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Smoothness of hairs for some entire functions

Masashi KISAKA (K#k IEX)
Department of Mathematical Sciences,
Graduate School of Human and Environmental Studies,
Kyoto University, Kyoto 606-8501, Japan

Mitsuhiro SHISHIKURA (558 XJX)
Department of Mathematics,
" Faculty of Science,
Kyoto University, Kyoto 606-8502, Japan

1 Preliminaries

Let f be an entire function and f™ denote the n-th iterate of f. Recall that the Fatou
set F(f) and the Julia set J(f) of f are defined as follows:

F(f) = {z€C|{f"}>, is a normal family in a neighborhood of z},
J(f) = C\F(f).

By definition, F(f) is open and J(f) is closed in C. Also J(f) is compact if f is a
polynomial, while it is non-compact if f is transcendental. This is due to the fact that
oo is an essential singularity of f.

The purpose of this paper is to construct so-called hairs, which is subsets of the
Julia set J(f), and to show their smoothness for a certain class of transcendental entire
functions. Devaney and Krych first constructed hairs for exponential family E)(z) =
Ae* (A € C\ {0}) in 1984 ([DK]). Here we briefly explain their results. Define

Bi={z|Q@Q-1)r<Imz+0< @2+ 1)r}, O=arge|-nm7),l€l
then we can define itinerary S(z) := s = (sg, 81, ,8n,-++) € ZN for a point z € C by
E}(z) € B,,.
Theorem 1.1 (Devaney-Krych, 1984). Ifs € ZN satisfies the following “growth con-
dition”:
0 €R, n, (2sal+ 1) + 16 < g*(30),  g(t) i= AIe

then there ezists hg(t) C J(E\) which satisfies the following:

(i) Ex(hs(t)) = ho(s)(g(t)), where o is the shift map on ZN,

(ii) E%(hs(t)) — oo (n — o) for every t.

The curve h,(t) is called a hair. Viana showed that this hair h4(t) is a C* curve ([V]).

In this paper we consider the existence and smoothness of hairs under a general setting.
In particular we generalize this result for the exponential functions to f(z) := P(2)e9®,
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where P(z) and Q(z) are polynomials. For simplicity, we state the result for the easiest
case, that is, for a “fixed” itinerary s = (so, So, S0, - ). We state our detailed setting and
the results of existence in §2. In §3 and §4 we explain the smoothness of hairs. In §5 we
state the result for f(z) := P(2)e?® as an application of our general results. Finally in
86 we briefly explain how to construct hairs for general itineraries.

2 C° a priori estimates — existence of a hair h(t) —

Our setting is as follows:

A: Let U, V C C be unbounded domains, f : U — V a holomorphic diffeomorphism and
g : [T, 0) = R the reference mapping, i.e., an increasing C* function such that g(t) > ¢
for t > .. (Hence g*(t) — oo (n = 0).)

B: (Initial curves) : There exist continuous curves ho, h; : [7,,00) — C and a contin-
uous increasing function R : [1,,00) — R, and a constant 0 < 3k < 1 which satisfy the
following:

o |hi(t) — ho(t)| < (1 — kK)R(t) fort € [, 00); (1)
o If jw — ho(g(t))] < R(g(t)) for some t € [r,,00), then w € V and
o Bl 1 _ 1
Pl 2 %, where 2 = (7lo) ™ () @)

(This is equivalent to that f : Bs(t) — D(ho(g(t)), R(g(t))) is a homeomorphism with

R(t) 1
"(z > —, z € B¢(t), where B¢(t) :={z € U : |f(z) — ho(g(?))] < R(g(t))}
F @l g0 2 5 7 € B () = {2 € U+ £(z) — ho(g(t))| < Rlg(t))}.
Definition 2.1. Let p : [T,00) — R, be a continuous increasing function and define a
norm ||¢||,r for ¢ : [T,00) = C by

llpr = sup [ (t)|p(t).

We call p a weight function. Then it is easy to see that the space X, := {¢ | ||¢||,,r < o0}
becomes a Banach space.

Note that if we put p.(t) := 1/R(t) then the condition B (1) can be read as

|lh1 = Rollpu,r. £ 1= &.

Under the above setting, we can show the existence of a hair h(?):

Lemma 2.2. Under the assumptions A and B, there exist continuous functions hy, :
[Te,00) = C (n=2,3,...) such that forn=0,1,2,...,

|[hn = Bollp.,rn <1— K (3)
fohn(t) =hnog(t) for t2m.; (4)
|Brt1 = Bnllpre < (1 — K)K". ()




Therefore there exists a continuous function h(t) = lim h,(t) satisfying
n—o0

foh(t)=hog(t) for t>7. and |h(t)— ho(t)] < R(2). (6)
0

Of course, f"(h(t)) = oo (n — oo) holds for Yt > 7., since we have f*(h(t)) = h(g"(t))
and g™(t) — oo (n — 00).

