0000000000
017370 20110 123-132 123

SOME RESULTS ON GENERALIZED QUADRATIC OPERATORS

Masaru Tominaga (EX ¥)

Hiroshima Institute of Technology
(LETHKYE)

m.tominaga.3n@it-hiroshima.ac.jp

ABSTRACT. A bounded linear operator acting on a Hilbert space is a generalized qua-
dratic operator if it has an operator matrix of the form

al T
ar* bl|’
It reduces to a quadratic operator if d = 0. In this paper, norms and numerical ranges

of generalized quadratic operators are determined. Some operator inequalities are also
obtained. Moreover we consider g-numerical range.

1. INTRODUCTION

Let B(H) be the algebra of bounded linear operators acting on a Hilbert space H. We
identify B(H) with M, if H has dimension n. An operator A € B(H) is a generalized
quadratic operators if it has an operator matrix of the form

al T
(1.1) [dT* bl]
where T is an operator from Xy to Ky (Kq, Kp: Hilbert spaces), and a, b, ¢, d are complex

numbers. [In the following discussion, we will not distinguish the operator and its operator
matrix if there is no ambiguity.] When d = 0, such an operator A satisfies condition

(1.2) (al — A)(bI — A) =0

and is known as a quadratic operator. In fact, it is known that an operator A satisfies
(1.2) if and only if it has an operator matrix of the form (1.1) with d = 0.

In this paper, a complete description is given to the norm and ranges of an operator of
the form (1.1). In particular, the norm of A is the same as that of A, with p = ||T'||. We
always assume that cdT # 0 in the following discussion.

In Section 2, we obtain a different operator matrix for an generalized quadratic operator
A. In Section 3, we determine the numerical range and the norm of generalized quadratic
operators. Furthermore, we obtain some operator inequalities concerning generalized
quadratic operators that extend some results of Furuta [1] and Garcia [2]. We then give
the description of g-numerical ranges of A in Section 4.

We will use the following notations in our discussion. For S C C, denote by int(S),
cl(S) and conv(S) the relative interior, the closure and the convex hull of .S, respectively.
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Note that in our discussion, it may happen that S = conv{u;, u,} is a line segment in C
so that int(S) = S\ {1, a2}

For A € B(H), let ker A and rangeA denote the null space and range space of A,
respectively. Let V' be a closed subspace of H and @) the embedding of V into H. Then
B = @Q*AQ is the compression of A onto V.

2. A DIFFERENT OPERATOR MATRIX REPRESENTATION

First, we obtain a different operator matrix for A of the form (1.1). The special form
reduces to that of quadratic operators in [8, Theorem 1.1] if d = 0.

Theorem 2.1. Let A € B(H) (H = K1 ® K2) be an operator with an operator matrix

al T

(L) [dT* bl]
where a,b,c,d € C and T € B(K3, K1) with cdT # 0. Let Hy = tangel™ (the closure of
rangeT™), H, = tangel’, Ho = ker T*, Hz = ker T'. Let Ty be a restriction of T to H, with
the polar decomposition Tp = U|To| where U € B(Hi, H1) is a unitary. Then the operator
matriz (1.1) is unitarily similar to
@1 abgo | ATl g ur e B (M= Hy ® (M ® Hy) © Ha)

. Ha leol bI’Hl H3 2 1 1 3

by the unitary
I'Hz @ (U D IH1) D I'Hs

from Hy @ (H1 ® Hy) ® Hs to Hy & (H1 © Hy) © Hs.

Proof. The operator matrix (1.1) has the following form by the direct sum decomposition
H(=K: @ K;)=(H2 H1) & (H, & H3)

aly, O 0 0
0 aly, | clh 0
0 dIy |bly, O
0 0 0 bl

So we may only consider the part alr,i cTo . Indeed, we have
dIg bl

U 0] [al, cTol][U* 0] _[al, cTy
0 I.| (dTo] oL, | |0 I,{ |dIg bl,|"
It completes this theorem. t

Remark 2.2. We have {|To|z,x) # 0 for all nonzero x € Hy. That is, |To| is injection.

By Theorem 2.1, we can focus on an operator A with an operator matrix of the form
(2.1) with cd|Tp| # 0. Also, the family of matrices

a cp

will be very useful in our discussion.
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3. NUMERICAL RANGE AND OPERATOR INEQUALITIES
Recall that the numerical range of A € B(H) is defined by
W(A) = {{Az,z) 1z € M, ||z|| = 1};

see [3], [4], [5]. The numerical range is useful in studying matrices and operators. One of
the basic properties of the numerical range is that W(A) is always convex; for example,
see [4]. In particular, we have the following result, e.g., see [5, Theorem 1.3.6] and [6].

