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1. Introduction
In this paper, we consider the following quasilinear Schrédinger equation:

Z% =—Az—[2[P712 — kA(|2]*)[2]*7%2,  (t,2) € (0,00) X RY, (1.1)

where k > 0, @ > 1, N > 1and p > 1. Equation (1.1) with a = 2 derives from a superfluid
film equation in plasma physics, which was introduced in [7, 16]. We are interested in the
standing wave solution of the form: z(¢, z) = u(z)e***, A > 0. Then we obtain the following
quasilinear elliptic problem:

—Au+ M — kA(Jul®)|u* %y = [ufP~lu in RY. (1.2)

When £ = 0, (1.1) becomes well-studied Schrédinger equation:

z%;— =—Az—|2|P" 2, (t,z) € (0,00) x RN .

In this case, the standing waves associated with ground state solutions is orbitally stable
if 1 <p <1+ 4 and unstable if p > 1+ & (see [4, 9]). Especially the standing wave is
unstable when p = 3 and N = 2. In [7], they stated that the quasilinear term stabilize
the standing wave if K > 0. More precisely, they showed (by a formal calculation) that the
standing wave is stable when p = 3, N = 2 and a = 2. Thus a natural question arises:

stable range of p is actually larger than that of the case k = 07

* Supported by The Sumitomo Foundation
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Recently a result very close to this answer was given in [11]. They studied (1.1) for
the case & = 2, k = 1 and showed: (i) Instability of standing waves by blow-up when
p>3+ %. (ii) Uniqueness of solutions of stationary problem when N = 1. (iii) Stability

of solutions of the minimizing problem:

c(\) = inf{E(u);u € X, ||lul}2 = A}, (X will be defined later)
_ _1_ 2 2(,,12 _ _1_ p+1
E(u) = 5 /RN |Vul® + 2|V|ul|*|ul® dz 271 o |ulPT dx

if one of the conditions hold: 1 <p< 1+ 4, A>00r 1+ # < p <3+ %, A is sufficiently
large. Their result suggests that the stability holds for 1 < p < 3 + %. However as
pointed out in [11], this remains open because we don’t know the uniqueness of ground
state solutions. The purpose of this paper is to study the existence and the uniqueness of

the ground state solution of (1.2).
To state the existence of a ground state solution, we use the following notation. Equa-
tion (1.2) has a variational structure, that is, one can obtain solutions of (1.2) as critical

points of the associated functional J defined by
J(u) = 1/ IVl + M2 dz + i/ V|2 dz — —1—/ [P+ da

= _ Vul* + \udz + — Vv =l dr — —— Ptldr. (1.3
5 /RN |Vu| v dx 2 Jo |Vu|®|ul T P e lu| z. (1.3)

We remark that nonlinear functional / |Vu|?|u|?*2 dz is not defined on all H(RV)
RN

except for N = 1. Thus the natural function space for N > 2 is given by
X = {uc H'RM); / IVul?uf222 dz < co}. (1.4)
]RN

We define the ground state energy level and the set of ground state solutions by
m :=inf{J(u); J'(u) =0, u € X \ {0}},
G :={we X\ {0}; J(w) =m, J'(w)=0}.

Existence of a positive solution of (1.2) has been studied in [1, 10, 17, 18, 21]. In [1]
and [19], they showed that if A >0, xk >0, @ > 1 and

< (20 —1)N +2

> -1< =
) for N>3,2c0—-—1<p<oofor N=1,2,

20—1<p

then (1.2) has at least one ground state solution which is positive, radially symmetric,
decreasing with respect to r = |z| and has the exponential decay by using the Nehari
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manifold. There are two remarkable points in their results. Firstly, they assumed 2a—1 < p
to make use of the Nehari manifold. This seems to be rather technical. Secondly, their
results are not sufficient to prove the uniqueness because the statement only says the
positivity and radial symmetry hold for at least one ground state solution. To prove the
uniqueness, we need more precise properties on ground state solutions. Actually we have
the following result which generalizes the result in [11] for the case a = 2.
Theorem 1.1. Let A > 0, Kk > 0, a >1and1 < p < (2aj—vl—)];f+2 for N > 3,
l1<p<oofor N=1,2. Then G # 0 and any w € G satisfies the following properties:

(i) w € C*(RM,R).

