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Abstract
We study the chain-connected component decomposition of canonical cycles

of numerically Gorenstein surface singularities, and determine it for singulari-
ties of fundamental genus 2.

Introduction
Let (V, o) be a normal surface singular point and $\pi$ : $Xarrow V$ the minimal resolution.

We denote by $Z$ the fundamental cycle on the exceptional set $\pi^{-1}(0)$ . We call the
arithmetic genus of $Z$ the fundamental genus of (V, o) and denote it by $p_{f}(V, 0)$ .
The arithmetic genus and the geometric genus of (V, o) are respectively defined by
$p_{a}(V, 0)=\max\{p_{a}(D)|0\prec D, Supp(D)\subseteq\pi^{-1}(0)\}$ and $p_{g}(V, 0)=\dim(R^{1}\pi_{*}\mathcal{O}_{X})_{0}$ .
It is known that $p_{f}(V, 0)\leq p_{a}(V, 0)\leq p_{g}(V, 0)$ . See [14]. Since the intersection form
is negative definite on the exceptional set $\pi^{-1}(0)$ , there is a $\mathbb{Q}$-divisor $Z_{K}$ , called
the canonical cycle, such that $-Z_{K}$ is numerically equivalent to $K_{X}$ . If it is a $\mathbb{Z}-$

divisor, then we say that (V, o) a numerically Gorenstein singularity. Note that (V, o)
is Gorenstein i.e., $\mathcal{O}_{V,0}$ is a Gorenstein local ring, if and only if $-Z_{K}$ is linearly
equivalent to $K_{X}$ .

Suppose that (V, o) is numerically Gorenstein. When (V, o) is an elliptic singular
point, that is, $p_{f}(V, 0)=1$ , Yau’s elliptic sequence [15] computing $Z_{K}$ has played a
very important role in the study (see, e.g., [15], [8], [9]). In [3], we generalized it and
introduced a similar decomposition of $Z_{K}$ by its chain-connected subcurves also for
$p_{f}(V, 0)>1$ . In fact, it was shown that our decomposition is nothing more than the
elliptic sequence when $p_{f}(V, 0)=1$ . One of the main results in [3] is the upper bound
of the geometric genus via the topological data, i.e., the number of chain-connected
curves appearing in the decomposition and the fundamental genus. Though we also
exhibited some naive properties of the decomposition there, it needs more systematic
investigations for further applications.
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In this report, we continue the study to extract more information. In \S 1, we try

to determine the “leading term” of the decomposition, consisting of those chain-

components whose respective arithmetic genus equals the fundamental genus, under
a certain uniform condition (see, Proposition 1.6).

We apply it to singularities with $p_{f}(V, 0)=2$ . When (V, o) is numerically Goren-
stein, we describe in Theorem 2.1 possible types of the chain-connected component

decomposition of $Z_{K}$ . It suggests that subcurves obtained by gluing two or three

successive chain-connected components are essential pieces. In \S 5, we compute the
geometric genus, the multiplicity and the embedding dimension for Gorenstein sin-

gularities with $p_{f}=2,$ $Z^{2}=-1$ and $Z_{K}=3Z$ . Such singular points fall into two

classes according to the geometric genus. See, Theorem 3.1 for the precise statement.
Another fundamental class of $p_{f}=2$ , that is, those with $Z^{2}=-2$ and $Z_{K}=2Z$ can
be found in [5].

Notation. Throughout the paper, a curve means a non-zero effective divisor (with

compact irreducible components) on a non-singular surface. A curve $D$ is chain-
connected if $\mathcal{O}_{D-\Gamma}(-\Gamma)$ is not nef for any proper subcurve $0\prec\Gamma\prec D$ . One of the
remarkable features of a chain-connected curve $D$ is that, if $\mathcal{O}_{D}(-C)$ is nef for a curve
$C$ , then either $D\preceq C$ or $Supp(C)\cap Supp(D)=\emptyset$ . If $p_{a}(D)>0$ , then there uniquely

exists a chain-connected subcurve $D_{\min}$ of $D$ such that $p_{a}(D_{\min})=p_{a}(D)$ and $K_{D_{\min}}$

is nef. We call $D_{\min}$ the minimal model of $D$ . Then we have

$D_{\min}= \min\{\Gamma|0\prec\Gamma\preceq D, p_{a}(\Gamma)=p_{a}(D)\}$

$= \max\{\Gamma|0\prec\Gamma\preceq D,$ $K_{\Gamma}$ is nef$\}$ .

Every curve $C$ decomposes into a sum of chain-connected curves $C_{i}$ in such a way
that $\mathcal{O}_{C_{j}}(-C_{i})$ is nef for $i<j$ and $C_{i}$ is a maximal chain-connected subcurve
of $C- \sum_{j<i}C_{j}$ . We call it a chain-connected component decomposition (a CCC-
decomposition for short) of $C$ . See [3] for further properties.

1 CCC-decompositions of the canonical cycle.
In this section, we show some properties of a CCC-decomposition of the canonical

cycle of a numerically Gorenstein surface singularity, in order to supplement [3].
Let (V, o) be a norma12-dimensional singularity. We usually denote by $\pi$ : $Xarrow V$

the minimal resolution and let $Z$ be the fundamental cycle on $\pi^{-1}(0)$ . The arithmetic
genus of $Z$ is called the fundamental genus of $(V, 0)$ . We denote it by $p_{f}(V, 0)$ and
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assume $p_{f}(V, 0)>0$ in what follows. We say that (V, o) is numerically Gorenstein, if
there is a curve $Z_{K}$ with support in $\pi^{-I}(0)$ such that $-Z_{K}$ is numerically equivalent
to $K_{X}$ . The curve $Z_{K}$ is called the canonical cycle.

Let $Z_{K}=\Gamma_{1}+\cdots+\Gamma_{n}$ be a CCC-decomposition, that is, each $\Gamma_{i}$ is a maximal
chain-connected subcurve of $Z_{K}- \sum_{j<i}\Gamma_{j}$ and $\mathcal{O}_{\Gamma_{j}}(-\Gamma_{i})$ is nef for $i<j$ . Such an
ordered decomposition exists and is unique up to permutations reserving the second
property. When $p_{f}(V, 0)>0$ , we showed in [3] the following:

$\bullet$ $\Gamma_{1}=Z$ is the fundamental cycle and, if $n\geq 2$ ,
$\bullet$ $\Gamma_{2}=gcd(\Gamma_{1}, Z_{K}-\Gamma_{1}),$ $p_{a}(\Gamma_{2})=p_{f}(V, 0)$ and $Supp(\Gamma_{I}-\Gamma_{2})\cap Supp(Z_{K}-\Gamma_{1}-$

$\Gamma_{2})=\emptyset$ ,
$\bullet$ $p_{a}(\Gamma_{i})>0$ and $\Gamma_{i}\preceq\Gamma_{2}$ for any $i\geq 3$ ,
$\bullet$ for $i<j$ , either $\Gamma_{j}\preceq\Gamma_{i}$ or $Supp(\Gamma_{i})\cap Supp(\Gamma_{j})=\emptyset$,
$\bullet$ the dualizing sheaf of every minimal curve in $\{\Gamma_{i}\}_{i=1}^{n}$ is nef.

