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Abstract
The notion of local composition of cellular automata
was introduced in [1] as an operator over local
transition rules compatible with the composition of
global transitions. A Mathematical morphological
interpretation of local composition was given in [2]
in terms of excitation patterns of local transition
rules. In this article, by going ahead Mathematical
morphological analysis, we describe the local com-
position via hit-or-miss transform which is known
as a pattem detecting tool in Mathematical mor-
phology [9, 11].

1 Introduction
A cellular automaton (CA for short) is a discrete
dynamical system characterized by its locality and
homogenuity. In fact, for every CA, its transition
funciton over configurations is defined by a local
transition $r^{V}ules$ so as to be translation invariant.
Such a formalism of CA requires a group struc-
ture on the set of sites on which configurations aie
defined. CA $s$ thus defined are completely deter-
mined by their local transition rules. In particular,
any properties of CA $s$ , in principle, should be de-
scribed in terms of their local transition rules.

In [1], the author introduced the notion of local
compositon of local transition mles and showed that
the transition function corresponding to the local
composition coincides with the composition of the
transition funcitons corresponding to the composed
local transition rules (more precisely, see Theorem
3$)$ . The description of local composition for 10-
cal transition rules $L$ and $\mathfrak{M}$ given in [1] is in a
conotative form for local patterns $c$ on the com-
posed support $VOW$ by using of the mapping
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$\sigma_{c}:V\ni varrow v^{-1}c\cap W\in 2^{W}$ as
$\mathcal{L}0$ on $=\{c\in 2^{VW}|\sigma_{c}^{-1}(\mathfrak{M})\in L\}$ ,

where $V$ and $W$ are respectively the supports of
the composed rules $C$ and $\mathfrak{M}$.

In the previous work [2], to clarify this descrip-
tion, the author rewrote the condition $\sigma_{c}^{-1}$ (SM) $\in$

$L$ in terms of Mathematical morphological (MM
for short) operators concerning the mapping $\sigma_{c}$ .
Namely, for any local pattem $c$ on $VOW$,

$\sigma_{c}^{-1}(\mathfrak{M})\in,C\Leftrightarrow$

$\exists L\in \mathcal{L}$ such that $\delta_{{}^{t}\sigma_{e}}(L)\subseteq \mathfrak{M}\subseteq\epsilon_{t}\sigma_{c}(L)$,

where $\delta_{{}^{t}\sigma_{c}}(L)$ and $\xi t\sigma_{c}(L)$ respectively denote the
dilation and the erosion of $L$ by the transposition
${}^{t}\sigma_{c}$ of the local mapping $\sigma_{c}$ regarded as a corre-
spondence. A general frame-work of MM analysis
for correspondences will be given in \S 3.

In this article, we give a more direct interpreta-
tion of $\sigma_{c}^{-1}(\mathfrak{M})$ by using hit-or-miss transform as
follows. The hit-or-miss transform of a set $A$ by a
pair of sets $B$ and $B’$ is defined by

$A$ O$ $(B, B’)=\epsilon_{B}(A)\cap\epsilon_{B’}(A^{C})$ . (1)

The resulting set $AO(B, B’)$ consists of those points
for which $B$ fits in the forground $A$ and $B’$ fits in the
backgroound $A^{C}$ . Consequently, if $B\cap B’\neq\emptyset$ then
A $O*(B, B’)=\emptyset$ . By using hit-or-miss transform,
$\sigma_{c}^{-1}(\mathfrak{M})$ can be rewritten as $\bigcup_{M\in \mathfrak{M}}cO*(M,$ $W-$
$M)$ and hence we have

$\sigma_{c}^{-1}(\mathfrak{M})\in \mathcal{L}\Leftrightarrow M\in \mathfrak{M}^{C}uo(M, W-M)\in,C$
.

This means that the local composition $\mathcal{L}0$ EM con-
sists of those local patterns $c$ for which the neigh-
bourhood at each point in $W$ , both positively and
negatively, fits some pattem in SM form a pattern
in $\mathcal{L}$ .
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2 Cellular automata
In what follows, we denote by 2 the Boolean algebra
consisting of two constants $0$ and 1.

2.1 Cellular automata on groups
Notion of CA on groups was first treated as special
cases for CA on graphs named Caylay graphs which
represent groups [8, 7, 12]. General approaches are
found in [1], [6] and [13]. Here we follow our previ-
ous investigation [1].