Elliptical Range Theorem. If A € M, has eigenvalues pu; and pz, then W(A) is an
elliptical disk with py, py as foci and \/tr (A*A) — |p1|? — |p2|? as the length of minor axis.
Furthermore, if A = A — (tr A)I/2, then the lengths of minor and major axis of W(A)
are, respectively,

{tr (A*A) — 2|det A|}*? and {tr (A*A) + 2| det A|}V2.

Using this theorem, one can deduce the convexity of the numerical range of a general
operator; e.g., see [6]. It turns out that for an operator A in Theorem 2.1, W(A) is also an
elliptical disk with all the boundary points, two boundary points, or none of its boundary
points as shown in the following.

Theorem 3.1. Suppose A € B(H) has the operator matriz in Theorem 2.1. Let p = || To||,
A= [(25 Cf so that A has eigenvalues s = : {(a +b)++/(a—b)2+ 4cd132} and W (A)
is the elliptical disk with foci p,p_ and minor axis of length
Vi0aP? + b2 + 5 (el + [d2) — [u+ |2 = [p-[2.
If |Toz|| = |Tol| for some unit vector x € Hy, then
W(A) = W(A).
Otherwise, W(A) = int(W(/i)) U {a,b}. More precisely, one of the following holds:

(1) If |c| = |d| and d(a — b) = c(a —b), then both A and A are normal, and

W(A) = W(A) \ o(A) = conv{p,, pu}\ {us,p}.

(2) If |c| = |d| and there is ¢ € (0,7) such that d(a — b) = e*c(@ — b) # 0, then both
numbers a, b lie on the boundary OW (A) of W(A), and

W (A) = int(W(A)) U {a, b}.
(3) If |c| # |d|, then W(A) = int(W (A)).

To prove Theorem 3.1, we need the following lemma, which will also be useful for later
discussion.

Lemma 3.2. Let A, = [CZD Cl‘;D ] forp >0 so that W(A,) is the closed elliptical disk with
foci py = 2{(a+b) £ \/(a — b)2 + 4edp®} and minor azis of length

Vial2 + [b2 + p?(|cl? + [d]?) — [+ 2 = |-
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Then
W(A) CW(4) forp<g
More precisely, one of the following holds:

(1) If |c| = |d| and d(a — b) = c(@ — b), then W(A,) = convo(A4,) and W(4,) =
convo(A,) are line segments such that W(A,) is a subset of the relative interior
of W(A,). ) . )

(2) If |c| = |d| and there is ¢ € (0,7) such that d(a — b) = eXc(a — b) # 0, then
{a,b} = OW (A,) NOW (A,), and

W(A4p) C int(W(A,)) U {a,b}.

(3) If |c| # |d|, then W(A,) C intW(A,).

Proof. All numerical ranges W(A,) have the same center o = (a + b)/2. Suppose 3 =
(a — b)/2. Denote by A;(X) the largest eigenvalue of a self-adjoint matrix X. Then

W(A) = () Te(A4p)
£el0,2nw)

where ' ' ‘ '
Oe(Ap) = {peC: e u+e i< M(efA, + e AL)}
is a half space in C. Since

M(efA, + e 84 = efa+ e Ha+ \/Ie’fﬁ + e~% ]2 + p|eiéc + e~iéd|?

is an increasing function of p, we see that II¢(A,) C II¢(A,) and hence W (A,) C W(A,)
fp<gq
Case 1. Suppose a,b,c,d satisfy condition (1). Then A, is normal and A, = al +
B, where W(B,) = conv{+,/— det(B,)} is a line segment of length 2./|3|% + p?|c|? =
|62 + p?|d|?. Thus, the conclusion of (1) holds.
Case 2. Suppose a, b, c,d satisfy condition (2). Then A, = al, + §B, with

. i . 2 . 2d
ezCBp — ,:6 op ] , 5 = e ¢ = e %

op —ei€
Using the elliptical range theorem, one readily checks that W (e B,) is a nondegenerate
1 épe™®

elliptical disk. Since B, = [Spe‘“ 1 ] and

a—>b a—b

i —iE R _ cos§ dp cos(€ — ()
By +e 5Bi’“z[&ocos(ﬂ—@ —cos¢ ] ’

we have
A (€% B, + e % By) = 24/cos? £ + |6]2p? cos?(€ — () > +2cos = + (e + %)

where equality holds only for £ = ¢ + 7/2. Therefore A\i(e*B, + e‘igB;) is a strictly
increasing function for p > 0, except for £ = ( £ m/2. Moreover 1 and —1 are on the
boundary of W(B,) for £ = ¢ £ 7/2. From this, we get the conclusion of (2).