Lemma 1.1. Assume that $p_{f}(V, 0)>1$ . Then $n\geq 2$ and $2-2p_{f}(V, 0)\leq\Gamma_{I}\Gamma_{2}\leq-1$ .

Proof. If $n=1$ , then $Z_{K}=Z$ and $1=p_{a}(Z_{K})=p_{a}(Z)=p_{f}(V, 0)>1$ , a contra-
diction. Hence $n\geq 2$ . We have $2p_{a}(\Gamma_{1})-2=\Gamma_{1}(K_{X}+\Gamma_{1})=-\Gamma_{1}(Z_{K}-\Gamma_{1})$ . This
implies that there exists an index $i\geq 2with-\Gamma_{1}\Gamma_{i}>0$ , if $p_{a}(\Gamma_{1})>1$ . Since $\Gamma_{i}\preceq\Gamma_{2}$

$and-\Gamma_{1}$ is nef, we get $-\Gamma_{1}\Gamma_{2}>0$ . We have $\Gamma_{1}\Gamma_{2}\geq\Gamma_{1}(Z_{K}-\Gamma_{1})=2-2p_{f}$ . $\square$

In fact, when $p_{f}(V, 0)>0$ , we have $n=1$ if and only if (V, o) is a minimally elliptic
singularity ([7], [10]).

Lemma 1.2. Assume that $i<j,$ $\Gamma_{j}\preceq\Gamma_{i}$ and $p_{a}(\Gamma_{i})=p_{a}(\Gamma_{j})$ . Then $\Gamma_{i}^{2}\leq\Gamma_{j}^{2}$ with
equality holding only when, either $\Gamma_{i}=\Gamma_{j}$ or $\Gamma_{i}-\Gamma_{j}$ consists of $(-2)$ -curves.

Proof. We have $2p_{a}(\Gamma_{i})-2=-Z_{K}\Gamma_{i}+\Gamma_{i}^{2}$ . Hence $\Gamma_{j}^{2}-\Gamma_{i}^{2}=2(p_{a}(\Gamma_{j})-p_{a}(\Gamma_{i}))-$

$Z_{K}(\Gamma_{i}-\Gamma_{j})=-Z_{K}(\Gamma_{i}-\Gamma_{j}))\geq 0,$ $since-Z_{K}\equiv K_{X}$ is nef. $\square$

In particular, we get $\Gamma_{1}^{2}\leq\Gamma_{2}^{2}$ .

Lemma 1.3. Assume that $\Gamma_{i+1}\preceq\Gamma_{i}$ and $\mathcal{O}_{\Gamma_{i}-\Gamma_{i+1}}(-\sum_{j<i}\Gamma_{j})$ is numerically trivial.
Then the following hold.

(1) $\Gamma_{i+1}=gcd(\Gamma_{i}, Z_{K}-\sum_{j\leq i}\Gamma_{j}),$ $p_{a}(\Gamma_{i+1})=p_{a}(\Gamma_{i})$ and $Supp(\Gamma_{i}-\Gamma_{i+1})\cap$

$Supp(Z_{K}-\sum_{j\leq i+1}\Gamma_{j})=\emptyset$ .
(2) $\Gamma_{i}^{2}\leq\Gamma_{i+1}^{2}$ . Furthermore, $\Gamma_{i+1}=\Gamma_{i}$ holds if and only if $\Gamma_{i}(\Gamma_{i}-\Gamma_{i+1})=0$ .
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Proof. (1): Put $G= gcd(\Gamma_{i}, Z_{K}-\sum_{j\leq i}\Gamma_{j})$ . Then, since $\Gamma_{i+1}\preceq G\preceq\Gamma_{i}$ ,

$2p_{a}(G)-2=-G(Z_{K}-G)$

$=- \Gamma_{i}(Z_{K}-\Gamma_{i})+(\Gamma_{i}-G)(Z_{K}-G-\sum_{j\leq i}\Gamma_{j})+(\Gamma_{i}-G)\sum_{j<i}\Gamma_{j}$

$=2p_{a}( \Gamma_{i})-2+(\Gamma_{i}-G)(Z_{K}-G-\sum_{j\leq i}\Gamma_{j})$
.

By the choice of $G,$ $\Gamma_{i}-G$ has no common components with $Z_{K}-G- \sum_{j\leq i}\Gamma_{j}$ .
Hence $( \Gamma_{i}-G)(Z_{K}-G-\sum_{J\leq i}\Gamma_{j})\geq 0$ and we get $p_{a}(G)\geq p_{a}(\Gamma_{i})$ . Since $\Gamma_{i}$

is chain-connected, $p_{a}(G)\leq h^{1}(G, \mathcal{O}_{G})\leq h^{1}(\Gamma_{i}, \mathcal{O}_{\Gamma_{i}})=p_{a}(\Gamma_{i})$. In sum, we get
$p_{a}(G)=p_{a}(\Gamma_{i})$ and $Supp(\Gamma_{i}-G)\cap Supp(Z_{K}-G-\sum_{j\leq i}\Gamma_{j})=\emptyset$. Note that $G$ is chain-
connected, since $p_{a}(G)=p_{a}(\Gamma_{i})>0$ (see, [3]). We have $G- \Gamma_{i+1}\preceq Z_{K}-\sum_{j\leq i+1}\Gamma_{j}$ .
So, $\mathcal{O}_{G-\Gamma_{t}+1}(-\Gamma_{i+1})$ is nef. Since $G$ is chain-connected, we must have $\Gamma_{i+1}=G$ .

(2): The first assertion follows from Lemma 1.2. To show the last equivalence, we
only have to show the converse. Since $\mathcal{O}_{\Gamma_{i}-\Gamma_{i+1}}(-\sum_{j<i}\Gamma_{j})$ is numerically trivial, we
have $( \Gamma_{i}+\Gamma_{i+1})(\Gamma_{i}-\Gamma_{i+1})=Z_{K}(\Gamma_{i}-\Gamma_{i+1})-(\Gamma_{i}-\Gamma_{i+1})\sum_{j<i}\Gamma_{j}-(\Gamma_{i}-\Gamma_{i+1})(Z_{K}-$

$\sum_{j\leq i+1}\Gamma_{j})=Z_{K}(\Gamma_{i}-\Gamma_{i+1})$ by (1). If $\Gamma_{i}(\Gamma_{i}-\Gamma_{i+1})=0$ , then $0\geq(\Gamma_{i}-\Gamma_{i+1})^{2}=$

$-(\Gamma_{i}+\Gamma_{i+1})(\Gamma_{i}-\Gamma_{i+1})=-Z_{K}(\Gamma_{i}-\Gamma_{i+1})\geq 0$ . Hence $(\Gamma_{i}-\Gamma_{i+1})^{2}=0$ and it follows
$\Gamma_{i+1}=\Gamma_{i}$ , since the intersection form is negative definite on $\pi^{-1}(0)$ . $\square$

We turn our attention to minimal chain-connected components.

Lemma 1.4. Assume that $p_{f}(V, 0)>0$ . Then $\Gamma_{i}$ contains at most $p_{a}(\Gamma_{i})$ distinct
minimal elements in $\{\Gamma_{j}\}_{j=1}^{n}$ . In particular, $\{\Gamma_{i}\}_{i=1}^{n}$ has at most $p_{f}(V, 0)$ distinct
minimal elements.