Let $G$ be a group. By regarding its power set $\mathscr{C}=$

$2^{G}$ as the configumtion space, a local transition rule
with the support $V\subseteq G$ is defined as a family $\mathcal{L}$ of
subsets of $V$ . The role of $\mathcal{L}$ is explained as follows.
Let $c’$ be the evolution of a configuration $c\in \mathscr{C}$ .
Then the state at any site $g\in c’$ is determined
according to whether the state pattern of $c$ around
$g$ translated onto $V$ around the unit element $e$ by
$g^{-1}$ is in $\mathcal{L}$ or not. More explicitly,

$c$ $\mapsto$ c’ $=\{g\in G|g^{-1}c\cap V\in \mathcal{L}\}$ .

Such a transition function is characterized as a
tranformation $T$ : $\mathscr{C}arrow \mathscr{C}$ commutes with the G-
action:

$T(ac)$ $=$ $a(T(c))$ , $(a\in G, c\in \mathscr{C})$ ,

where the action of $a\in G$ on a configuration $c\in \mathscr{C}$

is given by $ac=\{ag|g\in c\}$ . The usual infi-
nite (resp. periodic with the size $N$) l-dimensional
CA is obtained by considering a symmetric interval
$V=[-r, r]$ in the Abelian group $G=\mathbb{Z}$ (resp. $\mathbb{Z}_{N}$ :
the residue ring modulo $N$).

2.2 Algebraic structure
For a given set $X$ and a Boolean algebra $B$ we
consider the pointwise Boolean algebra structure
on the set $B^{X}$ of all B-valued functions defined on
X. Namely, it is defined by

$(fvg)(x):=f(x)vg(x)$,
$(f_{A}g)(x):=f(x)\wedge g(x)$ ,

$(\neg f)(x):=\neg(f(x))$

for $f,$ $g\in B^{X}$ and $x\in X$ . Then we have

$f\leq g$ $\Leftrightarrow$ $f(x)\leq g(x)$ $(\forall x\in X)$ .

In case $B=2$ , the Boolean algebra structure
of $B^{X}$ coincides with that of set lattice and $\vee,$ $A$ ,
$\neg$ and $\leq$ , respectively become union, intersection,
complementation and inclusion. The set $\mathcal{T}_{G}$ of all
transition functions on $G$ is a subalgebra of the
Boolean algebra $[2^{G}arrow 2^{G}]=(2^{G})^{(2^{G})}$ . On the
other hand, the set $\mathcal{L}_{V}=[2^{V}arrow 2]$ of all local
transition rules with the support $V$ is regarded as
a Boolean algebra as $2^{(2^{V})}$ . All of $X^{B},$ $\mathcal{T}_{G}$ and $\mathcal{L}_{V}$

are complete.
For any pair of subsets $V\subseteq W\subseteq G$ , by virture

of $2^{V}\subseteq 2^{W},$ $\mathcal{L}_{V}$ can be naturally regarded as a
sublattice of $\mathcal{L}_{W}$ . We remark that the complemen-
tation depends on the algebra to which the element
belongs. When the support should be explicitely
indicated, we write as $\neg V$ (see also the remark at
the end of \S 2.3).

Algebraic properties of CA’s on groups are inves-
tigated in [1] and [6].

2.3 Correspondence between local
transition rules and transition
functions

For a transition rule $\mathcal{L}\in \mathcal{L}_{V}$ with the support $V$ ,
we define a transition function on $G$ by

$T_{L}(c)$ $=$ $\{g\in G|g^{-1}c\cap V\in \mathcal{L}\}$ $(c\in \mathscr{C})$ .

It can be easily verified that $T_{L}$ commutes with the
G-action.

To consider the converse correspondence, we in-
troduce for transition functions a notion corre-
sponding to that of supports of local transition
rules. Let $T$ : $\mathscr{C}arrow \mathscr{C}$ be a transition function
and $V\subseteq G$ . We say that $T$ is local at a site $g\in G$

on $V$ if

$c\cap V=c’\cap V$ $\Rightarrow$ $g\in T(c)$ iff $g\in T$(c’)

is satisfied for any configurations $c,$ $c’\in \mathscr{C}$. We
call $V$ a domain of locality of $T$ at $g$ . We denote
by $\mathcal{T}_{g,V}$ the set of all transition functions local at
a site $g$ on $V$ by $\mathcal{T}_{g,V}$ . $\mathcal{T}_{g,V}$ is a complete Boolean
subalgebra of $\mathcal{T}_{G}$ .

For simplicity, we denote by $\mathcal{T}_{V}$ instead of $\mathcal{T}_{e,V}$

for the unit element $e$ . Then it can be easily shown
that $\mathcal{T}_{V}=\mathcal{T}_{g,gV}$ .