(i) w(z) > 0 for all z € RN
(iii) w is radially symmetric: w(z) = w(|z|) and decreases with respect to r = |z|.
(iv) There exist ¢, ¢’ > 0 such that

lim VAl (Jo] + 1) w(z) = ¢, lim /3 (r+ 1) P22 = 0.
|z|—00 r—00 r

As to the uniqueness of ground state solutions, we have the following results.

Theorem 1.2. Assume N >3, a>1, a—1<p<3a-3 and

a—p D 2a—2
< gAP-1,
m“{a@—n’a@a—p—a}—“ ’

Then the ground state solution of (1.2) is unique.

2 2
Corollary 1.3. Suppose N > 3, a =2,1 < p < 3 and max{%:_%, ﬂginj} < KAP-T,
Then the ground state solution of (1.2) is unique.

As we will see later, we need a stronger assumption when N = 2. We obtain the
following sufficient conditions for the uniqueness of positive radial solutions in the case

N =2.

Theorem 1.4. Suppose N =2, a>2 and2a—1<p<3a—3. Then
(i) For every fixed k > 0, there exists A\g > 0 such that if A > Ao, then the ground state
solution of (1.2) is unique.
(ii) For every fixed X > 0, there exists ko > 0 such that if K > ko, then the ground state
solution of (1.2) is unique.

Since our problem is quasilinear, it is rather difficult to handle (1.2) directly. However
problem (1.2) has a nice property, namely, one can we adapt dual variational approach.
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More precisely, we convert our quasilinear equation into a semilinear equation by using a
suitable translation f. We will see that the set of ground state solutions G has one-to-one
correspondence to that of the semilinear problem. This enables us to prove the positivity
and the radial symmetry of any ground state solution.

Moreover Theorem 1.1 implies that

G C {u € X NC? u is a positive radial solution of (1.2)}.

Thus we can prove the uniqueness of ground state solutions if we could show the uniqueness
of positive radial solutions of (1.2). We will also see that the set of positive radial solutions
has one-to-one correspondence to that of the semilinear problem. This enables us to apply
the uniqueness result (3, 12, 15, 20, 22] for semilinear elliptic equations.

This paper is organized as follows. In Section 2, we introduce the dual variational
approach. In section 3, we study the existence of a ground state solution. Finally in
Section 4, we study the uniqueness of ground state solutions.

Notation. Throughout this paper, we use the following notation:

lvli3: = /RN |Vo|? + Midz, ve HY(RYN).

2. Dual variational approach

In this section, we introduce a dual variational approach. More precisely, we will see
that quasilinear problem (1.2) can be converted into a semilinear problem and there is an
one-to-one correspondence between two problems.

Let f be a function defined by

f(s) :== /: V1+ kat2a—2 4t

Then f is positive, monotone, convex and C* on (0,00). For s < 0, we put f(s) = —f(—s).

Remark 2.1. f can be written by elliptic functions. When a = 2, simply we have

- sinh T (VR | VER [, T
f(t)— 2\/-2—,; + D) S S2+ﬂ'

Since f is monotone, we can define the inverse function f. Then f satisfies the
following ODE:

1
B V1 + akf(s)2e—2

f'(s) on s € [0,00), f(0)=0. (2.1)
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From (2.1), we can observe that

() = =rala =03 = @ - YL - @ - nLL, 22
1(s) = %{4(04 —12(f)7 — (60— B)(a — () + (o — D(2a - )(F)*}. (23)

Function f satisfies the following properties.

Lemma 2.2. f(s) satisfies the following properties:
(1) f( ) <s, f'(s) €(0,1], f"(s) <0 for all s > 0.
(11) —f(s) < sf'(s) < f(s) forall s > 0.

(iii) (;f—%j)l > 0 for all s > 0.

