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A new two-phase fluid problem with surface energy

Yoshihiro Tonegawa

Abstract

We prove the existence of weak solution for the incompressible and viscous non-Newtonian
two-phase fluid flow with surface tension when d = 2, 3. An approximation scheme combining
the Galerkin method and the phase field method is adopted. This is a joint work with Chun
Liu (Pen State) and Norifumi Sato (Furano IIS) and is the main part of Sato’s doctoral thesis.

1 Introduction

In this paper we describe some existence results for incompressible viscous two-phase fluid flow
with surface tension in the torus @ = T¢ = (R/Z)?, d = 2, 3. A freely moving (d — 1)-dimensional
phase boundary I'(t) separates the domain Q into two domains Q*(t) and Q7 (t), ¢t > 0. The fluid
flow is described by means of the velocity field u : 2x [0, 00) — R? and the pressure IT : 2x [0, 00) —
R. We assume the stress tensor of the fluids is of the form T%(u,II) = v*(le(u)|)e(u) ~ 1T on
Q*(t), respectively. Here 2e(u) = Vu + VuT and I is the d x d identity matrix. We assume that
the functions v* ; Rt > R is locally Lipschitz and satisfy for some vy > 0 and vy, v, >0

-2 + -1 p-2 + , d+2
nsP e+ <vE(s) <y P+, (vE(s)s) 20, p> —5 (1.1)
A typical example is v*(s) = (a* + bﬂ‘sL;Z)2 with a* > 0 and b* > 0. We set 7(e(u)) =
vE(le(u)]) e(u).
We assume that the velocity field u(z,t) satisfies the following non-Newtonian fluid flow equa-
tion:
au . + . . + -
:97+u-Vu=d1VT (e(uw)) = VI, divu=0 in QT (t)uQ(¢), t >0, (1.2)
ut=u", n-(TH(u,0)-T"(uv,0))=xH on I'(t), t > 0. (1.3)
The upper script + indicates the limiting values approaching to I'(t) from Q*(t), respectively, n
is the unit outer normal vector of Q1 (t), H is the mean curvature vector of ['(¢) and k3 > 0 is a
constant. The conditions (1.3) represents the force balance with an isotropic surface tension effect
of the free boundary. The phase boundary I'(t) moves with the velocity given by

Vo=@ -n)n+xrH on I(t), t>0, (1.4)

where k2 > 0 is a constant. This differs from the conventional kinematic condition (k2 = 0) and
is motivated from the phase boundary motion with hydrodynamic effect. The reader is referred to
[22] and the references therein for the physical background. By setting ¢ = 1 on Q*(t), ¢ = -1
on Q7 (t) and

r(pe(w) = 57 (e(w) + 5L (e(w)




on Q7 (t) U Q™ (t), the equations (1.2)-(1.3) are expressed in the distributional sense as

ou
8—: +u-Vu = divr(p,e(u)) — VI + xy HHI? ey in 9 x (0,00), (1.5)
where 1?1 is the (d — 1)-dimensional Hausdorff measure. We remark that the sufficiently smooth

solutions of (1.2)-(1.4) satisfy the following energy equality,
d (1
— {—/ |u|? de + m’Hd—l(F(t))} = —/ T(p,e(u)) : e(u) dx — 51@/ |H|2dHL (1.6)
dt 2 Jg 0 r(t)

This follows from the first variation formula for the surface measure

_d_Hd-l(r(t)) = —/ Vo - HdH! (L.7)

and by the equations (1.2)-(1.4).

In this paper we give an almost complete outline of [21] which shows the time-global existence
of the weak solution for (1.2)-(1.4) (see Theorem 2.3 for the precise statement). In establishing
(1.4) we adopt the formulation due to Brakke [7] where he proved the existence of moving varifolds
by mean curvature. We have the extra transport effect (u - n)n which is not very regular in the
present problem. Typically we would only have u € LY ([0,00); WLP(Q)9). This poses a serious
difficulty in modifying Brakke’s original construction in [7] which is already intricate and involved.
Instead we take advantage of the recent progress on the understanding on the Allen-Cahn equation

with transport term,

!
?’)—f +u- Vo =k (Ago - ng(p)) . (ACT)
Here W is the equal depth double-well potential and we set W (y) = (1 — ?)?/2. When € — 0, we
have proved in [20] that the interface moves according to the velocity (1.4) in the sense of Brakke
with a suitable regularity assumptions on u. To be more precise, we use a regularized version of
(ACT) as we present later for the result of [20] to be applicable. The result of [20] was built upon
those of many earlier works, most relevant being [14, 15] which analyzed (ACT) with u = 0, and
also [13, 35, 30, 29].