Now we assign a local transition function $\mathcal{L}_{T}\in$

$\mathcal{L}_{V}$ with the support $V$ to each transition function

138



$T\in \mathcal{T}_{V}$ by

$L_{T}$ $=$ $\{c\in 2^{V}|e\in T(c)\}$ .
By virtue of commutativity of $T$ with G-action,

$\mathcal{L}_{T}$ $=$ $\{g^{-1}c\in \mathscr{C}|c\in 2^{gV}, g\in T(c)\}$

holds for an arbitrary $g\in G$ .
Then we have the following theorem and propo-

sition.

Theorem 1 Both of the mappings $\mathcal{T}_{V}\ni T\mapsto$

$L_{T}\in \mathcal{L}_{V}$ and $\mathcal{L}_{V}\ni \mathcal{L}$ $\mapsto$ $T_{\mathcal{L}}\in \mathcal{T}_{V}$ are isomor-
phisms of Boolean algebrals and each of them is
the inverse of each other.

Proposition 2 Let $V\subseteq W\subseteq G$ .
1. $\mathcal{L}_{V}$ is an ideal of $\mathcal{L}_{W}$ , i. e., $\mathcal{L}_{V}$ is a sublattice

$\mathfrak{M}\in \mathcal{L}_{V}of\mathcal{L}_{W}and$

if $\mathfrak{M}\subseteq \mathcal{L}(L\in \mathcal{L}_{V}, \mathfrak{M}\in \mathcal{L}_{W})$ then

2. $\mathcal{T}_{V}$ is a Boolean subalgebra of $\mathcal{T}_{W}$ , i. e., $\mathcal{L}_{V}$ is
a sublattice of $\mathcal{L}_{W}$ and if $T\in \mathcal{T}_{V}$ then $\neg VT=$

$\neg WT$ .

It follows from this proposition that the two em-
beddings $\mathcal{L}_{V}\subseteq \mathcal{L}_{W}$ and $T_{V}\subseteq \mathcal{T}_{W}$ are not compati-
ble with the isomorphisms $\mathcal{L}_{V}\cong \mathcal{T}_{V}$ and $\mathcal{L}_{W}\cong \mathcal{T}_{V}$

established by Theoreml. For more precise, see [1].
Readers also find a proof of Theoreml there.

2.4 Local composition of local tran-
sition rules

We define the Mikowski product of $V,$ $W\subseteq G$ by

$VOW$ $=$ $\{vw\in G|v\in V, w\in W\}$ .

This is a non-commutative version of Minkowski
addition $\oplus$ for Abelian groups [4]. Then we define
the local composition of $\mathcal{L}\in \mathcal{L}_{V}$ and $M\in \mathcal{L}_{W}$ by

$Ce\mathfrak{M}=\{c\in 2^{VW}|\sigma_{c}^{-1}(\mathfrak{M})\in \mathcal{L}\}$ . (2)

Here $\sigma_{c}:Varrow 2^{W}$ is the mapping defined by

$\sigma_{c}(v)=v^{-1}c\cap W$ (3)

for $c\in 2^{VW}$ and $\sigma_{c}^{-1}(\mathfrak{M})$ denotes the inverse im-
age of the set $\mathfrak{M}\subseteq 2^{W}$ with respect to this map-
ping. Finally, $L*\mathfrak{M}$ is the set of all $confi_{o}urationsc$

such that this inverse image coincides with a mem-
ber of L. By definition, $\mathcal{L}*\mathfrak{M}\in \mathcal{L}_{VW}$ .

The following theorem ensures us to call this as
local composition[l]:

Theorem 3 Let $\mathcal{L}\in \mathcal{L}_{V},$ $\mathfrak{M}\in \mathcal{L}_{W}$ . Then the
composition $T_{\mathcal{L}}\circ T_{\mathfrak{M}}$ of $T_{\mathcal{L}}\in \mathcal{T}_{V}$ and $T_{\mathfrak{M}}\in \mathcal{T}_{W}$ is
the unique transition function that is local at $e$ on
$VW$ satisfying

$T_{L}oT_{\mathfrak{M}}$ $=$ $T_{\mathcal{L}\sim \mathfrak{M}}$ .

3 Mathematical morphology
MM was first introduced as an analyzing tool of
image processing by shape and has been developed
as a systematic non-linear analysis methodology
[9, 10]. Theoretically, it is founded on complete lat-
tices [10, 5] and its methodology has been extended
there [4].