Lemma 2.3. It follows

@ tim 18— (3)_ im 18 _ 1.

$=0 gu K s—0 8
. f'(s) 1 /a\z
(11) sli{{olo 3—;— a (;) )
f(s)
) 37 =

For the proof of Lemmas 2.2 and 2.3, we refer to [1, 2].
Using the function f, we consider the following semilinear problem:
—Av+ M©)F () = [f@)P ) () in RY. (2.4)

The functional associated to (2.4) is defined by

I(v) = -;-/RN Vol? + Af(0)? dz — ;1—- /RN £ (o) P+ da.

Lemma 2.4. Assumel < p < Q—O‘# for N >3,1<p<oo for N=1,2. Then I(v)
is well-defined on H'(R") and of class C'(H}(R"),R).
Proof. By (i) of Lemma 2.2, it follows

I(v) < /RN |Vo|? + P dz + :I—)—_'l_—l |f (v)[PT! dz.

By Lemma 2.3 (i), we have
flv) £ ClX!vl<1\U| + 02X|v|>1f7}| f(v)p+1 < C? + Caolv| ™=

where x is the characteristic function. Since £t < 2N I(v) is well-defined on H*(R™).
In a standard way, we can show I(v) € Cl(Hl(RN),R). i

P+1

We have the following relation between (1.2) and (2.4), which was already shown in
[1, 10]. For the sake of completeness, we give the proof.
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Lemma 2.5. Suppose v is a nontrivial critical point of I and v > 0. Then u = f(v) is a

positive solution of (1.2).

Proof. We can easily see that if v € H'(R") is a nontrivial critical point of I(v), then
v is a solution of (2.4). By standard elliptic regularity theory, we see that v € C%(RY).
Moreover v > 0 implies u > 0. Since f € C*®(0,00), we also have u € C?(RM).

For v = f(u), we have
Vo= f'(u)Vu, Av=f"(u)|Vul]®+ f'(u)Au.
From (2.1), it follows

fis)=

1 _ ke|f(f(s))|2e-2 = Ka|s|2e—2
e V1 +ralf(F(9)P2 = /T+ ralsPo2,

f”(S) — ’ia(a - 1)"5'2&_43-
V' 1+ kals[2e—2

Thus we have
|2a—-4

_ ka(a—1)|u
V1 + kalu|?e—2

From (2.4), we can observe that u satisfies

uqu|2 + /1 + kajul2e—2Au.

~Au — ka|ul?* 2 Au — koo — D]u?* | Vul? + du = |uP 1 u. (2.5)
Now u > 0 implies |u|* € C?. Then it follows from
A(jul®) = div (a|u|*2uVu)
= o|u|* 2ulu + Vu - V(afu|*%u)

= aju|* 2ulAu + oo — 1)|u|* 2| Vu)?

that

A([u|®)|u*2u = a|u|?** 2 Au + oo — 1)|u?**u|Vul2. (2.6)
Thus from (2.5) and (2.6), we see that if v is a nontrivial critical point of I and v > 0,
then u = f(v) is a positive solution of (1.2). |

Remark 2.6. If o > 2, then f € C?[0,00) and |f(v)|* € C? for any nontrivial criti-
cal point v of I. Thus Lemma 2.5 holds for any nontrivial critical point (possibly sign-
changing) of I if oo > 2.

Lemma 2.5 tells us that we have only to show the existence of a positive solution
of (2.4) in order to find a positive solution of (1.2). However to show the existence of a
ground state solution, we need more informations on the relation between (1.2) and (2.4).

Actually we have the following relations.
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Lemma 2.7.
(i) It follows X = f(HY(RY)), that is, X = {f(v);v € H'(RN)} =:Y.
(ii) For any v € HY(RY), we put u = f(v). Then it follows J(u) = I(v).

Proof. (i) First we show Y C X. For v € HY(R"), we put u = f(v). Then we have

1
1+ kalf(v)[2e—?

V@) = f (v)*|Vof? = V.