We mention a number of results related to the two-phase flow problem. In the case without
surface tension (k1 = k2 = 0), Solonnikov [32] proved the time-local existence of classical solution.
The time-local existence of weak solution is proved by Solonnikov [33], Beale [5], Abels [1], and
others. For time-global existence of weak solution, Beale [6] proved in the case that the initial
data is small. Nouri-Poupaud [27] considered the case of multi-phase fluid. Giga-Takahashi [11]
considered the problem within the framework of level set method. When x; > 0, k3 = 0, Plotnikov
[28] proved the time-global existence of varifold solution for d = 2, p > 2, and Abels [2] proved
the time-global existence of measure-valued solution for d = 2,3, p > %. When «; > 0, kg > 0,
Maekawa [23] proved the time-local existence of classical solution with p = 2 and for all dimension.
Abels-Roger (3] considered a coupled problem of Navier-Stokes and Mullins-Sekerka (instead of
motion by mean curvature in the present paper) and proved the existence of weak solutions. As
for related phase field approximations of sharp interface model which we adopt in this paper, Liu
and Walkington [22] considered the case of fluids containing visco-hyperelastic particles. Perhaps
the most closely related work to the present paper is that of Mugnai and Réger [26] which studied
the identical problem with p = 2 (linear viscosity case) and d = 2,3. There they introduced
the notion of L? velocity and showed that (1.4) is satisfied in a weak sense different from that
of Brakke for the limiting interface. The additional property which we have with p > d,—“;2 is the
density upper bound obtained in [20]. Kim-Consiglieri-Rodrigues [16] dealt with a coupling of
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Cahn-Hilliard and Navier-Stokes equations to describe the flow of non-Newtonian two-phase fluid
with phase transitions. Soner [34] dealt with a coupling of Allen-Cahn and heat equations to
approximate the Mullins-Sekerka problem with kinetic undercooling.

Finally we should note that we perhaps raised more questions than answers by proving our
main results. We expect that the solution u would be more regular than what we proved. So
would be the moving interface, which we expect to be smooth a.e. in space-time under some mild
density conditions. The case d = 2 and p = 2 corresponds to the critical exponent case which our
result does not cover. This is the linear viscosity case and is naturally the very interesting one. We
expect that some smallness assumption on the initial energy should suffice to show the existence
of a time-global weak solution in Brakke’s sense, but it remains an open question.

The organization of this paper is as follows. In Section 2, we summarize the basic notations and
main results. Scction 3 describes the result of [20] which establishes the upper density ratio bound
for surface energy and which proves (1.4). In Section 4 we construct a sequence of approximating
solution for the two-phase flow problem via Galerkin method and phase field method. In the last
Section 5 we combine the results from Section 3 and 4 and obtain the desired weak solution for
the two-phase flow problem.

2 Preliminaries and Main results

For A,B € R we denote A : B = Y AijB;jand |A| :=VA: A Forac R?, we denote by a®a
the matrix with the entries a;a;, ¢, =1,...,d.

2.1 Function spaces

Set QO = T* throughout this paper. We set function spaces for p > dzﬁ as follows:

V= {v e C®°()?¢; dive = 0} ,
for s € Zt U {0}, WP(Q) = {v : Vwe LP(Q) for 0 < j < s}

VP = closure of V in the W*P(Q)%-norm,

We denote the dual space of VP by (VSP)* and similarly for other spaces. The pairing between
the dual spaces is tacitly denoted by (:,-) whenever there should be no confusion.

