Low theories and the number of independent partitions

Akito Tsuboi

Institute of Mathematics, University of Tsukuba

1 Introduction

In this paper, we simply say that T is a theory if it is a complete first order theory formulated in a countable language. There are a number of important notions which classify theories. Simplicity, introduced by Shelah in [4], is one of such notions. A simple theory is characterized as a theory in which the length of a dividing sequence of types is bounded $(< \infty)$. The notion of lowness was defined by Buechler in [1]. A low theory is characterized by the following property: For each formula $\varphi(x, y)$ there is a number $n_{\varphi} \in \omega$ such that whenever $\{\varphi(x, a_i) : i < m\}$ satisfies (1) $\{\varphi(x, a_i) : i < m\}$ is consistent, and (2) $\varphi(x, a_i)$ divides over $A_i = \{a_j : j < i\}$ (i < m), then $m \leq n_{\varphi}$. It is easy to see that a low theory is a simple theory. However, a simple theory need not to be low.

In [2], Casanovas constructed a simple nonlow theory. His theory T_1 is the theory of the structure $M = (M, P, P_1, P_2, ..., Q, R)$, where

- 1. M is the disjoint union of P and Q;
- 2. P_n 's are dijoint copies of ω ;
- 3. P is the disjoint union of $\bigcup_{i \in \omega} P_i$ and ω ;
- 4. Q is the set of all sequences $(A_1, A_2, ..., A_{\omega})$, where A_n is an n-elment subset of P_n , and $A_{\omega} \in G$, where G is a fixed class of subsets of ω such that (i) whenever $X_1, ..., X_k, Y_1, ..., Y_l \in G$ are distinct then $\bigcap X_i \cap$ $\bigcap Y_i^c \neq \emptyset$, and (ii) for any distinct elements $m_1, ..., m_k, n_1, ..., n_k \in \omega$ there is $X \in G$ with $m_1, ..., m_k \in X$ and $n_1, ..., n_k \in X^c$.

- 5. $R \subset P \times Q$;
- 6. $R(a, (A_1, A_2, ..., A_{\omega}))$ if (i) $a \in P_n$ and $a \in A_n$ ($\exists n \in \omega$) or (ii) $a \in P \setminus \bigcup_{n \in \omega} P_n$ and $a \in A_{\omega}$.

 T_1 is not supersimple and furthermore R(x, y) defines infinitely many mutually independent partitions in the following sense: If we enumerate P_n as $P_n = \{a_{nm} : m \in \omega\}$, then

- for each $\eta \in \omega^{\omega}$, $\{R(a_{n\eta(n)}, y) : n \in \omega \smallsetminus \{0\}\}$ is consistent, and
- for each $n \in \omega \setminus \{0\}, \{R(a_{nm}, y) : m \in \omega\}$ is (n+1)-inconsistent.

By modifying this example, Casanovas and Kim [3], showed the existence of a supersimple nonlow theory T_2 . This T_2 does not have infinitely many mutually independent partitions. However, there is a formula $\varphi(x, y)$ such that for each $k \in \omega$ we can find parameter sets $A_i = \{a_{ij} : j \in \omega\}$ (i < k)defining k independent partitions.

For explaining the above situation more precisely, we will define a rank $D_{inp}(*, \varphi(\bar{x}, \bar{y}))$, which bounds the number of independent partitions. Namely, we let $D_{inp}(\Sigma(\bar{x}), \varphi(\bar{x}, \bar{y}))$ be the first cardinal κ such that there are no κ -many independent partitions $\Psi_i = \{\varphi(\bar{x}, \bar{a}_{ij}) : j \in \omega\}$ $(i < \kappa)$ of Σ . Then, for T_1 , $D_{inp}(x = x, R(y, x))$ is ω_1 . For T_2 , we can show that $D_{inp}(\bar{x} = \bar{x}, \varphi(\bar{x}, \bar{y})) \leq \omega$ is for any φ , and that $D_{inp}(x = x, \varphi(x, y)) = \omega$ for some φ . So it is natural to ask whether there is a simple nonlow theory T such that $D_{inp}(\bar{x} = \bar{x}, \varphi(\bar{x}, \bar{y})) < \omega$ for any φ . We prove in this paper that there is no such theory.

2 On Simplicity and Lowness

We fix T and work in a large saturated model of T. From now on x, y, will denote finite tuples of variables. First we recall definitions of basic ranks.

Definition 1 Let $\Sigma(x)$ be a set of formulas and $\varphi(x, y)$ a formula. Let $k \in \omega$.