By (i) of Lemma 2.2 and (2.1), we obtain
/ |Vu|? +u?dx + na/ |Vu)|?|u|?*2dz = / Vol + f(v)*dz < C||v||3: < oo.
RN RN RN

Thus it follows ¥ C X.
To show X C Y, it suffices to show f(u) € H(R") for all u € X. For v € X, we put
v = f(u). Then it follows

/ Vo|? dz = / () ()2 Vu|? dz = / (1+ kaul?*2)|Vu|? dz < oo.
RY RN RY
Next by (i) of Lemma 2.3, it follows

lim 28 =, m L)

s—0 8§ s—oo0 8%

c
for some ¢ > 0. Thus there exist constants C;, Cs > 0 such that
1F(s)] < Cixsi<1|s| + Caxs>1]s|® for all s € R.
Then we have
|02 < Crxpui<a|ul® + Coxpuiza[ul?® < Culul? + Calul ¥%.

By Sobolev’s inequality, we obtain

/ Ivl2 dzr < 01/ |U|2 dz + C2/ |u|% dz
RN RN RN
e
<Ci / [u|? dz + C} (/ o?|Vu|?|u|2%~2 d:z:) < oo.
RN RN

Thus it follows X C Y and hence X =Y.
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(ii) We substitute u = f(v) into J(u). Then from (2.1), it follows

sy =1 [ 1SR A0 a5 [ IOt as
RY RV
- o1 ) Pt
_1 2 20—2Y] £7(, 1|2 2, 1 +1
=3 [ 1V kel 0P @ + M) e~ o [ 1P ds
1 1
-1 /R VR AP de - o [ )P e
= I(v).
and we obtain (ii). 1

Finally we give a relation on the sets of positive radial solutions of (1.2) and (2.4).
Lemma 2.8. It follows

{ue XNCHRN); J'(w) =0, u>0, u(z) = u(z])}
=f{ve H'nC*R"); I'(v) = 0, v > 0, v(z) = v(|z)}).

Proof. By Lemma 2.5, we know that
{ue XNC*R"); J'(u) =0, u>0} 2 {f(v); I'(v) =0, v>0, ve H NC*R")}.

Suppose the equality does not hold. Then there exists ug € X such that ug is a positive
solution of (1.2) but ug # f(v) for any positive solution v € H(RN) of (2.4).

On the other hand by (i) of Lemma 2.7, we know if ug € X, then there exists vg such
that uop = f(vo). Since ug is a positive solution of (1.2), we can see that vp is a positive

solution of (2.4). This is a contradiction. Thus we have
{ue XNC*RN); J'(uw) =0, u>0} = {f(v); I'(v) =0, v>0, ve H NC*R")}.

Finally we can easily see that u(z) = u(|z|) if and only if v(x) = f(u(x)) satisfies v(z) =
v(|z]). |

3. Existence of a ground state solution

Firstly we prepare the following Pohozaev-type identity.
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Lemma 3.1. Let u € X be a solution of (1.2). Then u satisfies the following identity:

N -2 A 1
Ply) = 2 2|, 12a—2 _/ 2 pt1 g
(u) SN /]RN [Vu|* + ka|Vul|u| dz + 2 Jow u* dx P fow [u z

=0. (3.1)

Proof. For t > 0, we put u;(z) = u (%) Then we have

Vu,|? dz = tV~2 Vu|? dz, ulde =tV u? dz,
¢

/ |Vug?ug|2*2 dz = tN'z/ [Vu)?|u|?*2 de, / Jus [P dz = tN/ Ju|PT da.
]RN RN RN RN

If u is a solution of (1.2), then %J (ut)l L= 0. From this equality, we obtain (3.1). i
t=
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We argue as in [11]. We define

g(s) = |F ()P £ () f'(s) = Af(s) ' (9)-

Then (2.4) can be written as
—Av = g(v) in RY.

By lemma 2.3 (i)-(ii), it follows

. g(s) . g(s)
;1—% s A<O’sli>r&s—,1§%%_0'

Moreover let & > f‘l((g—’—gﬁe‘-)ﬁ'}l). Then

3
6(6) = [ als)ds = 1 (4£©7 = 2) > 0.