2.2 Varifold notations

We recall some notions from geometric measure theory and refer to [4, 7, 31] for more details.
A general k-varifold in R? is a Radon measure on R? x G(d, k), where G(d, k) is the space of
k-dimensional subspaces in R%. We denote the set of all general k-varifolds by V(R%). When S is
a k-dimensional subspace, we also use S to denote the orthogonal projection matrix corresponding
to R — S. The first variation of V' can be written as

5V (g) = / Vo(z) : SdV (z,5) = - / o(2)- H@)d|V(z) |6V < V]
RexG(d,k) Rd

Here V € Vi(RY), ||V]| is the mass measure of V, g € C}(R%)¢, H = Hy is the generalized mean
curvature vector if it exists and [|[0V|| < ||V|| denotes that ||6V]| is absolutely continuous with
respect to ||V}

We call a Radon measure p k-integral if p is represented as u = 8H*| x, where X is a locally
k-rectifiable, H*-measurable set, and 8 € LIIOC(H'“ | x) is positive and integer-valued H* a.e on X.
We denote the set of k-integral Radon measure by ZM,. We say that a k-integral varifold is of



unit density if 6 is H* a.e. equal to 1 on X. For each such k-integral measure u corresponds a
unique k-varifold V' defined by

L. sws)avis) = [ 6 T duta) for 6 € CRT x GLd, ),
RExG(d,k) R?

where T, is the approximate tangent k-plane. Note that u = ||V||. We make such identification
in the following. For this reason we define H, as Hy (or simply H) if the latter exists. When X
is a C? submanifold without boundary and 0 is constant on X, H corresponds to the usual mean
curvature vector for X. In the following we suitably adopt the above notions on Q = T¢ such as
Vi(2), which present no essential difficulties.

2.3 Weak formulation of free boundary motion

For sufficiently smooth surface I'(¢) moving by the velocity (1.4), the following holds for any
¢ € C2(Q;R*) due to the first variation formula (1.7):

d ) » o )
dt/r(t)tﬁdH S/m)( H + V) - {roH + (u-n)n} dH L. (2.1)

One can check that having this inequality for any ¢ € C?(;R™) implies (1.4) thus (2.1) is
equivalent to (1.4). This is Brakke’s approach for the mean curvature flow and we suitably modify
it to incorporate the transport term u. To do this we recall

Theorem 2.1. (Meyers-Ziemer inequality) For a Radon measure p on Rwith

B.(z
Do mp MEGD
r>0, z€R4 Wd-1T

[ 161dn < ezD [ 1961 da (2.2
Rd R4

for ¢ € CL(R?). Here cprz = cmz(d).

See [25] and [36, p.266]. By localizing Theorem 2.1 to = T¢ we obtain (with r in the definition
of D above replaced by 0 < r < 1/2)

/Q 16 du < carzDl|ll 12 [V 2 (2.3)

where the constant cp;z may be different due to the localization but depends only on d. The
inequality allows us to define [, |¢|> du for ¢ € W12(Q) by the standard density argument.
We define for any Radon measure p, u € L2(2)? and ¢ € C?(Q : RY)

Bl ) = [ (~6H + V) (mH + (u-m)n} du (2.4)

Q
if 4 € TMy_1(2) with generalized mean curvature H € L?(u) and with SUP1 5,50, 20 u—‘)‘%}_)—% <
oo and u € W12(Q). It gives a well-defined finite value due to the stated conditions and (2.3). If

any one of the conditions is not satisfied, we define B(y, u, ¢) = —oo.
Next we note
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Proposition 2.2. For any 0 < T < o0
fue L0, T V™) | 3¢ € LT (0,T) (V19)")} = (0.7, V°2)

fora> 5.

The Sobolev embedding gives V114 — V%2 for such q and we may apply the result [24, p. 35,
Lemma 2.45)) to obtain the above embedding. Thus for this class of u we may define u(:,t) € Vo2
for all t € [0,T) instead of a.e. t and we may tacitly assume that we redefine u in this way for all
t.

Finally for {pt}icpo,00) ¢ € L},
¢ € C*(Q;R*), we define B(u:, u(-,t), ¢) for all t > 0.