1. $D(\Sigma(x), \varphi(x, y), k) \ge 0$ if $\Sigma(x)$ is consistent. $D(\Sigma(x), \varphi(x, y), k) \ge n+1$ if there is an indiscernible sequence $\{b_i : i \in \omega\}$ over dom (Σ) such that $D(\Sigma(x) \cup \{\varphi(x, b_i)\}, \varphi(x, y), k) \ge n$ for all $i \in \omega$, and $\{\varphi(x, b_i) : i \in \omega\}$ is k-inconsistent.

- 2. $D(\Sigma(x), \varphi(x, y)) \geq 0$ if $\Sigma(x)$ is consistent. For a limit ordinal δ , $D(\Sigma(x), \varphi(x, y)) \geq \delta$ if $D(\Sigma(x), \varphi(x, y)) \geq \alpha$ for all $\alpha < \delta$. $D(\Sigma(x), \varphi(x, y)) \geq \alpha + 1$ if there is an indiscernible sequence $\{b_i : i \in \omega\}$ over dom (Σ) such that $D(\Sigma(x) \cup \{\varphi(x, b_i)\}, \varphi(x, y)) \geq \alpha$ $(i \in \omega)$, and $\{\varphi(x, b_i) : i \in \omega\}$ is inconsistent.
- Fact 2 1. $D(\Sigma(x), \varphi(x, y), k) \ge n$ if there is a tree $A = \{a_{\nu} : \nu \in \omega^{\le n}\}$ such that (1) $\Sigma(x) \cup \{\varphi(x, a_{\eta|i}) : 1 \le i \le n\}$ is consistent $(\forall \eta \in \omega^n)$, and (2) $\{\varphi(x, a_{\nu} \sim i) : i \in \omega\}$ is k-inconsistent $(\forall \nu \in \omega^{\le n})$.
 - 2. $D(\Sigma(x), \varphi(x, y)) \geq n$ if there is a tree $A = \{a_{\nu} : \nu \in \omega^{\leq n}\}$ and numbers $k_0, ..., k_{n-1}$ such that (1) $\Sigma(x) \cup \{\varphi(x, a_{\eta|i}) : 1 \leq i \leq n\}$ is consistent $(\forall \eta \in \omega^n)$, and (2) $\{\varphi(x, a_{\nu} \uparrow_i) : i \in \omega\}$ is $k_{\mathrm{lh}(\nu)}$ -inconsistent $(\forall \nu \in \omega^{\leq n})$.

From the fact above, we see the following:

- 1. T is simple if and only if $D(\Sigma(x), \varphi(x, y), k) \in \omega$ for any φ and k.
- 2. T is simple if and only if $D(\Sigma(x), \varphi(x, y)) < \infty$ for any φ .
- 3. T is low if and only if $D(\Sigma(x), \varphi(x, y)) \in \omega$ for any φ .

Now we define a rank assining a cardinal to each set of formulas.

Definition 3 $D_{inp}(\Sigma(x), \varphi(x, y))$ is the minimum cardinal κ for which there is no matrix $A = \{a_{ij} : (i, j) \in \kappa \times \omega\}$ such that $(1) \Sigma(x) \cup \{\varphi(x, a_{i\eta(i)}) : i < \kappa\}$ is consistent $(\forall \eta \in \omega^{\kappa})$, and (2) for all $i < \kappa$, $\{\varphi(x, a_{ij}) : j \in \omega\}$ is k_i inconsistent, for some $k_i \in \omega$.

Remark 4 Let $(M, P, P_1, ..., Q, R)$ be the structure explained in the introduction. For each n, let $\{a_{nm} : m \in \omega\}$ be an enumeration of P_n . Then we see the following

- for each $\eta \in \omega^{\omega}$, $\{R(a_{n\eta(n)}, y) : n \in \omega \smallsetminus \{0\}\}$ is consistent, and
- for each $n \in \omega \setminus \{0\}, \{R(a_{nm}, y) : m \in \omega\}$ is (n+1)-inconsistent.

This imples that $D_{inp}(x = x, R(x, y)) \ge \omega_1$. Now we work in an elementary extension of M. Suppose, for a contradiction, that there is an $\omega_1 \times \omega$ matrix $A = \{a_{ij}\}_{i \in \omega_1, j \in \omega}$ witnessing $D_{inp}(x = x, R(x, y)) \ge \omega_2$. Then, by compactness, we can assume that for each $i, I_i = \{a_{ij} : j \in \omega\}$ is an indiscernible sequence. If $I_i \cap \bigcup_{n \in \omega} P_n = \emptyset$, then $\{R(x, b) : b \in I_i\}$ is a consistent set. So, for each $i < \omega_1$, we can choose $n_i \in \omega$ such that $I_i \subset P_{n_i}$. Now we can choose $n \in \omega$ and an infinite set subset $J \subset \omega_1$ such that $n_i = n$ for all $i \in J$. But, then $\{R(a_{i\eta(i)}, y) : i \in J\}$ is *n*-inconsistent, contradicting the choice of A.