0

Then by the results due to [5, 6, 14], there exists 1w € H'(R") such that @ > 0, radial

and
I(@) = inf{I(v); I'(v) = 0, v € H*(RY)\{0}}.

By Lemma 2.5, w = f(w) satisfies J'(w) = 0. We claim that w € G.
Indeed we define

f(0)?dz — —— / F)PH dz, ve HI(RY).
N ]RN

bad ._N_“2 2 A
P(v) := |Vv|* dz + 2/ P
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Then it follows P(u) = P(v) for u = f(v) where P(u) was defined in (3.1). Moreover w
can be characterized by

beA:={ve HRY); Plv)=0}, I(W)= inf I(v).

Now let u € X be a nontrivial critical point of J. Then from (3.1), we have

1
)= 5 /R IVul? + anl Va2 ds

__}_ 2 Kk a2
=N Jon |Vul d.’L‘+aN/RN |V|u|*|* dz.

By the pointwise inequality |V|u(z)|| < |Vu(z)| a.e. £ € RY, it follows
J(w) 2 J(lul) = I(f(lu]))-
If N = 2, then (3.1) implies P(|u|) = 0 and hence P(f(Ju|)) = 0. Then we obtain
J(w) > I(f(lu))) 2 I(@) = J(w).

If N > 3, we distinguish cases P(Ju|) = 0 and P(|u]) < 0. If P(|u]) = 0, then we have

J(u) > J(w) as in the case N = 2. Suppose P(|u|) = P(f(lu])) < 0. We put & = f(|ul)
T

and define 9p(z) = ¥ (5) for @ € (0,1). We can see that there exists 6y € (0,1) such that

P(wg,) = 0, that is, 7, € A. Then we have

0N——2 5
I(7g,) = °N . |V5|? dz

6 * 2 K 2
= v o a
[ b+ S0l s
o2 K o
o [ IVl + STl d

=0} 2J(u) < J(u).

<

Since 7y, € A, we obtain
J(u) > I(Dg,) = I(w) = J(w).

This implies w € G.
Next we show that if w € G, then |w| € G. If P(Jw|) < 0, then we get

J(w) > I(7e,) = J(w).
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This is a contradiction. Thus it follows P(|w|) = 0. Arguing as above, we obtain J(w) =
J(Jw|). This implies |w| € G.

Next we show properties (i)-(iv).

(i) We can see if w € G, then w € L2 (RN). By the elliptic regularity theory, it
follows w € C%(RY).

(ii) Since |w| € G for any w € G, it follows w > 0. We put & = f(w). By the maximum
principle, we have @ > 0. This implies w > 0.

(iii) We observe that if w € G, then @ = f(w) is a ground state solution of (2.4). In
fact for any nontrivial critical point u of J, v = f(u) is a nontrivial critical point of I.

Then by Lemma 2.7 (ii), we have
I(v) =J(u) >2m=J(w) = I(0).

This implies @ is a ground state solution of (2.4).

By the result of [8], any ground state solution of (2.4) is radially symmetric and
decreasing with respect to r = |z|. We can easily see that w(z) = w(|z|) if and only if
W(z) = f(w(z)) satisfies w(z) = W(|z|). Thus claim (iii) holds.

(iv) Let w € G and @ = f(w). From (ii), @ is a positive radial solution of (2.4). Then

by the standard comparison principle, it follows
|D*w(z)| < ce™®*l for all 6 € (0,VA), z € RV, |k| < 2 and some ¢ > 0.
By Lemma 2.2 (i), we can see that
| |D*w(z)| < ce™®#l for all § € (0, V), z € RY, |k| < 2 and some ¢ > 0.
Thus f(;r |z| > 1, we have
—Aw + Mw < ce—POlel | ge—(2a-1)dlal,
Since 2c: — 1 > 1 and we can take § arbitrarily close to v/, it follows
—Aw+ dw = 0o(G(z)) as |z| — oo,

where G is the fundamental solution of —A+AI. Then by Gidas-Ni-Nirenberg’s asymptotic