([0,00); V19) with & € L,"oc‘([O,oo);(Vl'q)*) for ¢ > 2 and
2.4 The main results
Our main results are the following.
Theorem 2.3. Letd =2 or 3 and p > 4—"252. Let Q = T¢. Assume that 75 satisfy (1.1). For any
initial data ug € V%2 and Q*(0) C Q having C' boundary BQ’L(O), there exist

(i) u € L2 ([0,00); VO2) N L?, ([0, 00); VIP) with & € L L([0,00); (V1PY*),

(i) a family of Radon measures {i}sc(0,00) With sy € IMg_1 for a.e. t € [0,00) and

1
(iti) p € BVioe( x [0,00)) N LgZ,([0, 00); BV/(2)) N C((0, 00); L} (52))
such that the following properties hold:

(i) The triplet (u(-,t), p(-,t), te)tejo,00) 8 @ weak solution of (1.5). More precisely, for any
T > 0 we have

/ / -u- ——+ u-Vu) - v+ 7(p,e(u)) :e(v)da:dt=/ng-v(O)d:c-}-/oT/(;mH-vdutdt
(2.5)

for any v € C®([0,T); V) such that v(T) = 0. Here H € L ([0,00); L?(p)?) is the general-
ized mean curvature vector corresponding to fi;.

(i) For all0 < t) <ty < 0o and ¢ € C*(;R™) we have

bea () = s (&) < / "B, ul-t), 8)dt. (26)

t1

Moreover suPg«,<1/2, zeq pe(Br(z)) o L2 ([0,00)) and B(p:, u(-,t), ¢) € L}, ([0,00)).

wqg-1T

(i) The function ¢ satisfies the following properties.
(1) p = £1 a.e. on Q for all t € [0,00).

(2) ‘P(x, 0) = X0+(0) — XQ\Q+(0) a-€. on 0.
(3) spt|VX{y(.t)=1}] C sptu for all t € [0,00).

(iv) There exists
= T1(||UOI|H,9+(O),]))

such that p; has unit density for a.e. t € [0,T1]. In addition |Vx(p=1}] = pt for a.e.
te [O,Tl].
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Remark 2.4. Somewhat different from u = 0 case we do not expect that

lim sup Ht+At(¢) — p(9)
At—0 At

< B(pe, ul:1t), @)

holds for all t € [0,T] and ¢ € C*(Q;R™) in general. While we know that the right-hand side is
< oo (by definition) for all t, we do not know in general if the left-hand side is finite. One may even
expect that at a time when [, |Vu(-,t)|° dz = oo, it is infinite. Thus we should be content with the
integral form (2.6) for the definition of Brakke’s flow, which in its original form is infinitesimally
defined.

Remark 2.5. The difficulty of multiplicities have been often encountered in the measure-theoretic
setting like ours. Varifold solutions constructed by Brakke [7] have the same properties in this
regard. On the other hand, (iv) says that there is no ‘folding’, where 0, > 2, for some time.

Remark 2.6. In the following we set k1 = ky = 1 without loss of generality.

2.5 Theorems to be used

We use the following

Theorem 2.7. (Korn’s inequality) Let 1 < p < co. Then there ezists a constant cx = c(p, d)
such that

lvllwar) < ex(lle()llze @) + IvllLi))
holds for all v € WhP(Q)4.

See (24, p.196] and the reference therein.

3 Results from [20]

In this section we summarize the results from [20] which are the essential ingredients to obtain
the velocity law (1.4). First we state the upper density bound of the diffused surface energy. Sirice
the estimate is of independent interest and is true for all dimensions, we state the assumptions
in the form independent of the present aim. Also we warn that u in Theorem 3.1 will not be the
same u, but will be a regularized u.

Theorem 3.1. Supposed >2, Q=T p > %, % >v42>0,12>¢e>0 and ¢ satisfies

é-)—Se-ku'Vt,o:Acp—K/——(i) on Q x [0,7], (3.1)
ot €2
w(z,0) = ¢o(z) on (, (3.2)

where V'u, Vip, Vkp, € C(Q x [0,T]) for 0 < i,k < 1 and 0 < j < 3. Let u; be the Radon
measure on Q defined by

| ¢@ o) = [ s (""W(;’“'z ¥ W(“’(x’t”) dx

3
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for ¢ € C(Q), where 0 = ]_11 V2W (s)ds. We assume also that

sup |po| < 1 and supe!|Vigo| < ¢ for 1 <i<3, (3.3)
Q Q
2w
(9] 2 3
sup_ {e7lul, IV} < ez, (35)
Ox[0,T]
T
[ 1Oy < o (36)
Define for t € [0,T)
1
z€0,0<r<} Wd-17

Then there exist e; > 0 which depends only on d, p, W, c1, c2, ¢3, Do, v and T, and cg which
depends only on c3, d, p, Dy and T such that for all0 < e < ¢ andt € [0,T],

D(t) < ca. (3.8)

Once above is established, the following two theorems can be obtained with some minor mod-
ification of the argument in [20].

