Loewner matrices of matrix convex and monotone functions (joint work with F. Hiai)

Takashi Sano

Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan sano@sci.kj.yamagata-u.ac.jp

Some results in [3, 6] were reported. Here we collect results from them. For the detail, please see the papers.

1 Characterisations by Bhatia-Sano

In this section, we consider a C^1 function f from the interval $(0, \infty)$ into itself, with $f(0) = \lim_{t\to 0^+} f(t) = 0$. Given any n distinct points p_1, \ldots, p_n in $(0, \infty)$, let $L_f(p_1, \ldots, p_n)$ be the $n \times n$ matrix defined as

$$L_f(p_1, \dots, p_n) = \left[\frac{f(p_i) - f(p_j)}{p_i - p_j} \right].$$
 (1.1)

When i = j the quotient in (1.1) is interpreted as $f'(p_i)$. Such a matrix is called a Loewner matrix associated with f.

For the function $f(t) = t^r$ where r > 0, we use the symbol L_r for a Loewner matrix associated with this function. Thus

$$L_r = \left\lceil \frac{p_i^r - p_j^r}{p_i - p_j} \right\rceil. \tag{1.2}$$

The function f is said to be *operator monotone* on $[0, \infty)$ if for two positive semidefinite matrices A and B (of any size n) the inequality $A \geq B$ implies $f(A) \geq f(B)$. Here, as usual, $A \geq B$ means that A - B is positive semidefinite (p.s.d. for short).

Karl Löwner (later Charles Loewner) in [9] showed that f is operator monotone if and only if for all n, and all p_1, \ldots, p_n , the Loewner matrices $L_f(p_1, \ldots, p_n)$ are p.s.d. and that the function $f(t) = t^r$ is operator monotone if and only if $0 < r \le 1$. Consequently, if $0 < r \le 1$, then the matrix (1.2) is p.s.d., and therefore all its eigenvalues are non-negative.

Recall the notion of operator convexity: Assume that f is a C^2 function from $(0, \infty)$ into itself, f(0) = 0 and f'(0) = 0. We say that f is operator convex if

$$f((1-t)A + tB) \le (1-t)f(A) + tf(B), \quad 0 \le t \le 1,$$

for all p.s.d. matrices A and B (of any size n).

Let H^n be the subspace of \mathbb{C}^n consisting of all $x = (x_1, \dots, x_n)$ for which $\sum_{i=1}^n x_i = 0$. An $n \times n$ Hermitian matrix A is said to be *conditionally positive definite* (c.p.d. for short) or almost positive if

$$\langle x, Ax \rangle \ge 0$$
 for all $x \in H^n$,

and conditionally negative definite (c.n.d. for short) if -A is c.p.d. We refer the reader to [1, 4, 8] for properties of these matrices.

We proved:

Theorem 1.1. Let f be an operator convex function. Then all Loewner matrices associated with f are conditionally negative definite.

Theorem 1.2. Let f(t) = tg(t) where g is an operator convex function. Then all Loewner matrices associated with f are conditionally positive definite.

Theorem 1.3. Let L_r be the $n \times n$ Loewner matrix (1.2) associated with distinct points p_1, \ldots, p_n . Then

- (i) L_r is conditionally negative definite for $1 \le r \le 2$, and conditionally positive definite for $2 \le r \le 3$.
- (ii) L_r is nonsingular for 1 < r < 2 and for 2 < r < 3.
- (iii) As a consequence, for 1 < r < 2 the matrix L_r has one positive and n-1 negative eigenvalues, and for 2 < r < 3 it has one negative and n-1 positive eigenvalues.

Here is the converse of Theorems 1.1 and 1.2:

Theorem 1.4. Let f be a C^2 function from $(0, \infty)$ into itself with f(0) = f'(0) = 0. Suppose all Loewner matrices L_f are conditionally negative definite. Then f is operator convex.

Theorem 1.5. Let f be a C^3 function from $(0, \infty)$ into itself with f(0) = f'(0) = f''(0) = 0. Suppose all Loewner matrices L_f are conditionally positive definite. Then there exists an operator convex function g such that f(t) = tg(t).