result [13], we obtain (iv). i

(2a—1)N +2
N -2

Finally in this section, we give the non-existence result for p > , which

is an easy consequence of the Pohozaev identity.
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Proposition 3.2. Suppose p > (22 -];,1_)1\2[ + 2. Then (1.2) has no nontrivial solution
u€ X.
20— 1)N + 2
Proof. Suppose u € X is a nontrivial solution of (1.2) and p > (22 N _) 5 ha . From
J'(u)u = 0, we have
/ Vul? + M2 + k2| Vel ul?*~2 dz — / luP* da = 0.
RN IRN
On the other hand, u satisfies (3.1). Then we obtain
- - ~1)N
(o =DV -2) |Vul? dr + (_a__)__-l—_2/ Mu? dx
2a RN 2a RN
(N N2 / julP* da.
Since the left hand side is positive, it follows
N N-2 . (20 — 1)N +2
p+1— e > 0, that is, p < N3 .
This is a contradiction. |

4. Uniqueness of ground state solutions
In this section, we study the uniqueness of ground state solutions of (1.2). By Theorem
1.1, we know that

G C {u € X NC?% u is a positive radial solution of (1.2)}.

Moreover lemma 2.8 tells us that if (2.4) has at most one positive radial solution v, then
(1.2) also has at most one positive radial solution u = f(v). Thus we have only to study

the uniqueness of the positive solution of semilinear problem (2.4). We put

g(s) = f(s)Pf'(s) — Af(s)f'(s) for s > 0 and Ky(s) := %é—;) (4.1)

We apply the following uniqueness result due to Serrin and Tang [22].

Proposition 4.1 [22]. Suppose that there exists b > 0 such that
(i) g is continuous on (0,00), g(s) < 0 on (0,b] and g(s) > 0 for s > b.
(ii) g € C*(b,00) and K(s) < 0 on (b, 0).
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Then the semilinear problem:
—Au=g(u) in RY, u>0, u—= 0 as |z| - o0, u(0) = max u(z)
has at most one positive radial solution.
Now we can see that g defined in (4.1) is of the class C'[0, o) and
9(s) =0 = P71 (s) = A = s = [T (A5°0).

We put b := f~1(A7T). Since (s — b)g(s) = (s = b)ff'(fP~1 — X), we can see (i) of
Proposition 4.1 holds.

Lemma 4.2. Assumea —1<p < 3a—3 and

a—p P 2a-2
< p—1 4.2
max{a(p—l)’ a(sa—zo—:%)}‘"iA (42)

Then g satisfies (ii) of Proposition 4.1.

Proof. For a detail, we refer to [2]. We observe that

Ky(s) = (g"(s)g(s)s + g'(s)g(s) — (g'(s))?s)-

g(s)?
Thus we have only to show that sg”g+¢'g — s(¢')? < 0 for s > b. By direct computations,
we have
s9"9+9'g — s(¢')?
=P = N2 P2+ sf (2" = () = sPP()2 + F(F)° + £21 ")
+ (P =N - DN (- 2)s(F)? + sf 7 + £F)
—(p—1)%sf%2(F)%.
Next we express sg”g + ¢g’g — s(g’)? in terms of f and f’ and regard as a polynomial
of fP~1 — . From (2.2) and (2.3), we have

9”9+ g'g— s(g')?

= (P71 =N ((e=1DF"® (f - 4a—p—3)sf' +3(a— 1)sf?) ~ (p—a+1)f*(asf - 1))
AP - 1P =N (—(e+p-Dsf* + ff2+ (o — 1)sf)
- N(p—-1)%sf"

= (fP71 = A2 Hi(s) + Mp — 1)(fP~1 - A Hy(s) — A2 (p —1)%sf. (4.3)
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First we study the sign of Hs(s). It follows
Ha(s) = fH{~f'(asf — )= (p— 1) = (a = 1)f?) sf"}.