Case 3. Suppose a, b, c,d do not satisfy the conditions in (1) or (2). Since |c| # |d], for
every £ € [0, 27),

A(€%A, + e %A = efa+ e a+ \/leié‘ﬂ + e~# (3|2 + pleéc + e~iéd|?
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is a strictly increasing function for p > 0. Thus, the conclusion of (3) holds. d

Proof of Theorem 3.1. Since W(X®Y) = conv{W(X)UW(Y)} = W(X)if W(Y) C
W(X), we may assume that v/, is vacuous. Let P = |Tp|.

cos 01,
sinOxg}
for some unit vectors z1,z, € H;. Let (Pxy,z5) = pe™™ with p € [0,p] and ¢ € [0, 27).
Then

Suppose z € H = H; ®H, is a unit vector and p = (Az,z) € W(A). Let z = [

p=[cosf | e sind)A, [ cos 6 ] € W(4,) C W(A)

€' sin @
by Lemma 3.2.
If there is a unit vector z € H; such that |P|| = ||Pz||, then
IPI* = (P*z,z) < ||[P?z||ljz]| < [[P?Il = | PI>

Thus, P>z = ||P||?z and hence Pz = ||P||z as P is positive semi-definite. Then the
operator matrix of A with respect to H = Ho @ Hg, where

e {1

has the form A @ A’ € B(H). Thus, W(A) C W(A), and the equality holds.

Suppose there is no unit vector z € H; such that ||P|| = ||Pz||. Then for any unit
cos 0z,
sin 09
with p € [0,5] and ¢ € [0,27), then p < p. By Lemma 3.2, we see that u € int(W(A)) if
(a) or (c) holds, and p € int(W(A)) U {a, b} if (b) holds.

To prove the reverse set equalities, note that there is a sequence of unit vectors {z,,} in
H; such that (Pz,, z,) = p,, converges to p. Then the compression of A on the subspace

Vm:span{[xg’],LUO]}Q’H:'HléB'Hl

has the form A,,,. Since W(A,,_) — W(A), we see that int(W(A)) C W(A). It is also
clear that {a,b} C W(A). Thus, the set equalities in (1) — (3) hold. O

vector r € H, let z = [ } for some unit vectors 1,z € Hy. If (Pxy, 1) = pe'®

We consider some operator inequalities. Denote by
w(A) = sup{|u| : p € W(A)}
the numerical radius of A € B(H). It follows readily from Theorem 3.1 that w(A) = w(A)
if Aand A are defined as in Theorem 3.1. Since A has a dilation of the form A®I,
we have ||A]| < ||A|l. As shown in the proof of Theorem 3.1, there is a sequence of two
dimensional subspaces {V;,} such that the compression of A on V,, is 4, which converges
to A. Thus, we have ||A|| = ||A||. Suppose A has singular values s; > s,. Then ||A|| = sy,
tr (A*A) = 2 + 52 and | det(A)| = s,s,. Hence, for p = || P||,

A = % {\/tr (A*A) + 2| det(A4)| + \/tr(/i*fl) — 2| det(fl)l}

= 3 {VIF o+ (1 + P + 2lab — cdp?
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+/Ta? 1o + ([e? + 1) — 2lab — cd?l}

By the fact that s? is the larger zero of det(A] — A*A) and that det(A*A) = |det(A)?,
we have

1A = \/_{\/tr (AeA) +/ler (A*A 4|det(;1)|2}

1 =
= 75\/!642 + 162 + (lc|? + |d2)5? + v/ (laf? + [b]? + (Icf? + |d|?)5*)? — 4lab — cdp?|?

- %\/ Jaf2 + b2 + (Jef2 + [d[2)52 + /(a2 — [b[2 + ([ef2 — |dJ2)3#)2 + 4oz + Be252

We summarize the above discussion in the following corollary, which also covers the
result of Furuta [1] on w(A) for A of the form (1.1) for a,b,c,d > 0.