Theorem 3.2. Suppose that sequences ¢ and u® with lim;_,o €; = 0 satisfy all the assumptions
in Theorem 3.1 where €, po and p; there are replaced by &;, vt and ust, respectively. We assume
that a, e, €3, Dy, v and T are independent of i. In addition we assume thatd =2 or 3 and that

us — u weakly in LP([0,T]; WP (Q)%), uft — u strongly in L2([0,T); L*(Q)%). (3.9)

Then there ezists a subsequence (denoted by the same index) and and a family of measures
{ue}o<i<T such that

(0) 1im, oo 45" (8) = pe(9) for all t € [0,T] and ¢ € C(Q),

(b) us € IMgy_, for a.e. t € [0,T],

(c) H € L*(0,T; L?(uu)?) where H(-,t) is the generalized mean curvature of i,
(d) forany0<t; <ty <T,

1 12 WI €3 to
lit —/ / gust - V& (-Acpe‘ + ~—(f—)) dzdt = / / H - udupdt, (3.10)
t1 Q & t1 Q

i—00 O i

(e) for any ¢ € C*(;RY) and 0 < t; <t < T,

t2
s (8) — e (8) < / B, u(-t), ) dt. (3.11)

[31

Theorem 3.3. Under the same assumptions as in Theorem 3.2 we have a subsequence {¢®'} and
o function € BV(Q x [0,T]) N L®([0,T}; BV(R2)) N C ([0, T); L*(2)) such that

(i) lim; oo |05 — @llLe(axjo,r)) = 0 for 1 < a < oo and pointwise a.e. on Q x (0,7,

(ii) ¢ = £1 a.e. on Q@ x [0,T).
(iii) Define T(t) by p; = 6,H% | r(y. Then HE1(8"{(,t) = L\ T(t)) =0 for a.e. t € [0, T].



4 Existence of approximate solution

In this section we construct the weak solution of approximate solution to (1.2)-(1.4) by the
Galerkin method. The proof is a suitable modification of {18] for the non-Newtonian sctting but
we include the proof for the completeness.

First we prepare a few definitions. We fix a sequence {¢;} with lim;_,o &; = 0 and fix a radially
symmetric function ¢ € C®(R%) with spt{ C B;(0) and J¢dx = 1. For afixed 0 < v < % we
define

¢%(z) = =50 (ﬁ) . (4.1)

v i

We defined (% so that [ (%idz = 1, [¢%] < c(d)e; ¥ and |V (5| < c(d)e; 7.

For a given initial data Q7 (0) C Q with C! boundary 99 (0), we can approximate Q1 (0) by a
sequence of domains with C* boundaries. Thus we may assume that 9Q+(0) is C2 in the following.
Let d(x) be the signed distance function to Q2% (0) so that d(z) > 0 on 2%(0) and d(z) < 0 on
©27(0). Choose b > 0 so that d is C? function on the b-neighborhood of 90 (0). Let h € C®(R)
be a function such that h is monotone increasing, h(s) = s for 0 < s < b/4 and h(s) = b/2 for
b/2 < s, and define h(—s) = —h(s) for s < 0. Then define d(z) = h(d(z)) and

¢5i(z) = tanh(d(z)/e;). (4.2)

For all sufficiently small ;, g € C3(€) and

. . 1 £; \Y g1 w o _
lim 6" = xa+(0) — Xa-(0), —/ ( Vg + (Qéo )) dz < H1(897(0)) + 1. (4.3)
100 g Jo 2 &

For V*%? with s > % + 1 let {w'}$2; be a set of complete orthogonal basis of V2 such that it
is orthonormal in V%2, The choice of s is made so that the Sobolev embedding theorem implies
Ws=12(Q) < L®(Q) thus Vw' € L®(Q)7.