Proof. Recall that $p_{a}(\Gamma_{j})>0$ for $any_{\backslash }j$ and that any two distinct minimal elements are
disjoint. Take $i\in\{1,2, \ldots, n\}$ . If $\Gamma$ denotes the sum of all distinct minimal elements
in $\{\Gamma_{j}\}_{j=1}^{n}$ such that $\Gamma_{j}\preceq\Gamma_{i}$ , then $\Gamma$ is a subcurve of $\Gamma_{i}$ such that $h^{1}(\Gamma, \mathcal{O}_{\Gamma})$ equals
the sum of the arithmetic genera of the minimal elements in $\Gamma$ . Since $h^{1}(\Gamma, \mathcal{O}_{\Gamma})\leq$

$h^{1}(\Gamma_{i}, \mathcal{O}_{\Gamma_{i}})=p_{a}(\Gamma_{i})$ , we get $p_{a}( \Gamma_{i})\geq\sum_{\nu=1}^{\mu}p_{a}(\Gamma_{i_{\nu}})\geq\mu$ , if we put $\Gamma=\Gamma_{i_{1}}+\cdots+\Gamma_{i_{\mu}}$ .
Applying the above argument to $i=1$ , we see that $\{\Gamma_{j}\}_{j=1}^{n}$ has at most $p_{a}(\Gamma_{1})=$

$p_{f}(V, 0)$ minimal elements. $\square$

The upper bound in Lemma 1.4 is sharp, as the following example shows.

Example 1.5. Let $p$ be a positive integer. Let $A_{0}$ be a non-singular rational curve
with $A_{0}^{2}=-p-1,$ $A_{i}$ a non-singular elliptic curve with $A_{i}^{2}=-1$ and $A_{0}A_{i}=1$ for
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$i=1,$ $\ldots,p$ . Assume that $A_{i}A_{j}=0$ for $1\leq i<j\leq p$ and put $Z= \sum_{i=0}^{p}A_{i}$ . Then
$Z$ is the fundamental cycle on its support and $Z^{2}=-1,$ $p_{a}(Z)=p$ . The canonical
cycle is written as $Z_{K}=(2p-1)A_{0}+2p(A_{1}+\cdots+A_{p})=(2p-1)Z+A_{1}+\cdots+A_{p}$ .

Hence a CCC-decomposition of $Z_{K}$ is given by putting $\Gamma_{i}=Z$ for $1\leq i\leq 2p-1$

and $\Gamma_{2p-1+i}=A_{i}$ for $1\leq i\leq p$ . So, there are exactly $p$ distinct minimal elements in
$\{\Gamma_{i}\}_{i=1}^{3p-1}$

Proposition 1.6. Assume that $p_{f}(V, 0)>1$ and write $2p_{f}-2=ab$ with two positive
integers $a,$

$b$ . If there exist exactly $b$ indices $i\geq 2$ satisfying $-\Gamma_{1}\Gamma_{i}=a$ , then the
following hold.

(1) $\Gamma_{i+1}=gcd(\Gamma_{i}, Z_{K}-\sum_{j\leq i}\Gamma_{j})$ and $p_{a}(\Gamma_{i+1})=p_{f}(V, 0)$ for $i\in\{1,2, \ldots, b\}$ .

(2) $\Gamma_{b+1}\preceq\Gamma_{b}\preceq\cdots\preceq\Gamma_{2}\preceq\Gamma_{1}$ and $\Gamma_{1}^{2}\leq\Gamma_{2}^{2}\leq\cdots\leq\Gamma_{b+I}^{2}$ .
(3) For $1\leq i<j\leq b+1,$ $\mathcal{O}_{\Gamma_{j}}(-\Gamma_{i})$ is $nef$ of degree $a$ .

(4) For $1\leq i<j<k\leq b+1,$ $Supp(\Gamma_{i}-\Gamma_{j})\cap Supp(\Gamma_{k})=\emptyset$ .

In particular, $p_{a}(\triangle)=1$ and $Z_{K}-\triangle$ is numerically equivalent to $-K_{X}$ on its
support, where $\triangle=\sum_{i=I}^{b+1}\Gamma_{i}$ .

Proof. We have $-\Gamma_{I}\Gamma_{i}\in\{a, 0\}$ for $i\geq 2$ by the choice of $a,$ $b$ , since $-\Gamma_{1}(Z_{K}-\Gamma_{1})=$

$2p_{f}-2$ . We have $-\Gamma_{1}\Gamma_{i}\geq-\Gamma_{1}\Gamma_{j}$ when $\Gamma_{j}\preceq\Gamma_{i}$ . Since $\Gamma_{i}\preceq\Gamma_{2}$ for $i\geq 3$ , we have
$-\Gamma_{1}\Gamma_{2}=a$ .

Let $i_{0}$ be the smallest index with $i_{0}\geq 3$ and $-\Gamma_{1}\Gamma_{i_{0}}=a$ . Then $\Gamma_{i_{O}}$ is a maxi-
mal element in $\{\Gamma_{i}\}_{i=3}^{n}$ . So, we can assume that $i_{0}=3$ after re-numbering if nec-
essary. Since $\mathcal{O}_{\Gamma_{2}-\Gamma_{3}}(-\Gamma_{1})$ is numerically trivial, it follows from Lemma 1.3 that
$\Gamma_{3}=gcd(\Gamma_{2}, Z_{K}-\Gamma_{I}-\Gamma_{2}),$ $p_{a}(\Gamma_{3})=p_{a}(\Gamma_{2}),$ $\Gamma_{2}^{2}\leq\Gamma_{3}^{2}$ and $Supp(\Gamma_{2}-\Gamma_{3},$ $Z_{K}-\Gamma_{1}-$

$\Gamma_{2}-\Gamma_{3})=\emptyset$ . Note that the last condition implies that $\Gamma_{1},$ $\Gamma_{2}$ and $\Gamma_{3}$ are linearly
equivalent on $Z_{K}-\Gamma_{1}-\Gamma_{2}-\Gamma_{3}$ .

We claim that $\Gamma_{i}\preceq\Gamma_{3}$ for $i\geq 3$ . If not, then F3 and $\Gamma_{i}$ are disjoint. Then
$\Gamma_{3}+\Gamma_{i}\preceq\Gamma_{2}$ and we get $p_{a}(\Gamma_{3})+p_{a}(\Gamma_{i})=h^{1}(\Gamma_{3}+\Gamma_{i}, \mathcal{O})\leq h^{1}(\Gamma_{2}, \mathcal{O}_{\Gamma_{2}})=p_{a}(\Gamma_{2})$ .
This is impossible, since $p_{a}(\Gamma_{3})=p_{a}(\Gamma_{2})$ and $p_{a}(\Gamma_{i})>0$ . Therefore, $\Gamma_{i}\preceq\Gamma_{3}$ for
$i\geq 3$ .

Now, the obvious induction shows the assertions (1)$-(4)$ . The rest may be clear. $\square$

2 Singularities of fundamental genus two
From now on, we concentrate on the case that $p_{f}(V, 0)=2$ .
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We denote by $\pi$ : $Xarrow V$ the minimal resolution and work on $X$ . We also assume
that (V, o) is numerically Gorenstein and consider the canonical cycle.