Corollary 3.3. Suppose A and A satisfy the hypothesis of Theorem 3.1. Then w(A) =
w(A) and ||A|| = ||All. In particular, if a,b € R and c,d € C satisfy cd > 0, then
cl(W(A)) = W(A) is symmetric about the real axis, and

w(d) = w((A+A%)/2) = w(A) = w((A+ A%)/2)
= SHle+tl+ Va= b7 + (i + [AFTPT )

and
4l = 141 = 5 { Vi@ + 07 + (el ~ DIPTE + /a6 + (el + [P

Proof. The first assertion follows readily from Theorem 3.1. Suppose a,b€ Rand c,d € C
with e¢d > 0. Then there is a diagonal unitary matrix D = diag (1, 1) such that D*AD =

[Idl I(IIPII ICHll)P “] . It is then easy to get the equalities. 0

Corollary 3.4. Let A; be self-adjoint operators on H; with o(A;) C [m, M| fori=1,2,
and let T be an operator from Ho to H,. Then

(3.1 w(|ft 1)) = 500 - m)+ gvGrEmp =TT

Proof. For two self-adjoint operators X,Y € B(H), we write X <Y if Y — X is positive
semidefinite. Since mI < A; < M1 for i = 1,2, we have

ml T < Ay T < MI T
T™ —MI| — |T* —A| — |T* —mI|’

By Theorem 3.1,

L[ L]

—ml

The desired inequality holds. O
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Note that if X,Y € B(H), then we have the unitary similarity relations
X +1Y 0 _ Yl El X =Y | I - 1
0 X—=iY] = ol I||Y X||=i 1I]|,/3

- w57

5l

Consequently, if X,Y € B(H) are self-adjoint with a(X) C [m, M], then using Corollary
3.4, we have

et = o=l S| S0 A

1
2(M m) + = \/(M—i-m2—l-4||Y||2

This covers a result in [2].

Thus,

max{||X + i, [|X - ¥} = ” E/( J“

<

4. g-NUMERICAL RANGE
For g € [0, 1], the g-numerical range of A is the set
(4.1) Wo(4) := {({Az,y) : z,y € H, ||z]| = [lyll = 1, (z,y) = ¢}
It is known [7], [9] that

(4.2) Wy(A) = {q(Aa:,x} + /1 —¢*(Az,y) : 3 orthonormal {z, y} C 'H} ,

and also
(4.3)

Wo(A) = {qu+ V1-¢v:3z e Hwith ||lz|| =1, p= (Az,z), |u]®+ |v]* < HADSIIQ} :
If ¢ = 1, then W,(A) = W(A). For 0 < g < 1, we have the following description of

W,(A) for a generalized quadratic operator A € B(H). In particular, W,(A) will always
be an open or closed elliptical disk, which may degenerate to a line segment or a point.

Theorem 4.1. Suppose A and A satisfy the condition in Theorem 3.1. For any q € [0,1),
if there is a unit vector z € Hy such that | Toz|| = || To||, then W,(A) = W,(A); otherwise

W,(A) = int (Wq(A)).
We need the following lemma:

Lemma 4.2. Let A, be defined as in (2.2). If p < q, then for any unit vector x € C?
there is a unit vector ' € C* such that (A,z,z) = (A2, z') and || Apz|| < || A7)
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Proof. Choose a unit vector y orthogonal to x such that A,z = gz +11y. Let U = [z|y].
Then U is a unitary in M2(C). So A, is unitarily similar to a matrix of the following form
by U

Y
i
* * Az, ) (Ayy x)])
=UAU = |"| A A T T )
( g {y] [zl {y }[ o | A [(Ap:v,w (Apy, )
Here we remark that p; = (A,z,z) and ||Apz||> = |p|?* + [a|*. Since the condition

p < q implies W(A,) € W(A,) by Lemma 3.2, there exists a unit vector 2’ € Wy(A)
such that (4,7,z) = (A,2',2'). Moreover there exists a unit vector y’ orthogonal to
z’ such that Az’ = uz’ + 01y’ Then V = [2/|y/] is a unitary in M(C). Since tr 4, =
tr A, (= a+b=tr (U*A,U) = tr (V*4,V)) and V*A,V = [<Aq”’/’xl> <Aqy"x'>] we have
g P 7 e (Aqx/3y,> <Aqy/ay’> ’
(Apz,z) + (Apy,y) = (Agz',2') + (A, /). Tt implies v, = (Apy,y) = (Agy',y). Hence
A, is unitarily similar to a matrix of the following form by V'
A, = [’fl “2} = V*A,V.
n

Since ||4,2'||2 = |p1|2 + |#1/?, we may show |v1| < || for this lemma.