In this section, we recall minimal requisites for
MM. For precise description and general references,
readers should see [10], [4]

3.1 Binary relations and correspon-
dences

In what follows, we regard a binary relation $R\subseteq$

$X\cross A$ as a correspondence of $X$ into $A$ by

$R$ : $X\ni x\mapsto\{a\in A|(x, a)\in R\}\subseteq A$

and vise versa. The tmnspose ${}^{t}R$ of $R$ is given by

${}^{t}R=\{(a, x)|a\in A, x\in X, (x, a)\in R\}\subseteq A\cross X$

or, in terms of correspondence,

${}^{t}R$ : $A\ni a\mapsto\{x\in X|(x, a)\in R\}\subseteq X$ .

As well as for ordinary mappings, we denote the
image of an element $x\in X$ under $R$ by $R(x)$ and
that of a subset $Y\subseteq X$ by $R( Y)=\bigcup_{y\in Y}R(y)$ .
The usual set theoretical inverse image of a subset
$B\subseteq A$ can be expressed as $R^{-1}(B)={}^{t}R(B)$ in our
notation.

3.2 Dilation and erosion
Dilation and erosion are the fundamental operators
in MM. Notions of dilation and erosion were ex-
tended to complete lattices and general properties
are investigated [10, 5, 4]. Here we adopt a slightly
general definition[3].
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Let $X,$ $A$ be partially ordered sets. A map-
ping $\delta$ : $Xarrow A$ is called an algebraic dilation or
for short, a dilation iff for any family $\{x_{\lambda}\}\subseteq X$

which admits the supremum $_{\lambda}x_{\lambda}$ in $X$ , the fam-
ily $\{\delta(x_{\lambda})\}$ also admits the supremum $_{\lambda}\delta(x_{\lambda})$ in
$A$ and $_{\lambda}\delta(x_{\lambda})=\delta(_{\lambda}x_{\lambda})$ is satisfied. Namely,
every dilation preserves supremum. Dually, a map-
ping $\epsilon$ : $Xarrow A$ is called an algebmic erosion or
for short, an erosion iff for any family $\{x_{\lambda}\}\subseteq X$

which admits the infimum $\bigwedge_{\lambda}x_{\lambda}\in X$ , the family
$\{\epsilon(x_{\lambda})\}$ also admits the infimum and $\bigwedge_{\lambda}\epsilon(x_{\lambda})=$

$\epsilon(\bigwedge_{\lambda}x_{\lambda})$ is satisfied. Dually to dilation, every
erosion preserves infimum.

Proposition 4 Every dilation or erosion is mono-
tone.

Example 3.1 (MM of set lattices) Let $R$ $\subseteq$

$X\cross A$ be a binary relation. We define the fol-
lowing set operators ffom $2^{A}$ into $2^{X}$ (notice that
the direction is opposed):

$\delta_{R}(B)=\{x\in X|R(x)\cap B\neq\emptyset\}$ , (4)
$\epsilon_{R}(B)=\{x\in X|R(x)\subseteq B\}$ (5)

for $B\in 2^{A}$ . Then $\delta_{R}$ : $2^{A}arrow 2^{X}$ is a dilation and
$\epsilon_{R}$ : $2^{A}arrow 2^{X}$ is an erosion. We call $\delta_{R}$ and $\epsilon_{R}$

the set dilation and the set erosion defined by $R$

respectively.
By considering the transpose ${}^{t}R$ of $R$, we also

obtain operators $\delta_{l}R:2^{X}arrow 2^{A},$ $\epsilon_{R}t:2^{X}arrow 2^{A}$ .
We note that any dilation and erosion between

set lattices are obtained in this way. In fact, for
any dilation $\delta$ : $2^{X}arrow 2^{A}$ , since any set lattice is
“atomid’ and $\delta$ preserves supremum by definition,
we have $\delta(Y)=\delta(\bigcup_{y\in Y}\{y\})=\bigcup_{y\in Y}\delta(\{y\})$ . Thus
the effect of $\delta$ on any set $Y\subseteq X$ is determined
by its effect on each singleton. By taking the cor-
respondence $R$ : $X\ni x\mapsto\delta(\{x\})\subseteq A$ , we have
$\delta=\delta_{{}^{t}R}$ . For any erosion $E$ : $2^{X}arrow 2^{A}$ , since its
dual $\overline{\epsilon}(Y)=(\epsilon(Y^{0}))^{c}$ is a dilation, there exists a
binary relation $R$ such that $\overline{\epsilon}=\cdot\delta_{{}^{t}R}$ . Then it can
be verified that $\epsilon=\overline{\delta_{{}^{t}R}}=\epsilon\iota R$ .