Theorem 2.1. Let $Z_{K}$ be the canonical cycle on the minimal resolution of an isolated

numerically Gorenstein surface singular point with $p_{f}(V, 0)=2$ . Then $Z_{K}$ decomposes
$as$

$Z_{K}=\triangle_{1}+\cdots+\Delta_{m}+E$ ,

where the $\triangle_{i}s$ and $E$ are curves satisfying the following conditions.

(1) $\triangle_{i}$ is a curve with $p_{a}(\triangle_{i})=1$ and $\mathcal{O}_{\Delta_{j}}(-\triangle_{i})$ is numerically trivial when $i<j$ .
In particular, for any $i\in\{1, \ldots, m\},$ $Z_{K}- \sum_{j=1}^{i}\Delta_{j}$ is the canonical cycle on its

support.

(2) For any $i\in\{1, \ldots, m\}$ , the CCC-decomposition of $\triangle_{i}$ is one of the following
types:

$(a)\triangle_{i}=\Gamma_{i,1}+\Gamma_{i,2}+\Gamma_{i,3},$ $\Gamma_{i,3}\preceq\Gamma_{i,2}\preceq\Gamma_{i,1},$ $\Gamma_{i,1}^{2}\leq\Gamma_{i,2}^{2}\leq\Gamma_{i,3}^{2}$ and $\mathcal{O}_{\Gamma_{i,\nu}}(-\Gamma_{i,\mu})$

is $nef$ of degree 1 for $\mu<\nu$ .
$(b)\triangle_{i}=\Gamma_{i,1}+\Gamma_{i,2},$ $\Gamma_{i,2}\preceq\Gamma_{i,1},$ $\Gamma_{i,1}^{2}\leq\Gamma_{i,2}^{2}$ and $\mathcal{O}_{\Gamma_{i,2}}(-\Gamma_{i,1})$ is $nef$ of degree 2.

Furthemore, $p_{a}(\Gamma_{i,\nu})=2,$ $\Gamma_{i,1}$ is the fundamental cycle on its support and, when
$i<j,$ $\mathcal{O}_{\Gamma_{j,\nu}}(-\Gamma_{i,\mu})$ is numeri cally trivial and $\Gamma_{j,\nu}\prec\Gamma_{i,\mu},$ $\Gamma_{i,\mu}^{2}\leq\Gamma_{j,\nu}^{2}$ for any $\mu,$ $\nu$ ;
$\mathcal{O}_{\triangle_{j}}(-\triangle_{i})\simeq \mathcal{O}_{\Delta_{j}}(-3\Gamma_{i,1})$ or $\mathcal{O}_{\Delta_{j}}(-\Delta_{i})\simeq \mathcal{O}_{\Delta_{j}}(-2\Gamma_{i,1})$ according to whether $\triangle_{i}$ is
as in $(a)$ or $(b)$ .

(3) If $E\neq 0_{f}$ then either $E$ is the canonical cycle of a numerically Gorenstein
elliptic singular point, or it is the sum of two disjoint canonical cycles of numerically
Gorenstein elliptic singular points. Every $\Gamma_{i,\mu}(i\leq m)$ as in (2) is numerically trivial
on $E$ .

(4) When $E=0$, the smallest chain-component $\Gamma^{*}$ $:=\Gamma_{m,\mu}$ , where $\mu=3$ or 2
according to the types of $\triangle_{m}$ as in (2), is the minimal model of the fundamental cycle
$Z=\Gamma_{1,1}$ for $(V, 0)$ .

Proof. Let $Z_{K}= \sum_{i=1}^{n}\Gamma_{i}$ be a CCC-decomposition. We have $2=2p_{a}(\Gamma_{1})-2=$

$- \Gamma_{1}(Z_{K}-\Gamma_{1})=-\Gamma_{1}\sum_{i=2}^{n}\Gamma_{i}$ . Since $\mathcal{O}_{\Gamma_{i}}(-\Gamma_{1})$ is nef, we have $\Gamma_{1}\Gamma_{2}=-1,$ $-2$ and,
in any case, the hypothesis of Theorem 1.6 is satisfied.

We put $\triangle_{1}=\Gamma_{1}+\Gamma_{2}when-\Gamma_{1}\Gamma_{2}=2$, and $\triangle_{1}=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}when-\Gamma_{1}\Gamma_{2}=1$ .
Then $p_{a}(\triangle_{1})=1$ and $Z_{K}-\triangle_{1}$ is the canonical cycle on its support by Theorem 1.6.
If $Z_{K}-\triangle_{1}=0$ , then we stop with $m=1$ and $E=0$ . Assume that $Z_{K}-\triangle_{1}\neq 0$ .
If the support of $Z_{K}-\Delta_{1}$ is not connected, then, by Lemma 1.4, it is a sum of two
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canonical cycles of elliptic singularities, and we stop with $m=1$ and $E=Z_{K}-\triangle_{1}$ .
Assume that the support of $Z_{K}-\triangle_{1}$ is connected. If it is the canonical cycle of an
elliptic singularity, then we stop with $m=1$ and $E=Z_{K}-\triangle_{1}$ . So, we may assume
that $Z_{K}-\triangle_{1}$ is the canonical cycle of a singular point of $p_{f}=2$ . Then, we can repeat
the above argument to find $\triangle_{2}$ consisting of two or three chain-connected curves of
arithmetic genus 2 from $Z_{K}-\triangle_{1}$ .

Now, the obvious induction shows the assertions (1)-(4). $\square$

We say that $\Delta_{i},$ $1\leq i\leq m$ , is of type (a) or (b) according to whether it decomposes
as in (a) or (b) in (2) of Theorem 2.1. The curve $E$ will be sometimes referred to as
the elliptic remainder.

Example 2.2. Let $A_{i}(0\leq i\leq 4)$ be non-singular projective curves with $A_{i}^{2}=-2$ .
Suppose that the dual graph of $A= \bigcup_{i=0}^{4}A_{i}$ is of type (D5) as in Figure 2.1. We
denote by (V, o) the singularity obtained by contracting $\mathcal{A}$ . Then $Z=A_{0}+A_{1}+$

$2A_{2}+2A_{3}+A_{4}$ is the fundamental cycle on $\mathcal{A}$ and we have $Z^{2}=-2$ .
(1) This example shows that both types (a) and (b) actually occur. Assume that

$A_{0}$ is of genus two and $A_{i}\simeq \mathbb{P}^{1}$ for 1 $\leq i\leq 4$ . Then $p_{f}(V, 0)=2$ and $Z_{K}=$

$5A_{0}+3A_{1}+6A_{2}+4A_{3}+2A_{4}$ is the canonical cycle. It is easy to see that $Z_{K}$

has five chain-components $\Gamma_{1}=\Gamma_{2}=Z,$ $\Gamma_{3}=A_{0}+A_{1}+A_{2},$ $\Gamma_{4}=A_{0}+A_{2}$ and
$\Gamma_{5}=A_{0}$ . We have $\Gamma_{1}\Gamma_{2}=-2$ and $\Gamma_{i}\Gamma_{j}=-1$ for $3\leq i<j\leq 5$ . Put $\triangle_{I}=\Gamma_{1}+\Gamma_{2}$ ,
$\triangle_{2}=\Gamma_{3}+\Gamma_{4}+\Gamma_{5}$ . Then $Z_{K}=\triangle_{1}+\triangle_{2}$ is the decomposition as in Theorem 2.1
with $m=2,$ $\triangle_{2}$ is of type (a) while $\triangle_{1}$ is of type (b). We have $p_{a}(V, 0)=3$ , because
$\Gamma_{3}$ is the arithmetic subcycle of $Z$ and $\Gamma_{3}A_{0}=-1<0$ .