Remark. Theorems 1.1, 1.2, 1.4 and 1.5 together say the following. Let f be a C^3 function from $(0, \infty)$ into itself with f(0) = 0. Let g(t) = tf(t), $h(t) = t^2 f(t)$. Then the following three conditions are equivalent.

- (i) All Loewner matrices L_f are p.s.d.
- (ii) All Loewner matrices L_g are c.n.d.
- (iii) All Loewner matrices L_h are c.p.d.

2 Generalisations by Hiai-Sano

We already review characterizations in [3] for operator convexity of nonnegative functions on $[0, \infty)$ in terms of the conditional negative or positive definiteness of the Loewner matrices. Uchiyama [10] extended, by a rather different method, results in such a way that the assumption $f \geq 0$ is removed and the boundary condition f(0) = f'(0) = 0 is relaxed. Note that the conditional positive definiteness of the Loewner matrices and the matrix/operator monotony were related in [7] and [4, Chapter XV] for a real function on a general open interval.

We proved:

Theorem 2.1. Let f be a real C^1 function on $(0, \infty)$. For each $n \in \mathbb{N}$ consider the following conditions:

- (a)_n f is n-convex on $(0,\infty)$;
- (b)_n $\liminf_{t\to\infty} f(t)/t > -\infty$ and $L_f(t_1,\ldots,t_n)$ is c.n.d. for all $t_1,\ldots,t_n \in (0,\infty)$;
- (c)_n $\limsup_{t \searrow 0} tf(t) \geq 0$ and $L_{tf(t)}(t_1, \ldots, t_n)$ is c.p.d. for all $t_1, \ldots, t_n \in (0, \infty)$.

Then for every $n \in \mathbb{N}$ the following implications hold:

$$(a)_{2n+1} \Longrightarrow (b)_n$$
, $(b)_{4n+1} \Longrightarrow (a)_n$, $(a)_{n+1} \Longrightarrow (c)_n$, $(c)_{2n+1} \Longrightarrow (a)_n$.

Corollary 2.2. Let f be a real C^1 function on $(0, \infty)$. Then the following conditions are equivalent:

- (a) f is operator convex on $(0, \infty)$;
- (b) $\liminf_{t\to\infty} f(t)/t > -\infty$ and $L_f(t_1, \ldots, t_n)$ is c.n.d. for all $n \in \mathbb{N}$ and all $t_1, \ldots, t_n \in (0, \infty)$;
- (c) $\limsup_{t\searrow 0} tf(t) \geq 0$ and $L_{tf(t)}(t_1,\ldots,t_n)$ is c.p.d. for all $n\in\mathbb{N}$ and all $t_1,\ldots,t_n\in(0,\infty)$.

Moreover, if the above conditions are satisfied, then $\lim_{t\to\infty} f(t)/t$ and $\lim_{t\to 0} t f(t)$ exist in $(-\infty,\infty]$ and $[0,\infty)$, respectively.

Theorem 2.3. Let f be a real C^1 function on $(0, \infty)$. For each $n \in \mathbb{N}$ consider the following conditions:

- (a)'_n f is n-monotone on $(0, \infty)$;
- (b)'_n $\limsup_{t\to\infty} f(t)/t < +\infty$, $\limsup_{t\to\infty} f(t) > -\infty$, and $L_f(t_1,\ldots,t_n)$ is c.p.d. for all $t_1,\ldots,t_n \in (0,\infty)$;
- (c)'_n $\liminf_{t \searrow 0} t f(t) \leq 0$, $\limsup_{t \to \infty} f(t) > -\infty$, and $L_{tf(t)}(t_1, \ldots, t_n)$ is c.n.d. for all $t_1, \ldots, t_n \in (0, \infty)$;
- (d)'_n $\liminf_{t\searrow 0} tf(t) \leq 0$, $\limsup_{t\searrow 0} t^2f(t) \geq 0$, and $L_{t^2f(t)}(t_1,\ldots,t_n)$ is c.p.d. for all $t_1,\ldots,t_n\in(0,\infty)$.