3 (" estimates

From (4), we have

logh,, ., =loghi, o g +logg —log f' o hny1. (7)
So define
n(t) := log hp(2), (8)
Then we have
Ynt1 = ¥n = (Yn — Y1) © g — (log f' © hny1 — log f' 0 hn). (9)

If ¥, —¥p—1 — 0 as t — oo, by composing g, (¢, — ¥n-1) 0 g may go to 0 faster. This can
be formulated in terms of || -||,, ~ With an appropriate weight function pg : [7i, c0) = R*
(which is assumed to be increasing). In fact, for a function % : [., 00) — C (for our case,

'(/J = Yn — ¢n—1)1 we have

19 gl = 580 a0l 0(t) = s0p ~2U00s - u(a(t)n(a(e)

< (sup 200 )-(sup l¢(t')|Po(t')) — (50 250 ) Wl (10

t>r po(g(t)) #/>g(r) i>r po(g(t))

. po(t)
Soifsup - Ta®)

possibility to prove the geometric convergence of (9).
For further estimates (C*, k =1,2,...), we need to prepare the following.

Definition 3.1. (1) Let pg, 0% : [T4,00) = Ry, (k = 0,1,2,...) be weight functions
(k) (k)

with o%(t) < pk(t). These are to measure the norm || - ||, - of ¥,.7; — %=  and the norm
I+ lowr of %S,
(2) For given weight functions pg, ok, define
t)|g'(¢)]F
(e o OO
pr(g(t))

() == sup ax(t),
t>T

< 1, then || - || p,~-norm is contracted by composing g. This implies the

Dy (t) .= sup |(log f’)(k’) (2)|, k=0,1,2,..., t, T2,
zEBf(t)

By(t) .= {z € U +{f(z) — ho(g(t))| < R(g(t))}
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Now in order to prove that h(t) is C*, we assume that there exist weight functions
po, 00 : [Tx.00) — R, satisfying the following conditions Cy, Dy and Fy:

Co: ho, by are C* with hj(t), Ry (t) # 0 and o(t) = log hy(t), 1 (t) = log hi(t) satisfy

”¢1 - 1/}0”;00,7'. < oo and “1/)0H00m < co.

Dy: hm ao(7) = hrtriilp p:(o((tz))

Fo: Ky := tsgp D1(t)R(t)po(t) < oo.

<1

Lemma 3.2. Suppose A, B, Cy, Dy and Fy, are satisfied. Then h, are C* (n =2,3,...)
and there ezists kg < 1 and Co such that ¥, (t) = log h,,(t) satisfy

Ynt1 — Ynllpo,n < Cokg (n=0,1,2,...). (11)
Therefore the limit h(t) is also C' and ¥(t) = log h'(t) satisfies
Co
W= Yl < T and (Bl < T + ol < 0.
O
4 Higher order derivatives — estimate for 'wg")(k =1,2,...)—
Differentiating (7) and using h,,; = e¥~+!, we have
Y1 = W 09) - g + (logg) — ((log f') © hny1) €+, (12)
Vo1 = (W 09) - (9)° + Wnog)-¢"+ (logg)"
— ((log £')" © hny1) €¥¥+* — ((log f') © hny1) €¥*+19 ;. (13)
More generally, the following holds:
Lemma 4.1. For k=1,2,..., we have
1<t<k
1> 25021
A=k
— Y const (08 /)0 0 har) eyl u,  (19)
1<€<k, 0<v
J12 2 Jp21
S+ tgu=k
where the coefficients “const” are some constants depending the indices ¢, ji,j2,.... O

Note that in the right hand side of (14), only the first term contains k-th derivative
of v, and all other terms involve lower order derivatives of ¢, (or none). Therefore if
lower order derivatives are “under control,” it is expected that we can proceed as in the
previous section.



For the exponential map f(z) = Ae® and g(t) = |A|ef, we have (log f’)’ = 1 and
(log f)® =0 (£ > 1). So the formula (14) simplifies substantially. Moreover gi) . .. glie)
is a constant multiple of g(¢)¢ which also simplifies the expression.