(2) Let $A_{2}$ be an elliptic curve, and $A_{i}\simeq \mathbb{P}^{1}$ for $i\neq 2$ . Then $p_{f}(V, 0)=2$ and
the canonical cycle is $Z_{K}=3A_{0}+3A_{1}+6A_{2}+4A_{3}+2A_{4}$ which has four chain-
components: $\Gamma_{1}=\Gamma_{2}=Z,$ $\Gamma_{3}=A_{0}+A_{1}+A_{2}$ and $\Gamma_{4}=A_{2}$ . If we put $\triangle_{1}=\Gamma_{1}+\Gamma_{2}$

and $E=\Gamma_{3}+\Gamma_{4}$ , then $Z_{K}=\triangle_{1}+E$ is the decomposition as in Theorem 2.1
with $m=1,$ $\triangle_{1}$ is of type (b). The elliptic remainder $E$ is the canonical cycle
of an elliptic singularity with fundamental cycle $\Gamma_{3}$ . We get $p_{a}(V, 0)=2$ , because
$Z_{\min}=A_{0}+A_{1}+2A_{2}+A_{3}$ and $Z_{\min}Z<0$ . Therefore, if the elliptic remainder
appears, the smallest chain-component of arithmetic genus 2 of $Z_{K}$ is not necessarily
the minimal model of the fundamental cycle. The hypersurface singularity defined by
$x^{2}+y^{7}+z^{10}=0$ also enjoys such a property, as pointed out in [13, Example 2.5].

As to the elliptic remainder, we have the following:
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$A_{1}$ $A_{2}$ $A_{3}$ $A_{4}$

Fig. 2.1

Lemma 2.3. Let the notation be as in Theorem 2.1. Let $\Gamma^{*}$ be the smallest chain-

component of $\Delta_{m}$ . If $\overline{A}$ denotes the smallest subcurve of $\Gamma^{*}$ such that $\mathcal{O}_{\Gamma^{*}-\overline{A}}(-\Delta_{m})$

is numerically trivial. Then $\mathcal{O}_{\Gamma^{*}-\overline{A}}(-E)$ is $nef$. If $E\neq 0$ , then every maximal chain-
component of $\Gamma^{*}-\overline{A}$ that is not the fundamental cycle of a mtional double point is

the fundamental cycle on a connected component of $E$ , and vice versa. In particular,

$E=0$ if and only if $\Gamma^{*}-\overline{A}$ consists of (at most) $(-2)$ -curves.

Now, we collect some applications of Theorem 2.1. A singular point of positive

fundamental genus is sometimes called a minimal singularity, when the fundamental
cycle coincides with its minimal model, i.e., the dualizing sheaf is nef.

Corollary 2.4. Let (V, o) be an isolated numertcally Gorenstein surface singular
point of $p_{f}(V, 0)=2$ . Let $Z$ be the fundamental cycle on the minimal resolution and
assume that $K_{Z}$ is $nef$. Then $p_{a}(V, 0)=2,$ $m=1$ and $Z^{2}=-1,$ $-2;\triangle_{1}=3Z$ or $2Z$

according to whether $Z^{2}=-1or-2$ .

Proof. Since $Z_{\min}=Z$ , we have $Z_{\min}Z<0$ and it follows $p_{a}(V, 0)=2$ . Then we have
$m=1$ in Theorem 2.1. Since $Z$ is minimal, every chain-component of $\Delta_{1}$ equals $Z$ .
So, $Z^{2}=\Gamma_{1}\Gamma_{2}=-1,$ $-2$ . $\square$

Example 2.5. The elliptic remainder appears even when $K_{Z}$ is nef or $Z$ is 2-connected.

(1) Let $A_{0},$ $A_{1}$ be two elliptic curve such that $A_{0}^{2}=-1,$ $A_{1}^{2}=-a$ and $A_{0}A_{1}=1$ ,

where $a=2,3$ . Then $Z=A_{0}+A_{1}$ is the fundamental cycle on $A_{0}\cup A_{1}$ . It is clear
that $p_{a}(Z)=2$ and $K_{Z}$ is nef. We have $Z^{2}=1-a$ . As to the canonical cycle, we
have $Z_{K}= \frac{a+1}{a-1}Z+A_{0}$ .

(2) $A_{0}$ be an elliptic curve with $A_{0}^{2}=-2$ . $A_{1}$ be a (-6)-curve such that $A_{0}A_{1}=2$ ,

where $b=3,4$ . Put $Z=A_{0}+A_{1}$ . Then $Z^{2}=2-b$ and $Z_{K}= \frac{2(b-1)}{b-2}A_{0}+\frac{b}{b-2}A_{1}=$

$\frac{b}{b-2}Z+A_{0}$ .

It is well-known that any Gorenstein singularity with $p_{g}=2$ is elliptic. So, the next
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target may be those with $p_{g}=3$ . The following provides useful information about
Gorenstein singularities with $p_{g}=3$ .

Corollary 2.6. Let (V, o) be an isolated Gorenstein surface singular point with
$p_{g}(V, 0)=3$ that is not an elliptic singular point. Then $p_{f}(V, 0)=p_{a}(V, 0)=2$ and
the canonical cycle on the minimal resolution decomposes as in Theorem 2.1 with
$m=1:Z_{K}=\triangle_{1}+E$ . $If\cdot E\neq 0$ , then $h^{1}(\triangle_{1}, \mathcal{O}_{\triangle_{1}})=2$ and the total sum of the
geometric genem of numerically Gorenstein elliptic singularities corresponding to $E$

is at most 2.

Proof. Since (V, o) is Gorenstein but not elliptic, we have $2\leq p_{f}(V, 0)\leq p_{a}(V, 0)<$

$p_{g}(V, 0)$ (see, [12]). Then, from $p_{g}(V, 0)=3$ , we get $p_{f}(V, 0)=p_{a}(V, 0)=2$ . By
Theorem 2.1, we get $m=1$ and $Z_{K}=\triangle_{1}+E$ . Since (V, o) is Gorenstein, the
canonical cycle is the cohomological cycle. Hence $h^{1}(E, \mathcal{O}_{E})<h^{1}(Z_{K}, \mathcal{O}_{Z_{K}})=3$.
For the same reasoning, we have $h^{1}(\triangle_{1}, \mathcal{O}_{\Delta_{1}})<3$ when $E\neq 0$ . Since $h^{I}(\triangle_{1}, \mathcal{O}_{\triangle_{1}})\geq$

$h^{1}(Z, \mathcal{O}_{Z})=2$ , we get $h^{I}(\triangle_{1}, \mathcal{O}_{\triangle_{1}})=2$ . $\square$

Let the situation be as above and $E\neq 0$ . Recall that

$\mathcal{O}_{E}(K_{X}+E)\simeq \mathcal{O}_{E}(-\triangle_{1})\simeq\{\begin{array}{ll}\mathcal{O}_{E}(-3Z) if \triangle_{1} is of type (a),\mathcal{O}_{E}(-2Z) if \triangle_{1} is of type (b).\end{array}$

Therefore, the singular point obtained by contracting $E$ may not be Gorenstein, even
when (V, o) is Gorenstein.