Then for every $n \in \mathbb{N}$ the following implications hold:

$$(a)'_{n} \Longrightarrow (b)'_{n} \text{ if } n \ge 2, \quad (b)'_{4n+1} \Longrightarrow (a)'_{n}, \quad (a)'_{2n+2} \Longrightarrow (c)'_{n}, \quad (c)'_{2n+1} \Longrightarrow (a)'_{n},$$

$$(a)'_{n} \Longrightarrow (d)'_{n} \text{ if } n \ge 2, \quad (c)'_{2n+1} \Longrightarrow (d)'_{n}, \quad (d)'_{2n+1} \Longrightarrow (c)'_{n}.$$

Corollary 2.4. Let f be a real C^1 function on $(0, \infty)$. Then the following conditions are equivalent:

- (a)' f is operator monotone on $(0, \infty)$;
- (b)' $\limsup_{t\to\infty} f(t)/t < +\infty$, $\limsup_{t\to\infty} f(t) > -\infty$, and $L_f(t_1,\ldots,t_n)$ is c.p.d. for all $n \in \mathbb{N}$ and all $t_1,\ldots,t_n \in (0,\infty)$;
- (c)' $\liminf_{t\searrow 0} tf(t) \leq 0$, $\limsup_{t\to\infty} f(t) > -\infty$, and $L_{tf(t)}(t_1,\ldots,t_n)$ is c.n.d. for all $n\in\mathbb{N}$ and all $t_1,\ldots,t_n\in(0,\infty)$;
- (d)' $\liminf_{t\searrow 0} tf(t) \leq 0$, $\limsup_{t\searrow 0} t^2f(t) \geq 0$, and $L_{t^2f(t)}(t_1,\ldots,t_n)$ is c.p.d. for all $n\in\mathbb{N}$ and all $t_1,\ldots,t_n\in(0,\infty)$.

Moreover, if the above conditions are satisfied, then $\lim_{t\to\infty} f(t)/t$, $\lim_{t\to\infty} f(t)$, and $\lim_{t\searrow 0} t f(t)$ exist in $[0,\infty)$, $(-\infty,\infty]$, and $(-\infty,0]$, respectively, and $\lim_{t\searrow 0} t^{\alpha} f(t) = 0$ for any $\alpha > 1$.

Proposition 2.5. Consider the power functions t^{α} on $(0, \infty)$, where $\alpha \in \mathbb{R}$. Then:

- (1) t^{α} is 2-monotone if and only if $0 \leq \alpha \leq 1$, or equivalently, t^{α} is operator monotone. Moreover, $-t^{\alpha}$ is 2-monotone if and only if $-1 \leq \alpha \leq 0$.
- (2) t^{α} is 2-convex if and only if either $-1 \leq \alpha \leq 0$ or $1 \leq \alpha \leq 2$, or equivalently, t^{α} is operator convex.
- (3) $L_{t^{\alpha}}(t_1, t_2)$ is c.p.d. for all $t_1, t_2 \in (0, \infty)$ if and only if either $0 \le \alpha \le 1$ or $\alpha \ge 2$.
- (4) $L_{t^{\alpha}}(t_1, t_2)$ is c.n.d. for all $t_1, t_2 \in (0, \infty)$ if and only if either $\alpha \leq 0$ or $1 \leq \alpha \leq 2$.

- (5) $L_{t^{\alpha}}(t_1, t_2, t_3)$ is c.p.d. for all $t_1, t_2, t_3 \in (0, \infty)$ if and only if either $0 \le \alpha \le 1$ or $2 \le \alpha \le 3$.
- (6) $L_{t^{\alpha}}(t_1, t_2, t_3)$ is c.n.d. for all $t_1, t_2, t_3 \in (0, \infty)$ if and only if either $-1 \leq \alpha \leq 0$ or $1 \leq \alpha \leq 2$.