Relationships among “duality”, “transposition“
and ”adjunction” will be investigated in \S 3.4.

As a special case, consider a mapping $\psi$ : $Xarrow$

$A$ . In this case, since the image of $x\in X$ by $\psi$ is
a singleton $\{\psi(x)\}$ , we have $\{\psi(x)\}\cap B\neq\emptyset\Leftrightarrow$

$\psi(x)\in B\Leftrightarrow\{\psi(x)\}\subseteq B$ for $B\in 2^{A}$ . Hence

$\delta_{\psi}(B)=\epsilon_{\psi}(B)=\psi^{-1}(B)$ . (6)

On the other hand, since its transpose $\iota\psi(a)$

as a biary relation of $a$ $\in$ $A$ is $\psi(a)$ $=$

$\{x\in X|a=\psi(x)\}=\psi^{-1}(\{a\})$ , its dilation and
erosion are respectively expressed as

$\delta_{\psi}\ell(Y)=\{a\in A|\exists y\in Y, \psi(y)=a\}=\psi(Y)$ $(7)$

and

$\epsilon_{\psi}t(Y)=\{a\in A|\psi^{-1}(a)\subseteq Y\}=\overline{\psi}(Y)$ . (8)

Example 3.2 (MM on groups) Let $G$ be a
group. For $H\subseteq G$ , the symmetry $\tilde{H}$ of $H$ is defined
by $\tilde{H}=\{g\in G|g^{-1}\in H\}$ .

The set dilation and the set erosion defined by
the binary relation

$R_{H}=\{(g, g’)\in GxG|g^{-1}g’\in H\}$

are respectively called the dilation and the erosion
by $H$ on the $r\dot{v}ght$. We note that for $a\in G,$ $R_{H}(a)=$

$aH$ and hence

$\delta_{R_{H}}(K)=\bigcup_{h\in H}Kh^{-1}$
, $\epsilon_{R_{H}}(K)=\bigcap_{h\in H}Kh^{-1}$ .

The dilation $\delta_{R_{H}}(K)$ of $K$ by $H$ on the right coin-
cides with the Minkowski product $K\tilde{H}$ of $K$ and
$\tilde{H}$ . On the other hand, the erosion $\epsilon_{R_{H}}(K)$ of $K$ by
$H$ on the right is denoted by $K\copyright\tilde{H}$ and called the
Minkowski quotient of $K$ by $\tilde{H}$ on the right. lfur-
thermore, since ${}^{t}R_{H}=R_{\tilde{H}}$, we have $\delta_{{}^{t}R_{H}}=\delta_{R_{E}}$

and $\epsilon tR_{H}=\epsilon_{R_{H}}$ .
Simlarly, by considering the binary relation

$L_{H}=\{(g, g’)\in G\cross G|g’g^{-1}\in H\}$

we obtain the dilation $\delta_{L_{H}}$ and the erosion $\epsilon_{L_{H}}$ by
$H$ on the left. Notice that the dilation $\delta_{L_{H}}(K)$ of
$K$ by $H$ is equal to $\tilde{H}K$ . On the other hand, the
erosion $\epsilon_{L_{H}}(K)$ of $K$ by $H$ on the left is denoted
by $\tilde{H}$ \copyright K and called the Minkowski quotient of $K$

by $\tilde{H}$ on the left.

3.3 Adjoint
The notion of adjoint plays the fundamental roll in
MM analysis. It is defined as follows. Let $X,$ $A$ be
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partially ordered sets and $f$ : $Xarrow A,$ $g:Aarrow X$
be mappings. The pair $(f, g)$ is called an adjoint of
$X$ into $A$ iff for $\forall x\in X,$ $\forall a\in A$

$f(x)\leq a\Leftrightarrow x\leq g(a)$ (9)

is satisfied. Then $f$ is called the lower adjoint of $g$

and $g$ is called the upper adjoint of $f$ .
Relations between MM operators and adjoint

pairs are given by the following two propositions.
Proposition 5 Let $X,$ $A$ be partially ordered sets
and $(f, g)$ be an adjoint of $X$ into $A$ . Then $f$ is a
dilation and $g$ is an erosion.

The converse of Proposition 5 holds under the
assumtpions of completeness:

Proposition 6 Let $X,$ $A$ be partially ordered sets.
1. When $A$ is a complete $\vee$-semi lattice, for a

mapping $f$ : $Xarrow A$ to be a dilation, it is nec-
essary and sufficient that $f$ is monotone and
the pair $(f, g)$ is an adjoint for the mapping
defined by $g(a)=f^{-1}\{b\in A|b\leq a\}$ .