3 Certain singularities with $Z^{2}=-1,$ $p_{f}=2$

In this section, we study a special singular point of fundamental genus 2. We denote
by $\mathfrak{m}$ the ideal sheaf of $0\in V$ . Let $Z_{m}$ be the maximal ideal cycle, that is, the divisorial
fixed part of the linear system $|\mathfrak{m}\mathcal{O}_{X}|$ with support in $\pi^{-1}(0)$ . Then $-Z_{m}$ is nef on
$\pi^{-1}(0)$ and $Z\preceq Z_{m}$ .

The purpose of the section is to show the following:

Theorem 3.1. Let (V, o) be a Gorenstein surface singularity with $p_{f}(V, 0)=2$ such
that $Z^{2}=-1$ and $Z_{K}=3Z$ hold on the minimal resolution. Then $p_{a}(V, 0)=2$ and
there are the following two cases.

(1) $p_{g}(V, 0)=4,$ $Z_{m}=Z,$ $\mathfrak{m}\mathcal{O}_{X}\simeq \mathfrak{m}_{x}\mathcal{O}_{X}(-Z)$ with a non-singular point $x\in Z$ ,
mult $(V, 0)=2$ and embdim$(V, 0)=3$ .
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(2) $p_{g}(V, 0)=3,$ $Z_{m}=2Z,$ $m\mathcal{O}_{X}\simeq \mathcal{O}_{X}(-2Z)$ , mult $(V, 0)=4$ and embdim$(V, 0)=$

4.

Let the situation be as in Theorem 3.1. We first remark that $Z$ is 2-connected and
$K_{Z}$ is free. This can be seen as follows. Since $Z^{2}=-1,$ $Z$ is at least l-connected by
[2, Lemma 2.1]. If $C$ is a proper subcurve of $Z$ , then $\deg K_{Z}|_{C}=\deg K_{C}+C(Z-C)$ .
Hence $C(Z-C)=-2CZ+2-2p_{a}(C)$ is even. This is sufficient to imply that $Z$

is 2-connected. Then it is known that $|K_{Z}|$ is free from base points (see, e.g., [1,

Proposition (A. 7) $])$ .
Let $A$ be the irreducible component of $Z$ with $-AZ=1$ . Then $Z-A$ consists of

(-2)-curves at most, because $K_{X}(Z-A)=-3Z(Z-A)=0$ . We have $0\leq p_{a}(A)\leq 2$

and $A^{2}=2p_{a}(A)-5$ . Hence, $(p_{a}(A), A^{2})=(2, -1),$ $(1, -3)$ or $(0, -5)$ , and we have
$Z=A$ when $p_{a}(A)=2;Z-A$ is the fundamental cycle of a rational double point
with $A(Z-A)=2$ when $p_{a}(A)=1$ ; and $Z-A$ consists of two fundamental cycles
$C_{1},$ $C_{2}$ of rational double points with $\mathcal{O}_{C_{2}}(-C_{1})\simeq \mathcal{O}_{C_{2}}$ and $AC_{1}=AC_{2}=2$ when
$p_{a}(A)=0$ .

We know that $\mathcal{O}_{Z}(-Z)$ is nef of degree one and $p_{a}(V, 0)=2$ . Consider the coho-
mology long exact sequence for

$0arrow \mathcal{O}_{X}(-(i+1)Z)arrow \mathcal{O}_{X}(-iZ)arrow \mathcal{O}_{Z}(-iZ)arrow 0$ .

Since $-3Z$ is the canonical cycle, we have $H^{1}(X, -(i+1)Z)=0$ for $i\geq 2$ by the
vanishing theorem. Hence $H^{0}(X, -iZ)arrow H^{0}(Z, -iZ)$ is surjective when $i\geq 2$ .

Case 1. We first assume that $H^{0}(X, -2Z)arrow H^{0}(X, -Z)$ is an isomorphism.
Then $2Z\preceq Z_{m}$ . Since $|K_{Z}|=|\mathcal{O}_{Z}(-2Z)|$ is free from base points, $|\mathcal{O}_{X}(-2Z)|$ is
$\pi$-free. Hence $Z_{m}=2Z$ and mult $(V, 0)=-Z_{m}^{2}=4$ .

Lemma 3.2. $H^{0}(Z, -Z)=H^{1}(Z, -Z)=0$ and $p_{g}(V, 0)=3$ .

Proof. To compute $p_{g}(V, 0)$ , we consider the cohomology long exact sequence for

$0arrow \mathcal{O}_{2Z}(-Z)arrow \mathcal{O}_{Z_{K}}arrow \mathcal{O}_{Z}arrow 0$ .

Since the restriction map $H^{0}(Z_{K}, \mathcal{O}_{Z_{K}})arrow H^{0}(Z, \mathcal{O}_{Z})$ is surjective, we get $p_{g}(V, 0)=$

$h^{0}(Z_{K}, \mathcal{O}_{Z_{K}})=h^{0}(2Z, -Z)+1$ . Consider

$0arrow \mathcal{O}_{Z}(-2Z)arrow \mathcal{O}_{2Z}(-Z)arrow \mathcal{O}_{Z}(-Z)arrow 0$ .

The restriction map $H^{0}(X, -Z)$ $arrow H^{0}(2Z, -Z)$ is surjective by the fact that
$H^{1}(X, -3Z)=0$ , while $H^{0}(X, -Z)arrow H^{0}(Z, -Z)$ is zero by the assumption. It fol-
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lows that $H^{0}(2Z, -Z)arrow H^{0}(Z, -Z)$ is also zero. Then $h^{0}(2Z, -Z)=h^{0}(Z, -2Z)=2$

and we get $p_{g}(V, 0)=3$ .
It remains to show that $h^{0}(Z, -Z)$ $=$ $0$ . Since $h^{1}(2Z, -Z)$ $=$ 1, we get

$h^{0}(2Z, \mathcal{O}_{2Z})=1$ by the duality theorem. Then, since $H^{0}(2Z, \mathcal{O}_{2Z})arrow H^{0}(Z, \mathcal{O}_{Z})$ is
an isomorphism, it follows from the cohomology long exact sequence for

$0arrow \mathcal{O}_{Z}(-Z)arrow \mathcal{O}_{2Z}arrow \mathcal{O}_{Z}arrow 0$

that $H^{0}(Z, -Z)=H^{1}(Z, -Z)=0$ . $\square$

We compute the embedding dimension. Before going in detail, we remark that
$|\mathcal{O}_{Z}(-3Z)|$ is free from base points. This can be seen as follows. If it has a base point
$x$ , then, by [2, Proposition 5.1], there exists a subcurve $\triangle$ of $Z$ such that $\Delta^{2}=-1$ ,
$x$ is a non-singular point of $\triangle$ and $\mathcal{O}_{\Delta}(-3Z)\simeq\omega_{\triangle}\otimes \mathcal{O}_{\triangle}(x)$. Since $\triangle^{2}=-1,$ $\Delta$ is
l-connected. By $Z\Delta=0,$ $-1$ and $\deg\omega_{\triangle}=2p_{a}(\triangle)-2$ , the possible case is only:
$Z\triangle=-1$ and $p_{a}(\triangle)=2$ . This implies that $\triangle=Z$ , since $Z$ is its own minimal
model. Then we get $\mathcal{O}_{Z}(-Z)\simeq \mathcal{O}_{Z}(x)$ , contradicting that $H^{0}(Z, -Z)=0$ .