Let P, : V02 — Vi0’2 = span {w1,ws, - ,w;} be the orthogonal projection. We then project
the problem (1.2)-(1.4) to Vio’2 by using the orthogonality in V%2. Note that just as in [18], we
approximate the mean curvature term in (1.5) by the appropriate phase field approximation. For
any 0 < T' < co we consider the following problem:

Bg:i =P, (div (%, e(uf)) — ui - Vubi — %div (Ve® @ V&) = Cei)) in  x [0, ), (4.4)
() € VM in O x [0,7],(4.5)

3690; -+ (u % (%) - V& = Ayp® — W’ifsi) in Q x [0,7],(4.6)

u(z,0) = Puo(z), ¢(z,0) = saff(;) in Q. (4.7)

Here * is the usual convolution. We first prove the following theorem.

Theorem 4.1. For any i € N, T € (0,00), up € V%% and ¢, there exists a weak solution
(u®, %) of (4.4)-(4.7) on Q x [0,T] such that u®: € L>®([0,T); VO2) N LP([0,T); VIP), |5 < 1,
¢ € L([0,T); C3(Q)) and %5 € L([0,T); C1(Q)).
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We write the above system in terms of u®* = }:Ll ¢ (t)wk () first. Since

ei(div (V¢ & Vi) x (F1), w;) = —¢; /Q(che" ® V) * (°¢ : Vw; dr,
(@i g, (), wy) = = [ () - efuy) d

for j =1,---,1, (4.4) is equivalent to

Ht) = - / 7(¢%, e(u®?)) : e(w;) dz — Z () () (wi - Vwr, wy)
0 ki=1 (4.8)

_/ (V™ ® Vig™) * (% : Vw;dz = A5 (t) + Bujcy ()¢ (t) + D5(t)-

dtf

Moreover, the initial condition of cj" is
¢'(0) = (up, wj) for j=1,2,...,4
We also set

Ep = H*1(807(0)) + 1 + %/ luo|? dz
Q

and note that

L[ (sl WieE) L Qn, ez
- — 1(0))* < E, 4.9
2 [ (Bt T 2§c())_o (49)
for all ¢ by (4.3).

We use the following lemma to prove Theorem 4.1.

Lemma 4.2. There exists a constant Ty = To(Eg,i) > 0 such that (4.4)-(4.7) has a weak so-
lution (u®, %) in Q x [0,Ty] such that us € L°([0,Tp); VO?) N LP([0,To}; V'?P), |¢%| < 1,
" € L=([0, Tol; C3()) and 22 € Lo=([0, To); C1(9).

Proof. Assume that we are given a function u(x,t) = ZJ 1€ &H(t)w;(z) € C([0,T); V*?) with

€i — i _ £i 2< 410
SO = w) e Z|c O < 2B, (4.10)

We let ¢(z,t) be the solution of the following parabolic equation:

0 W'
g+ (un () Ty = A= TE,

ot (4.11)
p(x,0) = (x)
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The existence of such ¢ with |p| < 1 is guaranteed by the standard theory of parabolic equations
([17]). By (4.11) and Cauchy-Schwarz inequality, we can estimate

_4_ EdV(p‘z W((p) & W/((p) 2 ( ; . -
dt/n( 2 + €2 )de_E/Q(ASO_E—z) dl*’?/ﬂ{(“*()'Vgo} dr.

1

Since for any ¢ € [0, 7]

o= €y < €7 ey < e maax ij(x)HLoo(ler (DI < o(i) Eo,
1=1

d &i|Vo|?  W(p) ) /Ei[Vgo|2
—_ < —_—
o /Q ( 5 + :, dz < c(i)Fy LT3 d

This gives

T2 :
wp L / (SZIVZQOI N W(cp)) dx < CWBT R, (4.12)
Q

0<t<T O &;

Hence as long as T < 1,
] 1. i - c(2
D501 < ellVa ey [ [ i90)Pe @ - v) duds < e By

by Vw; € L°(2)% and (4.12).