2. When $X$ is a complete $\wedge$-semi lattice, for a
mapping $g$ : $Aarrow X$ to be an erosion, it is
necessary and sufficient that $g$ is monotone and
the pair $(f, g)$ is an adjoint for the mapping
defined by $f(x)=\wedge g^{-1}\{y\in X|x\leq y\}$ .

Example 3.3 (Adjoint of set lattices) Let
$R\subseteq X\cross A$ be a binary relation. Then the pair
$(\delta_{{}^{t}R}, \epsilon_{R})$ is an adjoint of $2^{X}$ into $2^{A}$ . In fact, for
$Y\in 2^{X},$ $B\in 2^{A}$ ,

$\delta_{{}^{t}R}(Y)\subseteq B$

$\Leftrightarrow\forall a\in A,$ $\forall x\in X(x\in Y\Rightarrow(a\in R(x)\Rightarrow a\in B))$

$\Leftrightarrow Y\subseteq\epsilon_{R}(B)$ .
Similarly, the pair $(\delta_{R}, \epsilon_{t}R)$ is an adjoint of $2^{A}$ into
$2^{X}$ .

In particular, for a group $G$ , we have for $H,$ $J$ ,
$K\in 2^{G}$

$H\subseteq\tilde{J}\copyright K\Leftrightarrow JH\subseteq K\Leftrightarrow J\subseteq K\emptyset\tilde{H}$ .

and $\tau$ is one of these three transformations then
$\tau(\tau(\mu))=\mu$ is satisfied.

Let $X,$ $A$ be Boolean lattices and $\delta$ : $Xarrow A$

be a dilation. Then its dual 6 : $Xarrow A$ , tmnspose
${}^{t}\delta:Aarrow X$ and adjoint $\delta^{*}$ : $Aarrow X$ are respectively
defined by

$\overline{\delta}(x)$ $=$ $\neg(\delta(\neg x))$ $(x\in X)$ ,
$t_{\tilde{\delta}(a)}\wedge x=0$ $\Leftrightarrow$ $a\wedge\delta(x)=0$ $(x\in X, a\in A)$ ,

$x\leq\delta^{*}(a)$ $\Leftrightarrow$ $\delta(x)\leq a$ $(x\in X, a\in A)$ .
Although transpose and adjoint are implicitly $dearrow$

fined, they are uniquely determined if they exist for
a given dilation.

Similarly, for an erosion $\epsilon$ : $Xarrow A$ , its dual
$\overline{\epsilon}$ : $Xarrow A$ , tmnspose $t_{\xi}$ : $Aarrow X$ and $ad_{J}\acute{o}int$

$\epsilon^{*}:Aarrow X$ are respectively defined by
$\overline{\epsilon}(x)$ $=$

$t_{\in(a)x=}1$ $\Leftrightarrow$

$a\epsilon(x)=1\neg(\epsilon(\neg x))$ $(x\in X)(x\in X,a\in A)$

,
$\epsilon^{*}(a)\leq x$ $\Leftrightarrow$ $a\leq\epsilon(x)$ $(x\in X, a\in A)$ .

Proposition 7 Let $X,$ $A$ be Boolean lattices.

1. For a dilation $\delta$ : $Xarrow A$ it has an adjoint $\delta^{*}$

iff it has a transpose ${}^{t}\delta$ .

2. For an erosion $\epsilon$ : $Xarrow A$ it has an adjoint $\epsilon$

“

ifi it has a transpose $\iota_{\epsilon}$ .
Proposition 8 Let $X,$ $A$ be Boolean lattices.

1. For a dilation $\delta$ : $Xarrow A$ , the dua16 and the
adjoint $\delta^{*}$ are erosions and the transpose ${}^{t}\delta$ is
a dilation.

2. For an erosion $\epsilon$ : $Xarrow A$ , the dual $\overline{\epsilon}$ and the
adjoint $\epsilon$

‘ are dilations and the transpose ${}^{t}\epsilon$ is
an erosion.

3.4.2 Interrelations among involutions

All of the operator transformations defined above
are involutive. On the other hand, successive appli-
cations of operators are independent of order. For
example, $\overline{({}^{t}\delta)}$ and $t\cap\delta$ coincide and are equal to $\delta$

‘

and so on.