We study the graded ring $R(Z, -Z)=\oplus_{i\geq 0}H^{0}(Z, -iZ)$ . We have $h^{0}(Z, -2Z)=2$

and $h^{0}(Z, -iZ)=i-1$ for $i\geq 3$ . By the free-pencil trick, $\mu_{i}$ : $H^{0}(Z, -iZ)\otimes$

$H^{0}(Z, -2Z)arrow H^{0}(Z, -(i+2)Z)$ is surjective for $i\geq 2,$ $i\neq 4$ . This is because
$H^{1}(Z, -(i-2)Z)=0$ when $i=3$ or $i\geq 5$ , while we get it by dimension count when
$i=2$ . Therefore, $R(Z, -Z)$ is generated in degrees at most 6. Let $\{x_{0}, x_{1}\}$ be a basis
for $H^{0}(Z, -2Z)$ . Then $H^{0}(Z, -4Z)$ is generated by $x_{0}^{2},$ $x_{0}x_{I},$ $x_{1}^{2}$ . Let $\{y_{0}, y_{1}\}$ be a
basis for $H^{0}(Z, -3Z)$ . Then $H^{0}(Z, -5Z)$ is generated by $x_{0}y_{0},$ $x_{0}y_{I},$ $x_{1}y_{0},$ $x_{1}y_{1}$ . We
consider $H^{0}(Z, -6Z)$ . Here, we have four elements $x_{0}^{j}x_{1}^{3-j}(0\leq j\leq 3)$ which generate
a subspace $V_{1}$ of codimension one. Recall that $|\mathcal{O}_{Z}(-3Z)|$ is free from base points. By
the free-pencil-trick, one can show that $Sym^{2}H^{0}(Z, -3Z)arrow H^{0}(Z, -6Z)$ is injective,
and the image $V_{2}=\langle y_{0}^{2},$ $y_{0}y_{I},$ $y_{1}^{2}\rangle$ is a subspace of dimension three, We claim that
$H^{0}(Z, -6Z)=V_{1}+V_{2}$ . Assume not. Then $V_{2}\subset V_{1}$ and we have three relations:
$y_{0}^{2}=c_{1}(x),$ $y_{0}y_{1}=c_{2}(x)$ and $y_{1}^{2}=c_{3}(x)$ , where $c_{1},$ $c_{2},$ $c_{3}$ are cubic forms in $x_{0},$ $x_{1}$ . It
follows $y_{1}/y_{0}=c_{2}(x)/c_{i}(x)$ . This implies that the morphism defined by $|\mathcal{O}_{Z}(-3Z)|$

is the composite of the morphism defined by $|\mathcal{O}_{Z}(-2Z)|$ and the morphism $\mathbb{P}^{1}arrow \mathbb{P}^{1}$

given by $c_{2}/c_{1}$ , which is impossible, because $-3Z^{2}=3$ and $-2Z^{2}=2$ . Therefore,
$V_{2}\not\subset V_{1}$ . For the same reasoning, we may assume that $y_{0}^{2},$ $y_{1}^{2}\in V_{I}$ and $y_{0}y_{1}\not\in V_{1}$ .
Now, we have two relations: $y_{0}^{2}=\varphi_{0}(x_{0}, x_{1}),$ $y_{I}^{2}=\varphi_{1}(x_{0}, x_{1})$ , where $\varphi_{0},$ $\varphi_{1}$ are cubic
forms. It is not hard to confirm that there are no further relations in $R(Z, -Z)$ . There-
fore, $R(Z, -Z)\simeq \mathbb{C}[X_{0}, X_{1}, Y_{0}, Y_{1}]/(Y_{0}^{2}-\varphi_{0}(X_{0}, X_{1}), Y_{1}^{2}-\varphi_{1}(X_{0}, X_{1}))$ as graded
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$\mathbb{C}$-algebras, where $\deg X_{0}=\deg X_{I}=2$ and $\deg Y_{0}=\deg Y_{1}=3$ .
Let $\overline{x}_{i}$ and $\overline{y}_{i}(i=0,1)$ be preimages of $x_{i}$ in $H^{0}(X, -2Z)$ and $y_{i}$ in $H^{0}(X, -3Z)$ ,

respectively. Then $\overline{y}0,\overline{y}_{1}$ generate $H^{0}(X, -3Z)/H^{0}(X, \mathfrak{m}^{2}\mathcal{O}_{X})$ . Hence

$\dim \mathfrak{m}/m^{2}=\dim\frac{H^{0}(X,\mathfrak{m}\mathcal{O}_{X})}{H^{0}(X,\mathfrak{m}^{2}\mathcal{O}_{X})}=\dim\frac{H^{0}(X,-2Z)}{H^{0}(X,-3Z)}+2=h^{0}(Z, -2Z)+2$

and we get embdim$(V, 0)=4$ as wished.

Case 2. We assume that $H^{0}(X, -2Z)arrow H^{0}(X, -Z)$ is not surjective. Let $s\in$

$H^{0}(Z, -Z)$ be a non-zero element coming from $H^{0}(X, -Z)$ . It follows from [1, (A.5)

Proposition] that $s$ does not vanish identically on any components of $Z$ , since $Z$ is

2-connected $and-Z^{2}=1$ . Hence $s$ vanishes at only one point $x\in Z$ which should be
a non-singular point of $Z$ . We have $\mathcal{O}_{Z}(-Z)\simeq \mathcal{O}_{Z}(x)$ . By the $\Delta$-inequality [3], we
have $h^{0}(Z, -Z)\leq 2$ and, if $h^{0}(Z, -Z)=2$ , the component $A$ containing $x$ is $\mathbb{P}^{1}$ and
$h^{0}(Z-A,\omega_{Z-A})=2$ . But the last equality means that $A$ is a fixed component of $|K_{Z}|$ ,
which is inadequate. So, we conclude that $h^{0}(Z, -Z)=1$ and that $|\mathcal{O}_{X}(-Z)|^{-}$ has no
fixed components but has $x$ as a base point. Hence $Z_{m}=Z$ but $m\mathcal{O}_{X}\not\simeq \mathcal{O}_{X}(-Z)$ .
We can compute $h^{1}(Z_{K}, \mathcal{O}_{Z_{K}})$ as in the proof of Lemma 3.2 to get $p_{g}(V, 0)=4$ .

Let $\rho$ : $\tilde{X}arrow X$ be the blowing-up at $x$ and put $E=\rho^{-1}(x)$ . We $d\dot{e}$note by $Z’$ the
proper transform of $Z$ . Then $Z’\in|\rho^{*}Z-E|$ and $\rho$ gives an isomorphism $Z’arrow Z$ .

Lemma 3.3. $\mathcal{O}_{\tilde{X}}(-\rho^{*}Z-E)$ is $\pi$ -free.

Proof. It is easy to see $that-\rho^{*}Z-E$ is nef on $(\pi 0\rho)^{-1}(0)$ . Consider the cohomology
long exact sequence for

$0arrow \mathcal{O}_{\tilde{X}}(-3\rho^{*}Z+E)arrow \mathcal{O}_{\tilde{X}}(-\rho^{*}Z-E)arrow \mathcal{O}_{2Z’}(-\rho^{*}Z-E)arrow 0$.