Next we substitute the above solution ¢ into the place of ¢, and solve (4.8) with the initial
condition cj(O) = (uo, wj). Since 7 is locally Lipschitz with respect to e(u), there is at least
some short time 77 such that (4.8) has a unique solution csz(t) on [0, T1] with the initial condition
'61(0) (uo, wj) for 1 < i < i. We show that the solutlon exists up to Ty = Typ(i, Ey) satisfying

(4.10). Let &(t) = 3 3°7=, |&*(¢)[*. Then,

d £; .51 ~E; ~Ef =Eq €4 ~Eq
7C(t) = Aj e + BlclJCk ¢'et + Dyt

By (1.1) Aj*¢* < 0 hence

() < cli, o) (@7 +8).

Therefore,

tanh 1/¢(t) < tanh v/ Ep + 2¢(, Ep)t

Then, by choosing Ty small depending only on i and Ey we have the existence of solution for
t € [0, Tp] satisfying (4.10). We then prove the existence of a weak solution on € x [0, Tp] by using
Leray-Schauder fixed point theorem (see [17]). We define

0= & bwi(a)
j=1
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and we define a map £ : u — 1 as in the above procedure. Let

V(To) = { u(z,t) = )¢5 (Hwj(2):
j=1

z Z & (&) < 2E for t € [0, To], ¢5*(0) = (up, wj), &' € C([O,To])} .
Then V(Tp) is a closed, convex subset of C([0, To); V-O’2) equipped with the norm

Jullvry = sup (Zlc% |2)

and by the above argument £ : V(Tp) — V(To). Moreover by the Ascoli-Arzela compactness
theorem L is a compact operator. Therefore by using the Leray-Schauder fixed point theorem, £
has a fixed point u€t € V(Tp). We denote by ¢ the solution of (4.6) and (4.7). Then (u, ") is
a weak solution of (4.4)-(4.7) in Q x [0, Tp). O

Theorem 4.3. Let (uft, %) be the weak solution of (4.4)-(4.7) in Q x [0,T). Then the following
energy estimate holds:

1  AEi 12 £ £i|2
sup /_(EIW | +W(sa ))+|u 4
o 2 2

0<t<T &i
T . / E1 2
+/ / El (A(Pei _ K_(;p_)) + Vole(ufi)lp dzxdt < E().
0o Jag &

(4.13)
Moreover
T 2
/ 165, Oyt < vy (Bo + TES). (4.14)
0
Proof. Since (uf, %) is the weak solution of (4.4)-(4.7), we derive
d el Vet 2 | W(egH)\ | |usi]?
d
dt / ( 2 T, )T ®
. (. A€ €3
:/ i 0% Ae‘—W(f ) +8u -ufidz
n o ot £ ot (4 15)
— _i €i _ W,(‘pEi) _ (€ Ei Ei Ei __ W,.(._(psi_) .
_/Q ~ (Ago 22 (u® % (%) - Vo Ay 2 dz

+ / {div (%, e(ut)) — u - Vi — i—div((VgaE" ® Vi) x CE‘)} ~ufidz =L + Ip.
Q

Since div (uf * (%) = (divu®) * (5 = 0,

€3 W’(SD) 2 €3 £4 £ Eq
oh=- [ ¢ Aw’——e—z— dr +¢e; | (uf % (%) - VeiAp®idr.
Q Q

i

For I, with (1.1)

/ div 7 (¢, e(u®)) - ufidz = — / (%, e(uf)) : e(u®)dz < —1/0/ le(u®)|P dz.
Q Q Q



Moreover the second term of I, vanishes by divufi = 0 and

) i 90€1|2 £; £; E . &
€| V——— 7 + VS Ap® ) «(F-uidx
o}

- / €:div (V™ @ Vi * (51) - ufidx = ~/
Q
= —¢; [ (uf % (%) - Vi ApSidz.
Q

Hence (4.15) becomes
d Vs 2 | W) | Jusif? /5i e W\’ ‘.
< — — 0 k €3 pd
dt/ ( I R dz < > Ay &2 + vole(u™) P dzx

Integrating with respect to ¢t and taking supremum over all ¢ € [0, T}, we obtain (4.13). The proof
of (4.14) follows from (4.13) and Theorem 2.7. a

Proof of Theoremn 4.1. For each fixed i we have a short time existence for [0,Tp] where Tp
depends only on ¢ and Eg at t = 0. By Lemma 4.3 the energy at ¢ = Tp is again bounded by Ejp.
By repeatedly using Lemma 4.2 Theorem 4.1 follows. o