Suppose weight functions pi, 0% : [7.,00) — R, are given. We require the following
conditions:

Ci: ho, hy are C*™ and v = log b} and 9, = log b} satisfy
F — 98| <00 and |55 |gpm < 00.
D lim () < 1.
700
Ex: For 1 §£<kandj1,...,j321Withj1+---+jg=k,
pr(t)lg9 () - - - g9 (1))

ot pele(®) =
Fp:For1</¢<k,v>0,71,..,50.>1withf+5+---+75, =k,
s Des R0 2 <o
t
ts;p Dy(t) po(t)ajlp(:)( ) o () < ©0;
ifv>1, thenfor1 <i<u, ts;g Dy(t) - (t)p.’“'(flju g Zj:gg < 0.

Here if v = 0, set 0;,(t)---0;,(t) = 1. Note that the last condition should be satisfied
only when v > 1.

Under these assumptions, we can show the following:
Lemma 4.2. Let k > 1. SupposeABC(O<]<k)D(§ <k)LE; 1<j<k)
= 2,3

and F; (0 < j < k) are satisfied. Then h, are C**! (n ..) and there ezist
constants 0 < k; < 1 and Ci such that

s = ¥ llpyr. < Coki (n=0,1,2,...). (15)
Therefore the limit h(t) is also C**! and v = log b’ satisfies
|[¥ ®) - wo Hpk,n and H’lb'r(lk)Ha'kaT*? ”w(k)”"'kﬂ'* < G

—1-

5 Examples

As an application of our results, we consider the following function:
f(z) = P(2)e??),  P(2) =bpz™+---+bp, Q(2)=as2"+---+a1z+4aq
mzdegPZ 0’ d:degQZ 1) (a’d#oa bm¢0)

By a linear change of coordinate and multiplying P by e, we may assume that ag = 1
and ag = 0. Let g(t) = t™e*’ be the “reference function” to compare.
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Lemma 5.1. For any € > 0, there ezists R > 0 such that for t € C with |t| > R, there
ezists a unique w = w(t) such that [w| < &, P(t(1 + w))eRt@+®) = ¢met* and |tw| < C,
where C is a constant. 0

By using this function w(t), we define ho(t) and start constructing h,(t).

Proposition 5.2. There exist 7, > 0 and C™-function hg : [T%,00) — C such that

hy(t) # 0 and

foho(t) = g(t) (= tme") (16)
ho(t) :=t(1 +w(t)) =t+0(1) (ast— oo0) (17)
(log Ry ()™ = 0(#) (k=0,1,2,...). (18)
Moreover hy, hy := f~1(ho o g) satisfies A and B with R(t) = ﬂi—cf:g%tt—). O
Proposition 5.3. Let 0x(t) = t**2 (k=0,1,2,...). Suppose that px(t) (k =0,1,2,...)
satisfy

ox(t) < pil(t) (19)

. pr(8)t* 4D (g(2))*
bmswp == @) <! 0

pe(g(t))

pi(t) < const - t*g(t) (22)
ox(t) < const —— Po( ) (k>1) (23)
pi(t) < const - p,( ) (1<j<k). (24)
ThenC; 0<j<k), D; 0<j<k) E; (1 <j<k)andF; (0 <j<k) are satisfied.
0

Corollary 5.4. For a suitable choice of const and ux > 0, p(t) = const% satisfies the
hypothesis. O

6 General cases

In this section we briefly explain how to construct hairs for general itineraries. We
consider the following general setting:

Setting: Let U;, V; C C be unbounded domains and f; : U, — V; be holomorphic

diffeomorphisms (I = 0,1,2,---). Let g : [ry,00) — R be a reference mapping, i.e., an

increasing C* function such that g(t) > t for t > 7,. (Hence g'(t) — oo (I = 0)). Set
1

7= g (Tu)-



Our goal is to construct h; : [7,00) = C, ({=0,1,2,---) such that
Jrohu(t) = hupa 0 g(t).

Strategy: Construct initial curves hy; (I = 0,1,2,---). Then define hy; : [n,00) —
C, (0 <! < n) by lifting successively so that

f10 hni(t) = hnyy1 0 g(2).

See the figure and the diagram below:

Uz }];2277

G,

hio  haa
h? 0 h2 1 h2 2

h'3 0 h3,1 h3,2 h3 3

»

hip h1 he Mg ... hy

hiyio hiv11 P12 Pz oo hiyag hipign
(Il—o0) | { { Lo {
he hy  hs hs ... h T

Under the similar assumptions as in the previous sections, we can show the existence and
smoothness of hairs A;(t) (I =0,1,2,---). We omit the details. Since the function f(2) =
P(2)e®® is structurally finite, we can define the itinerary s € {0,1,---,d — 1} x ZN,
where d = deg Q. For the details, see [Ki]. So by taking f; to be the restriction of f to a
suitable domain according to s, we can apply our results for general setting and obtain
the smooth hair h4(t) corresponding to s.
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