We have $H^{1}(\tilde{X}, -3\rho^{*}Z+E)=H^{1}(\tilde{X}, K_{\tilde{X}})=0$. It follows that $H^{0}(\tilde{X}, -\rho^{*}Z-E)arrow$

$H^{0}(2Z’, -\rho^{*}Z-E)$ is surjective. We next consider

$0arrow \mathcal{O}_{Z’}(-2\rho^{*}Z)arrow \mathcal{O}_{2Z’}(-\rho^{*}Z-E)arrow \mathcal{O}_{Z’}(-\rho^{*}Z-E)arrow 0$ .

We have $\mathcal{O}_{Z’}(-2\rho^{*}Z)\simeq\omega_{Z’}$ and $\mathcal{O}_{2Z’}(-\rho^{*}Z-E)\simeq\omega_{2Z’}$ . Since $h^{0}(Z, \omega_{Z})=2$

and $h^{0}(2Z, \omega_{2Z})=3$ , we see that $H^{0}(2Z’, -\rho^{*}Z-E)arrow H^{0}(Z’, -\rho^{*}Z-E)$ is non-
trivial. Recall that $\mathcal{O}_{Z}(-Z)\simeq \mathcal{O}_{Z}(x)$ . Then $\mathcal{O}_{Z’}(-\rho^{*}Z-E)\simeq \mathcal{O}_{Z’}$ . In sum,
$H^{0}(\tilde{X}, -\rho^{*}Z-E)arrow H^{0}(Z’, -\rho^{*}Z-E)\simeq H^{0}(Z’, \mathcal{O}_{Z’})$ is surjective.

By
$0arrow \mathcal{O}_{E}(E)arrow \mathcal{O}_{2\rho^{*}Z-E}(-\rho^{*}Z-E)arrow \mathcal{O}_{2Z’}(-\rho^{*}Z-E)arrow 0$ ,
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we get $H^{q}(2\rho^{*}Z-E, -\rho^{*}Z-E)\simeq H^{q}(2Z’, -\rho^{*}Z-E)$ for $q=0,1$ . In particular,
$H^{0}(\tilde{X}, -\rho^{*}Z-E)arrow H^{0}(2\rho^{*}Z-E, -\rho^{*}Z-E)$ is surjective and $h^{0}(2\rho^{*}Z-E,$ $-\rho^{*}Z-$

$E)=3$ .
We consider

$0arrow \mathcal{O}_{2Z’}(-\rho^{*}Z-2E)arrow \mathcal{O}_{2\rho^{*}Z-E}(-\rho^{*}Z-E)arrow \mathcal{O}_{E}(-E)arrow 0$

to see that $H^{0}(2\rho^{*}Z-E, -\rho^{*}Z-E)arrow H^{0}(E, -E)$ is surjective. Since $h^{0}(2\rho^{*}Z-$

$E,$ $-\rho^{*}Z-E)=3$ , it suffices to show that $h^{0}(2Z’, -\rho^{*}Z-2E)=1$ . For this purpose,
we consider the cohomology long exact sequence for

$0arrow \mathcal{O}_{Z’}(-2\rho^{*}Z-E)arrow \mathcal{O}_{2Z’}(-\rho^{*}Z-2E)arrow \mathcal{O}_{Z’}(-\rho^{*}Z-2E)arrow 0$ .

We have $H^{0}(Z’, -\rho^{*}Z-2E)\simeq H^{0}(Z’, -E)=0$ and $H^{0}(Z’, -2\rho^{*}Z-E)\simeq H^{0}(Z’, E)$

which is of dimension one. Hence $h^{0}(2Z’, -\rho^{*}Z-2E)=1$ as wished. We have
shown that $H^{0}(2\rho^{*}Z-E, -\rho^{*}Z-E)arrow H^{0}(E, -E)$ is surjective, which implies that
$\mathcal{O}_{\tilde{X}}(-\rho^{*}Z-E)$ has no base points also on E. $\square$

The maximal ideal cycle on $\tilde{X}$ is $\rho^{*}Z+E$ and $\mathfrak{m}\mathcal{O}_{\tilde{X}}\simeq \mathcal{O}_{x^{-}}(-\rho^{*}Z-E)$ . Hence
mult $(V, o)=-(\rho^{*}Z+E)^{2}=2$ . One can deduce embdim$(V, o)=3$ from the gen-
eral inequality: embdim$(V, o)\leq$ mult $(V, 0)+1$ . However, we count the embedding
dimension by describing $R(Z, -Z)=\oplus_{i\geq 0}H^{0}(Z, -iZ)$ . Let $s\in H^{0}(Z, -Z)$ be a
non-zero element. As we saw above, it vanishes at a non-singular point $x$ of $Z$ . We
have $H^{0}(Z, -2Z)\simeq H^{0}(Z, K_{Z})$ . Here, we have $s^{2}$ and a new element $t$ which does
not vanish at $x$ . For $i\geq 3$ , we have $h^{0}(Z, -iZ)=i-1$ . In $H^{0}(Z, -3Z)$ , we have
$s^{3}$ and st.

$\cdot$

In $H^{0}(Z, -4Z)\simeq H^{0}(Z, 2K_{Z})$ , we have $s^{4},$ $s^{2}t,$ $t^{2}$ . In $H^{0}(Z, -5Z)$ , we
have $s^{5},$ $s^{3}t,$ $st^{2}$ and a new element $u$ which does not vanish at $x$ . In $H^{0}(Z, -6Z)$ , we
have $s^{6},$ $s^{4}t,$ $s^{2}t^{2},$ $t^{3}$ and $su$ . By the free-pencil-trick, $H^{0}(Z, -iZ)\otimes H^{0}(Z, -2Z)arrow$

$H^{0}(Z, -(i+2)Z)$ is surjective for $i\geq 5$ . We consider $H^{0}(Z, -10Z)$ . Here, we have 6
elements $s^{10},$ $s^{8}t,$ $s^{6}t^{2},$ $s^{4}t^{3},$ $s^{2}t^{4},$ $t^{5}$ and 3 elements $s^{5}u,$ $s^{3}$tu, $st^{2}u$ . These are linearly
independent. So, $u^{2}$ can be expressed as alinear combination of them, that is, we have
a relation of the form $u^{2}=\varphi(s, t)$ after a suitable change of coordinates, where $\varphi(s, t)$

is a linear combination of the first six elements above. Evaluating it at $x$ , we see that
the coefficient of $t^{5}$ in $\varphi(s, t)$ is non-zero. It is not so hard to see that there are no fur-
ther relations among $s,$ $t,$ $u$ . Therefore, $R(Z, -Z)\simeq \mathbb{C}[S, T, U]/(U^{2}-T^{5}-S^{2}\Phi(S, T))$

as graded $\mathbb{C}$-algebras, where $\deg S=$ l, deg $T=2,$ $\deg U=5$ and $\Phi(S, T)$ is a weighted
homogeneous form of degree 8.
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Using the above, we can show embdim$(V, 0)=3$ as in the previous case. One finds
the hypersurface singularity defined by $x^{2}+y^{5}+z^{10}=0$ among typical examples.
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