Proposition 5 Suppose that T is simple. Suppose also that $D_{inp}(x = x, \varphi(x, y))$ is finite. Then $D(x = x, \varphi(x, y)) < \omega$.

Proof: Choose $k \in \omega$ with $D_{inp}(x = x, \varphi(x, y)) = k$. By way of contradiction, we assume that $D(x = x, \varphi(x, y)) \geq \omega$. Fix $m \in \omega$. By $D(x = x, \varphi(x, y)) \geq \omega$, there is a set $A = \{a_{\nu} : \nu \in \omega^{<m(k+1)}\}$ witnessing $D(x = x, \varphi(x, y)) \geq m(k+1)$. Then we have (1) $\{\varphi(x, a_{\eta|i}) : i < m(k+1)\}$ is consistent for any $\eta \in \omega^{<m(k+1)}$, and (2) $\{\varphi(x, a_{\nu} \sim i) : i \in \omega\}$ is $k_{lh(\nu)}$ -inconsistent for any ν with $lh(\nu) + 1 < m(k+1)$. We can assume that A is an indiscernible tree. For l < m and $\nu = \nu_0 \cap n \in \omega^{l+1}$, we define

$$a_{\nu}^{*} = a_{\nu_{0}} * \widehat{a_{\nu_{0}}} * \widehat{a_{\nu_{0}$$

where

$$u_0^* =
u_0(0), 0^k,
u(1), 0^k, ...,
u(l-1), 0^k.$$

We let $\varphi^*(x, y_1, ..., y_k)$ denote the formula $\varphi(x, y_1) \wedge ... \wedge \varphi(x, y_k)$. Notice that the definition of φ^* does not depend on m.

Claim A $\{\varphi^*(x, a^*_{\nu_0 \frown m}) : m \in \omega\}$ is k-contradictory.

Suppose this is not the case. Then there is a k-element subset $F = \{i_1, ..., i_k\}$ of ω such that

 $\{\varphi^*(x,a_{\nu_0^{\,\sim}i_1}^*),...,\varphi^*(x,a_{\nu_0^{\,\sim}i_k}^*)\}$

is consistent. In particular, by the definition of φ^* , we see that the following set is consistent.

$$\{\varphi(x, a_{\nu_0^*} \hat{a}_{i_1} \hat{a}_{0}), ..., \varphi(x, a_{\nu_0^*} \hat{a}_{i_k} \hat{a}_{0^k})\}$$

Then, by the indiscernibility of A, the following Γ_{ν} is also consistent, for each sequence ν of length k:

$$\Gamma_{\nu} = \{\varphi(x, a_{\nu_0^* \frown i_1 \frown \nu(1)}), \varphi(x, a_{\nu_0^* \frown i_2 \frown 0 \frown \nu(2)}), \dots, \varphi(x, a_{\nu_0^* \frown i_k \frown 0^{k-1} \frown \nu(k)})\}.$$

On the other hand, by our choice of the tree A, for each l = 1, ..., k, the set

$$\{\varphi(x, a^*_{\nu_0 \uparrow i_l \uparrow 0^{l-1} \uparrow i}) : i \in \omega\}$$

is inconsistent $(k_{\text{lh}(\nu_0)+(1+l)}\text{-inconsistent})$. This yields $D_{\text{inp}}(x = x, \varphi(x, z)) \ge k+1$, a contradiction. (End of Proof of Claim)

By claim A, the set $\{\varphi^*(x, a^*_{\nu}) : \nu \in \omega^m\}$ witnesses $D(x = x, \varphi^*, k) \ge m$. Since *m* is arbitrary, we conclude $D(x = x, \varphi^*, k) = \infty$, contradicting the simplicity of *T*.

Corollary 6 Suppose that T is simple. Suppose also that $D_{inp}(x = x, \varphi(x, y))$ is finite for all φ . Then T is low.

References

- [1] Steven Buechler, Lascar strong types in some simple theories, J. Symb. Log. 67, No.2, 744-758 (2002).
- [2] Enrique Casanovas, The number of types in simple theories, Ann. Pure Appl. Logic 98, No.1-3, 69-86 (1999).
- [3] Enrique Casanovas and Byunghan Kim, A supersimple nonlow theory,[J] Notre Dame J. Formal Logic 39, No.4, 507-518 (1998)
- [4] Saharon Shelah, Simple unstable theories, Ann. Math. Logic 19, 177-203 (1980).
- [5] Saharon Shelah, Classification Theory and the Number of Non-Isomorphic Models (2nd Edition), North Holland, 1990
- [6] Frank O. Wagner, Simple Theories, Springer, 2000.