3.4 Involutions in Boolean lattices
3.4.1 Duality, transposition and adjunction

For dilations and erosions of Boolean lattices, there $($

are three sorts of involutive transformations of op-
erators, namely, duality, transposition and adjunc-
tion [10, 4]. More precisely, if $\mu$ is an MM operator

Example 3.4 (Involutions of set lattices)
$[n$ case of a binary relation $R$ , for the operators
$\delta=\delta_{R}$ and $\epsilon=\epsilon_{R}$ , the results of involutions are
expressed in more explicit forms:

$\overline{\delta_{R}}=\epsilon_{R}$ , ${}^{t}\delta_{R}=\delta_{\ell}R$ , $(\delta_{R})^{*}=\epsilon eR$,
$\overline{\epsilon_{R}}=\delta_{R}$ , ${}^{t}\epsilon_{R}=\epsilon_{t}R$ , $(\epsilon_{R})^{*}=\delta_{{}^{t}R}$ .
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By virtue of these equalities, we only have to em- Now we decompose the condition $v^{-1}c\cap W=M$

ploy 4 operators among them, for example $\delta_{R},$
$\epsilon_{R}$ , into two parts

$\delta_{{}^{t}R}$ and $\epsilon_{t}R$ . The relations are diagrammatically
represented as follows: $M\subseteq v^{-1}c\cap W$. $v^{-1}c\cap W\subseteq M$ . (14)

$\delta_{R^{-}}^{-}\epsilon_{R}$ By noticing that $M\subseteq W$ ,

1st part of (14) $\Leftrightarrow M\subseteq v^{-1}c$

$\Leftrightarrow vM\subseteq c$

$\delta_{{}^{t}R}--\epsilon_{\ell}R$
$\Leftrightarrow\{v\}\subseteq c\emptyset\tilde{M}$.

Hence the 1st part of (14) is equivalent to that $v\in$

Figure 1: Rerations among involutive operations
$c\copyright\tilde{M}$. On the other hand, by using the adjunctionon set lattice morphologies
$X\cap Y\subseteq Z\Leftrightarrow X\subseteq Z_{\cup}Y^{C}$ ,

$2^{nd}$ part of (14) $\Leftrightarrow v^{-1}c\subseteq MuW^{C}=(W-M)^{c}$

$4$ Main result – $c$

$\Leftrightarrow\tilde{c}v\subseteq(W-M)$

As an MM interpretation of local composition, the
$\Leftrightarrow\{v\}\subset c$ \copyright $((W–M)^{c})$ .

following theorem is obtained in [2].

Theorem 9 For $c\in 2^{V\cdot W},$ $c\in \mathcal{L}0\mathfrak{M}$ iff there By using dualities,
exists a $L_{c}\in L$ such that

$\delta_{{}^{t}\sigma_{c}}(L_{c})\subseteq \mathfrak{M}\subseteq\epsilon e_{\sigma_{c}}(L_{c})$ (10) $c$ \copyright $((W–M)^{c})=(c(W^{-}-M))^{c}$

To give a further interpretation of local compo- $=c^{C}$ \copyright (W-M)--.
sition, we consider the hit-or-miss transform on $G$ .
On $G,$ (1) can be expressed as Thus the $2^{nd}$ part of (14) is equivalent to that $v\in$

$c^{C}$ \copyright (W-M)--. By combining these results, the
$XO(B, B’)=(X\emptyset\tilde{B})\cap(X^{c}\copyright\tilde{B’})$ (11) condition $v^{-1}c\cap W=M$ is equivalent to

Here we consider the morphology on the right.
$v\in(c\copyright\tilde{M})\cap(c^{C}\copyright(W^{-}-M))$

Then our main result can be stated as
$=c@(M, W-M)$ .

Theorem 10 (Main result) For $c\in 2^{V\cdot W},$ $c\in$

$\mathcal{L}\sim$ sn iff This establishes the theorem. q. e. d.

$\cup cO(M, W-M)\in L$. (12) By this theorem, the local composition $\mathcal{L}oSPt$

$M\in \mathfrak{B}t$ contains the all local patterns $c$ consisting of those

Proof. By virtue of (2), it suffices to show that points where $M$ fits $c$ and $W-M$ fits $c^{C}$ fits some
pattern $M$ in $\mathfrak{M}$ form a pattern in $\mathcal{L}$ .