From Lemma 2.2 (ii), we know that asf’ — f > 0 for all s > 0. Moreover from the fact

that f’ is decreasing, we have

200—2

p—a+ka(p—1)A 7T

2a=2
14 akA?-1

p-1)—-(a-1)f2>2p-1-(a-1)f'(b)?*=

From (4.2), it follows Hy(s) < 0 for s > b.
Next we investigate the sign of Hy(s). We have

Hi(s) = (= 1)f® (f - (4o —p—3)sf' +3(a— 1)sf?) = (p — a + ) f*(asf' - f)
=: (@ — 1)f*Hs(s) — (p — e+ 1)f*(asf’ - f).

Since p — a4+ 1 > 0, it suffices to show that Hs(s) < 0 in order to prove H (s) L0.
Now we observe that

Hy(s) = —(asf' — f) — sf' (Ba —p—3) — 3(a — 1)f"?).
From p < 3a — 3 and the fact that f’ is decreasing, we have

(3a—p—3) —3(a—1)f'(s)? > (3a—p—3) — 3(a — 1)f'(b)*
3(a—1)
1+ alf(b)2e—2

_ ~p+aBa—p— 3)&1\% .

200 —2
14+ arkA»T

=B8a—-p—-3)—

We see that

—p-i—cv(3cv—10—3)/6)\2;:‘T_12 >0 <

Thus we have Hs(s) < 0 and hence Hi(s) < 0. From (4.3), we obtain Kg(s) < 0 for
s>b. |

By Lemma 4.2, we can apply Proposition 4.1. Hence we obtain the uniqueness of
positive radial solutions of (1.2) when N > 3 and the proof of Theorem 1.2 is complete.
To prove the uniqueness of ground states solutions for N = 2, we apply the following

uniqueness result due to Mcleod and Serrin [20].
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Proposition 4.3 [20]. Suppose that there exist b > 0 and T > 1 such that
(i) g€ Ct[0,00), g(0)=0, ¢'(0) <O0.
(ii) g(s )<Of0rs€(0 b), g(s) > 0 for s € (b,00).

111

i)
(iv) )>Ofors>0 s#b.

9
( ) < for s >b.

Then the semilinear problem:
—Au = g(u) in R, u>0, u—= 0 as || = oo, u(0) = maxu(z)
has at most one positive radial solution.

Now we can see g defined in (4.1) satisfies (i)-(iii) of Proposition 4.3.

Lemma 4.4. Assume2a—1 < p < co. Then g defined in (4.1) satisfies (iv) of Proposition

4.3 with T = E—t%_—a-.

Proof. A direct calculation yields that
sg'(s) ~79(s) = (p+ 1 = @)sfP~H(f")? + (a — )sfP~H(f)*
+(@=2)As(f)? = (a = DAs(f)* = 7fPf + AL f'
> (p+1-a—ar)sfPHf")? + (1 = DAs(f)? + (@ = )sfP7H(f)*

1 —

Here we used 0 < f’ <1 and Lemma 2.2. Choosing 7 = u, we obtain 7 > 1 and

sg —Tg>0fors>0,s#b. |
p+1l—-a

Lemma 4.5. Suppose a > 2, 2a—1 < p < 3a—3 andlet T = ——— and b =

f~Y(A#7T). Then
(i) For every fixed k > 0, there exists A\g > 0 such that if A\ > \o, g satisfies (v) of
Proposition 4.3.

(ii) For every fixed A > 0, there exists kg > 0 such that if kK > kg, g satisfies (v) of
Proposition 4.3.

For the proof, we refer to [2].
By Lemmas 4.4-4.5, we can apply Proposition 4.3. Hence we obtain the uniqueness
of positive radial solutions of (1.2) for N = 2 and the proof of Theorem 1.4 is complete.
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Remark 4.6.
(i) As mentioned in [15], (iv) and (v) of Proposition 4.3 imply (ii) of Proposition 4.1. This
means that we need a stronger condition on the nonlinearity to show the uniqueness

for N = 2.

(ii) The number b = f“l()\ﬁ) depends on k and A\. We can see b — oo if either A or

goes to infinity. To obtain the uniqueness, we require that b is large.
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