Since a matrix X € M, is unitarily similar to !X in general, we may assume that
|21 > |fi2]. By basic calculations we have

|’91|2 + |ﬂ2|2 - |V1|2 - |,U2|2 =tr (A;Aq - A;Ap) =1ir (A;Aq - A;Ap)

(4'4) 2 2\( 2 2

= (|c|* + |d|*)(¢® — p*) > 0,
and
(4.5) |[o1fi2] — |vaps|| < [Prfie — vipa| = | det(A,) — det(Ay)]

= | det(A,) — det(A4,)| = |ed|(¢® — p?).
The above two inequalities (4.4) and (4.5) implies
(191 + 12)® = (] + lp2)® 2 (lel = ldI)*(¢* - p*) 2 0

and

(1] = |aal)? = (vl = |p2))® = (el = 1d])*(¢* — p*) 2 0.
So we have
(4.6) 1] + |fio| 2 (1] + |pa| and 5] = |fiz| 2 [loa] = |2l | 2 1] = [ eal
which implies that |#;] > |v;|. From the proof, we can see that if || = |v1], then we have
|fia| = |p2| by (4.6). Then the left hand side of (4.4) is 0, a contradiction. Therefore, we
must have ;| > || and the result follows. O

Proof of Theorem 4.1. Since the operator A has a dilation of the form A® 1, we have
W,(A) C W,(A®I) = W,(A).
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Let P = |Ty| and {z,} be a sequence of unit vectors in H; such that (Pz,,z,) =

Pm — ||P|| = p. The compression of A on the subspace V,, = span { {26”] , [ZO ] } equals

Ap,, as defined in (2.2). Indeed, we have <A {g;:], {gz:]> = <Apm [g}, [g]> for any
[gj:] € Vp. Thus, W,(A,, ) C W,(A) for all m.

Suppose that there is a unit vector 2 € H; such that |Pz|| = ||P|| = p. Then we
may assume that z,, = z for each m so that W (A) (= Wy(A4,)) C W,(A). So we have
Wo(A) = Wy(A).

Suppose there is no unit vector z € H,; such that ||Pz|| = ||P}|. Since 4,, — A, we
see that int(W,(A)) € W,(A). For any unit vectors z,y € H with (z,y) = q, we put
QU1 | Biur +mn

T = € Hy @ H; such that uq, ug, vy, v, € H; are unit vectors

aguz |7 | Batig + Yav2
with u; L v; and «;,8;,; € C for s = 1,2. Then the compression of A on

V = span {m ’ [1?2] / [’3] | L??]}

_ afg cS
b= [dS* b[g]

has the form

where S € M, satisfies ||S|| < |P||. Let B = Ayg). Since W(B) C W(B) by Theorem
3.1, B has a dilation B® I. Therefore, W,(B) C W,(B® I) = W,(B). Let ¢ = (Az,y) €
W,(A). Since B is a compression of A on V, we have ( € W, (B)(C W,(B)). By the
inequality (4.2), there exist orthogonal vectors z',y/ € C? such that ¢ = ¢(Bz',z') +
V1 —¢%(Bz’',y'). Moreover there exist p1, v1 in C such that Bz’ = iz’ + 11y'. We see
p = (Bx',2"), vy = (Bz',y/) and so ¢ = qui + /I — ¢®v1. Let U = ['|y'] be a unitary.
Hence B is unitarily similar to a matrix of the form

o[ 2] (a2 B2])

Hence we remark that B = Aygy and A = Aypj (|S|| < ||P|l). By Lemma 4.2, there exists
a unit vector y” in C? that (u; =)(Bz’,z') = (Ay",y") and || Bz’'|| < || Ay"||. Let z = [é}
Then we have || Bz|| = || B2'|| = v/[m[? + [ni]? and (Bz,z) = (Bz,2) = py, and so
C=am+VT=gn € {am+T=@vim=(Bz2), lmf* + v < || B2}
= {am + VI=@v:m = (B, @), >+ v < || B/}

C {am +VI=@v i = (Ay'y), lmP+ W < |l Ay"|?}
] (by | Ba"|l < |l Ay"])
C intW,(A).
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In above, we remark that
{0 P+ WP < WAy 12} < {(m) : I + W2 < 1Ay}
C int { (u,v) : [ + Iv]? < |1 Ay|12}

Hence the proof is completed. (]
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