5 Existence of weak solution

Finally in this section, we take the limit i — oo and establish the main result. The necessary
steps for the proof of the convergence of the phase boundary are all resolved in Section 3 and 4.
The proof of the convergence of the velocity field can be handled by the standard method (see [19,
P.207]) combined with the observation on the varifold convergence ([28]). Here we only sketch the
outline of the proof with reference to [19]. First using the equation (4.4) and energy inequalities
(4.3) one can show

T £; _;L
/ Gu”t |7~ dt <c
0 8t (Vs.z)*

where ¢ depends only on Ejy, cx and vg and is independent of :. The application of Aubin-Lions
compactness Theorem [19, p.57] with By = V*%, B = V%2, By = (V*2)*, pp = p and p; = 21
there shows the existence of a subsequence still denoted by {u®}2; such that

u¥ —u in LP([0,T]; V%?). (5.1)

Since p > 2 and L*([0, T]; L?(22)%) bound, we also have the strong convergence in L2([0, T]; L2(Q)9).
As for the convergence of {u}32, we have all the assumptions on ¢ and u® * (% satisfied to
apply Theorem 3.1. Thus we have the upper density ratio bound, and then we can apply Theorem
3.2 and Theorem 3.3 since u®i * (%% also converges in the sense of (3.9). We may extract a further
subsequence so that

€4 m
agt (a% weakly in L7- 1([0 T); (V%)"),

T(¢, e(uft)) — 7 weakly in LP-l ([O,T]; L1 (Q)dz)_

(5.2)

For w; € V2 (j =1,---) and h € C®((0,T)) we have

. ., .. . e W) e e
div((Ve® ® V) « (%) - hw;dz = Agol————?——— V& - hw; * (tdz
Q Q

i
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by divw; = 0. Thus the argument in [19, p-212] and the similar convergence argument in Section

4
T Su T
/ —, hw; | + /(u - Vu) - hwj + ht : e(w;) dr p dt = / / H - hw; dp,dt. (5.3)
0 ot 0 o Ja

Again by the similar argument using the density ratio bound and Theorem 2.1 one show by the
P
density argument and (5.3) that %‘f € L»-1([0,T); (V1P)*) and

/OT{(%;-,U> +/Q(u.vu).v+%:e(v)dz}dt=/0T/QH-vdmdt. (5.4)

for all v € LP([0,T); V1?). The only thing to be left now is to prove that

T T
/ / 7:e(v)dzdt = / / 7(p, e(u)) : e(v) dzdt (5.5)
o Jo o Ja
for all v € CX((0,T); V). As in [19, p.213 (5.43)], we may deduce that

1 f h 1
()l + / / #: e(u)dzdt > / / H - udpdt + = [u(0)|Ra g, (5.6)
2 o Ja o Ja 2
for a.e. t; € [0,T]. We set for any v € VP
h . _ . 1 .
Al = /0 /Q(T(‘Fsﬂe(uf')) = 7(¢%, e(v))) : (e(u™) — e(v)) dwdt + 5 [|u™ ()| Z2(0)- (5.7)

The monotonicity property of e(-) (1.1) shows that the first term of (5.7) is non-negative. We may
further assume that u%i(¢;) converges weakly to u(t;) in L2(f2)? thus we have

- 1
hgglf Al > —||u(t1)||%2(n). (5.8)
By (4.4) we have
1o g 2 g[8 . ; . i .
14141 =—“’u,€1 (0)||L2(Q) —_ —/ / le((V(pEt ® v<p51) *C ‘l) . u51
2 g Jo 0
t1
= [T e eu) o) + ) (o) = efw) dad
0 Q
which converges to
1 t t1
Al = 5”“(0)”22(9) +/ / H - udpdt —/ / 7 :e(v) + 7(p,e(v)) : (e(u) — e(v)) dzdt. (5.9)
0 Q 0 Q
Here we used that ¢ converges to ¢ a.e. on  x [0,T]. By (5.6), (5.8) and (5.9), we deduce that
[31
/ /(7“' - 7(ip,e(v))) : (e(u) — e(v)) dzdt > 0.
0 Q

By choosing v = u + €0, divide by ¢ and letting ¢ — 0, we prove (5.5). This concludes the proof of
Theorem 2.3 O
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