$\sigma_{c}^{-1}(\mathfrak{M})=$ $\cup cO(M, W-M)$ . (13) The main theorem is straightfowardly applied
to the local decomposition problem. Namely, for

$M\in \mathfrak{M}$

given local transition rules EM $\in \mathcal{L}_{W}$ and A $\in$

Since $\sigma_{c}$ is a mapping of $V$ into $2^{W},$ $\sigma_{c}^{-1}(M)\subseteq V$. $\mathcal{L}_{VW}$ , when is .A decomposed into $L\sim \mathfrak{M}$ for some
Furthermore, by the definition of inverse image, for $\mathcal{L}\in \mathcal{L}_{V}$? From main theorem, it follows that
$v\in V$ , $\bigcup_{M\in \mathfrak{M}}KO*(M, W-M)$ must be a member of $\mathcal{L}$ for

each $K\in$ A and such subsets constitute $\mathcal{L}$ . Notice
$v\in\sigma_{c}1(\mathfrak{M})\Leftrightarrow\sigma_{c}(v)\in Wt$ that $\bigcup_{M\in \mathfrak{M}}KO(M, W-M)$ may not be included

$\Leftrightarrow\exists M\in \mathfrak{M}$ such that $v^{-1}c\cap W=M$ . in $V$ . Thus we have
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Cororally 11 Let $M\in \mathcal{L}_{W}$ and $A\in \mathcal{L}_{VW}$ . For A
to be equal to $\mathcal{L}\theta M$ for some $\mathcal{L}\in \mathcal{L}_{V}$ , it is neccesary
and sufficient that

$\bigcup_{M\in\alpha\pi}KO(M, W-M)\subseteq V$

for all $K\in$ A. Then the left factor $\mathcal{L}$ is given by

$\mathcal{L}=\{\bigcup_{M\in im}KO*(M, W-M)$ $K\in A\}$ .

Notice that the notion of local decomposition
should be defined modulo equivalence. That is, two
local transition rules A and $A’$ may define the same
transition function $T_{R}=T_{R^{l}}$ . In this case, we call
A is equivalent to $A’$ and denote by $A\sim A’$ . For
this reason, we say that $\mathcal{L}0\mathfrak{M}$ is a local decmopo-
sition of .A iff $A\sim\epsilon_{\phi}\infty$ . The cororally gives a
sufficient condition for A to be locally decmoposed
into $\mathcal{L}\phi \mathfrak{M}$.

References
[1] M. Ifujio, “XOR2 $=90$ -graded algebra struc-

ture of the boolean algebra of local transition
rules-,, , IN RIMS k\^oky\^uroku, vol. 1599, 97-102,
2008.

[2] M. Fujio, “Morphological Interpretation of
Local Composition of Cellular Automata on
Groups,” Pmc. of $10^{th}$ Intemational Sympo-
sium on Communications Infomation Tech-
nologies, pp. 133-136, 2010.

[3] M. Fujio and I. Bloch, ”Non-classical logic
via mathematical morphology,” $\mathscr{D}_{cole}$ Nationale
Sup\’erieure des T\’el\’ecommunications, Technical
Report ENST 2004DOlO, 2004.

[4] H. J. A. M. Heijmans, Morphological Image Op-
emtors. Academic Press, Boston, 1994.

[5] H. J. A. M. Heijmans and C. Ronse, “The alge-
braic basis of mathematical morphology. i. dila-
tions and erosions,” Computer Vision Graphics
Image Processing, vol. 50, pp. 245-295, 1990.

[6] T. Ito, M. FUjio, S. Inokuchi and Y. Mizoguchi,
“Composition, union and division of cellular au-
tomata on groups,” Proc. of $16^{th}$ Intemational
Workshop on Cellular Automata and Discrete
Complex Systems, pp. 255-264, 2010.

[7] E. R\’emila, “An Introduction to Automata
on Graphs.” M. Delorme and J. Mazoyer,
Eds., Cellular Automata, A Pamllel Model,
Kluwer Academic Publishers, Dordrecht, 345-
352, 1998.

[S] Zs. R\’oka, “One.way cellular automata on cay-
ley graphs,” \’Ecole Normale Sup\’erieure de Lyon,
Research Report $N^{o}93-07$ , 1993

[9] J. Serra, Image Analysis and Mathematical
Morphology. Academic Press, London, 1982.

[10] J. Serra, Ed., Image Analysis and Mathemati-
cal Morphology, Part II: Theoretical Advances.
Academic Press, London, 1988.

[11] H. J. A. M. Heijmans, Morphological Image
Opemtors. Academic Press, Boston, 1994.

[12] S. Yukita, “Dynamics of cellular automata on
groups.” IEICE Trans. Inf. Eli Syst., vol.E82-
$D(10),$ 1316-1323, 1999.

[13] T. Ceccherini-Silberstein and M. Coornaert,
Cellular Automata and Groups. Springer-
Verlag, Berlin Heidelberg, 2010.

143


