly are p.s.d.
(ii) All Loewner matrices Ly are c.n.d.
(iii) All Loewner matrices Ly, are c.p.d.

2 Generalisations by Hiai-Sano

We already review characterizations in [3] for operator convexity of nonnegative func-
tions on [0,00) in terms of the conditional negative or positive definiteness of the
Loewner matrices. Uchiyama [10] extended, by a rather different method, results
in such a way that the assumption f > 0 is removed and the boundary condition
f(0) = f(0) = 0 is relaxed. Note that the conditional positive definiteness of the
Loewner matrices and the matrix/operator monotony were related in [7] and [4, Chap-
ter XV] for a real function on a general open interval.
We proved:

Theorem 2.1. Let f be a real C* function on (0,00). For each n € N consider the
following conditions:

(a)n f is n-convez on (0,00);
(b), liminf, .o f(t)/t > —oco and L¢(t1,...,t,) is c.n.d. for all t1,...,t, € (0,00);
(€)n limsup, ot f(t) >0 and Ly (te, ..., 1) is c.p.d. for allty,... t, € (0,00).

Then for every n € N the following implications hold:
(a‘)2n+l = (b)n'7 (b)4n+1 = (a)n7 (a‘)n+1 == (C)n’ (C)2n+1 = (a‘)n

Corollary 2.2. Let f be a real C* function on (0,00). Then the following conditions
are equivalent:

(a) f is operator convez on (0,00);

(b) liminf, ,o f(t)/t > —o0 and L¢(t1,...,t,) ts c.n.d. for alln € N and allty, ..., t,
€ (0,00);

(c) imsupy otf(t) > 0 and Ligs)(t1, . . ., ts) is c.p.d. for alln € N and allty,. .. t, €
(0, 00).

Moreover, if the above conditions are satisfied, then limy_,o f(t)/t and im0t f(%)
ezist in (—oo,00] and [0, 00), respectively.

Theorem 2.3. Let f be a real C* function on (0,00). For each n € N consider the
following conditions:
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(a), f is n-monotone on (0,00);

(b), limsup,_,, f(t)/t < +oo, limsup,_,, f(t) > —oo, and Lg(ty,...,t,) is c.p.d. for
all ty,...,t, € (0,00);

(c)h, liminf~ ot f(¢) <0, limsup, o, f(t) > —0c0, and Ly (ti,. .., ts) is c.n.d. for all
t17 cen ,tn € (0,00),'

liminfyotf(t) <0, limsupnot2f(t) > 0, and Ly (ts, ..., t,) is c.p.d. for all
tl,...,tn € (0,00)

—

(@l
-
3=

Then for every n € N the following implications hold:

!

(@) = (b), fn 22, (b = (@), (B)ons2 == () ()24 = (a)y,

’ ! !

(), => () 22, (g = (A, (d)npy = (0

n

Corollary 2.4. Let f be a real C* function on (0,00). Then the following conditions
are equivalent:

(a)’ f is operator monotone on (0,00);

(b)’ limsup,_, ., f(t)/t < +oo, limsup,_,, f(t) > —oo, and L¢(t1,...,t,) is c.p.d. for
allneNand all ty,...,t, € (0,00);

(¢)’ liminfiotf(t) <0, limsup, ,o f(t) > —00, and L) (t1,- . .,tn) s c.n.d. for all
n € N and all t,...,t, € (0,00);

(d)" liminfyotf(t) <0, limsupyt2f(t) > 0, and Ly (ts, .- - ,ts) is c.p.d. for all
n € N and all t,,...,t, € (0,00).

Moreover, if the above conditions are satisfied, then lim;_,. f(¢)/t, im;_,o f(t), and
limp o tf(t) exist in [0,00), (—00, 0], and (—00,0], respectively, and limy ot f(t) =0
for any a > 1.

Proposition 2.5. Consider the power functions t* on (0,00), where « € R. Then:

(1) t* is 2-monotone if and only if 0 < a < 1, or equivalently, t* is operator mono-
tone. Moreover, —t is 2-monotone if and only if —1 < a < 0.

(2) t* s 2-convez if and only if either —1 < a <0 or 1 < a < 2, or equivalently, t*
15 operator convezx.

(3) Lia(t1,t2) is c.p.d. for all ty,ta € (0,00) if and only if either 0 < <1 ora > 2.

(4) Lia(t1,t2) s c.n.d. for all ty,ts € (0,00) if and only if eithera <0 orl1 < a < 2.



(8) Lta(t1,t2,t3) is c.p.d. for all t1,ts,t3 € (0,00) if and only if either 0 < o <1 or
2<a<3.

(6) Lia(t1,t2,t3) is c.n.d. for all ty,ts,t3 € (0,00) if and only if either —1 < a <0
orl <a<2.

Theorem 2.6. Let f be a real C' function on (a,b) where —co < a < b < oo. For
each n € N consider the following conditions:

(a)n f is n-monotone on (a,b);

(B)n limsup, = (b — 1) f(t) < +oo, limsup, ~ f(t) > —oo, and Lip—g2s@)(t1,. .-, tn) s
c.p.d. for allty,... t, € (a,b);

(M liminfio(t — a) f(t) < 0, limsup, ~ f(t) > —o0, and Ly_ayp—tyst)(tr,-- -, tn) is
c.n.d. for allty,... t, € (a,b);

(0)n liminfo(t —a)f(t) <0, limsup, ,(t — a)?f(t) >0, and Ly_ayp2s(ty, - - ., tn) 1
c.p.d. for all tq,...,t, € (a,b).

Then for every n € N the following implications hold:
(a)n = (B)n an Z 27 (B)4n+1 == (a)na (a)2n+2 = (W)na (’7)2n+1 - (a)rn

(a)n == (5)n an Z 23 (7)2n+1 S (6)na (5)2n+1 = (7)71

Corollary 2.7. Let f be a real C* function on (a,b) where —oc0 < a < b < 0o. Then
the following conditions are equivalent:

() f is operator monotone on (a,b);

(B) limsup, ~ (b — t) f(t) < +oo, limsup, », f(t) > —oo, and Lp_tyes(t,- - -, ta) s
c.p.d. foralln € N and all t,...,t, € (a,b);

(7) liminfio(¢ — a) f(¢) < 0, limsup, » f(t) > —co, and Ly_ayp-se)(ts,- - -1 tn) is
c.n.d. for alln € N and all ty,...,t, € (a,b);

() liminfiq(t —a)f(t) <0, limsupy 4(t — a)?f(t) 20, and Ly_ay2f)(tr, .- ta) 18
c.p.d. for alln € N and all t4,...,t, € (a,b).
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