Theorem 2.6. Let f be a real C^1 function on (a,b) where $-\infty < a < b < \infty$. For each $n \in \mathbb{N}$ consider the following conditions:

- $(\alpha)_n$ f is n-monotone on (a,b);
- $(\beta)_n \limsup_{t \nearrow b} (b-t)f(t) < +\infty$, $\limsup_{t \nearrow b} f(t) > -\infty$, and $L_{(b-t)^2 f(t)}(t_1, \ldots, t_n)$ is c.p.d. for all $t_1, \ldots, t_n \in (a, b)$;
- $(\gamma)_n \liminf_{t\searrow a} (t-a)f(t) \leq 0$, $\limsup_{t\nearrow b} f(t) > -\infty$, and $L_{(t-a)(b-t)f(t)}(t_1,\ldots,t_n)$ is c.n.d. for all $t_1,\ldots,t_n\in(a,b)$;
- $(\delta)_n \liminf_{t \searrow a} (t-a)f(t) \leq 0$, $\limsup_{t \searrow a} (t-a)^2 f(t) \geq 0$, and $L_{(t-a)^2 f(t)}(t_1, \ldots, t_n)$ is c.p.d. for all $t_1, \ldots, t_n \in (a, b)$.

Then for every $n \in \mathbb{N}$ the following implications hold:

$$(\alpha)_n \Longrightarrow (\beta)_n \text{ if } n \ge 2, \quad (\beta)_{4n+1} \Longrightarrow (\alpha)_n, \quad (\alpha)_{2n+2} \Longrightarrow (\gamma)_n, \quad (\gamma)_{2n+1} \Longrightarrow (\alpha)_n,$$
$$(\alpha)_n \Longrightarrow (\delta)_n \text{ if } n \ge 2, \quad (\gamma)_{2n+1} \Longrightarrow (\delta)_n, \quad (\delta)_{2n+1} \Longrightarrow (\gamma)_n.$$

Corollary 2.7. Let f be a real C^1 function on (a,b) where $-\infty < a < b < \infty$. Then the following conditions are equivalent:

- (α) f is operator monotone on (a,b);
- (β) $\limsup_{t \nearrow b} (b-t)f(t) < +\infty$, $\limsup_{t \nearrow b} f(t) > -\infty$, and $L_{(b-t)^2 f(t)}(t_1, \ldots, t_n)$ is c.p.d. for all $n \in \mathbb{N}$ and all $t_1, \ldots, t_n \in (a, b)$;
- (γ) $\liminf_{t \searrow a} (t-a) f(t) \leq 0$, $\limsup_{t \nearrow b} f(t) > -\infty$, and $L_{(t-a)(b-t)f(t)}(t_1, \ldots, t_n)$ is c.n.d. for all $n \in \mathbb{N}$ and all $t_1, \ldots, t_n \in (a,b)$;
- (δ) $\liminf_{t\searrow a}(t-a)f(t) \leq 0$, $\limsup_{t\searrow a}(t-a)^2f(t) \geq 0$, and $L_{(t-a)^2f(t)}(t_1,\ldots,t_n)$ is c.p.d. for all $n \in \mathbb{N}$ and all $t_1,\ldots,t_n \in (a,b)$.

References

[1] R. B. Bapat and T. E. S. Raghavan, *Nonnegative Matrices and Applications*, Cambridge University Press (1997).

- [2] R. Bhatia and J. A. Holbrook, Frechet derivatives of the power function, Indiana Univ. Math. J., 49 (2003), 1155-1173.
- [3] R. Bhatia and T. Sano, Loewner matrices and operator convexity, Math. Ann., 344 (2009), 703–716.
- [4] W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer (1974).
- [5] F. Hansen and G. K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann., 258 (1982), 229-241.
- [6] F. Hiai and T. Sano, Loewner matrices of matrix convex and monotone functions, to appear in J. Math. Soc. Japan.
- [7] R. A. Horn, Schlicht mappings and infinitely divisible kernels, Pacific J. Math., 38 (1971), 423-430.
- [8] R. A. Horn and C. R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press (1991).
- [9] K. Löwner, Über monotone Matrixfunctionen, Math. Z., 38 (1934), 177-216.
- [10] M. Uchiyama, Operator monotone functions, positive definite kernels and majorization, Proc. Amer. Math. Soc., 138 (2010), 3985–3996.