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AN EPIMORPHISM BETWEEN KNOT GROUPS WHICH DOES NOT
MAP A MERIDIAN TO A MERIDIAN

MASAAKI SUZUKI

1. INTRODUCTION

Let K be a knot in S and G(K) the knot group. The existence of an epimorphism
between knot groups defines a partial order on the set of prime knots. This partial order
on the set of prime knots with up to 10 crossings is determined in [4]. The result of [4]
is extended to prime knots with up to 11 crossings in [2]. The key criterion to determine
that there exists no epimorphism between given knot groups is an application of the
main result of [5]. On the other hand, an epimorphism for each pair of knots which
admits an epimorphism is given explicitly in [4] and [2], in order to show the existence
of an epimorphism. In their papers [4] and [2], all the epimorphisms map meridians to
meridians. In this paper, we show an example of an epimorphism which does not map a
meridian to a meridian.

2. DEFINITION OF AN EPIMORPHISM AND MAIN THEOREM

Let K;, K> be knots as depicted in Figure 1 and Figure 2 respectively.

FiGurE 1. Knot K;
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FIGURE 2. Knot K,

The knot group G(K;) admits a Wirtinger presentation with generators z;, Zs, . . ., Z24
and defining relators:

ZTeT2Z6Z1, Z1022Z10T3, T6T3T6Z4, T22T4T22T5, T1T6Z17s, Z17Z7T17Z6,
T23T7T23T8,  T1329Z13%s,  T3T9T3Z10, T1Z1021Z11, T22Z12Z22%11, T6Z13T6Z12,
T23%14T237%13, Z17Z14Z17%15, T18T16%18%15, T6Z17T6T16, T1Z17T1T18, T16Z19Z16T18,
Z24T19T24T20, T12Z21T12T20, T4Z21Z4T22, Z1Z23T1T22, T6Z23T6ZT24,  T18T24Z1871,

where Z; = z;7!. All the generators are conjugate to one another and we can regard z,

as a meridian of Kj.
The knot K, is called the trefoil and the knot group G(K5) admits a presentation:

G(K2) = (Y1, Y2 | Y1¥2¥1 = Yoy1¥2)-

We define a map f : G(K;) — G(K?2) by the following. Here we write numbers 1,2 for
the generators 4, ¥, respectively. For example, 12121 means y1y2y1 ~1yoy: L.
f(z;) = 12121, flze) = 121212122212121,
f(z3) = 12121, f(zs) = 1212121212121,

Flzs) = 21212121313, F(ze) = 131212121,

f(z7) = 12122212211222121,

f(zo) = 121221212122121,

f($11) = 12211,

f(z13) = 12121,

f($15) = 12121,

f(z17) = 121212121212121212121,
f(z10) = 12212121222121221,

fzz) = 1212121212121212121212121,
f(ze3) = 12121222121,

f(zs) = 121212121,

f(z1) = 121212121,

f(z12) = 12212211221,
f(z14) = 12122212121222121,
f(z16) = 12212121221,

f(.’ll']g) = 221,
f(x20) = 2217
f(ze2) = 221,

F(za) = 1312112213721,

Theorem 2.1. The above mapping f : G(K;) — G(K3) is an epimorphism which does
not map a meridian of K, to a meridian of K,.



3. ProOOF

In this section, we show Theorem 2.1. First, we will check the relators of G(K) vanish
under the mapping f.

fzez2ZeZy) = 12121212112121212221212112121212112121—e

f(z1022Z10Z3) = 12121212112121212221212112121212112121
f(x6x3a”365:4) = 121212121121211212121211212121212121 = e,
f(x22x4:i22.'i'5) = 221121212121212112221212121212 = e,

frizeZ1Zs) = 121211212121211212121212121212
= 1221121212121212 = 1221112112121121 =e.

The above and similar calculations imply that f : G(K;) — G(K>) is a group homomor-
phism. Next, we will show that the group homomorphism f is surjective. Since 1 and 2
are generators for G(K3), it is sufficient to find elements of G(K;) which are mapped to
1 and 2 under the group homomorphism f.
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f(Z18T6Z1Z1218T6T1)

f(mls)f(%)mmf(xls)f(ms)m

= 221121212121121211212122112121212112121

= 2121212121211 = 1211212112111 =1,
f(l'lxsmlsfcl$18$6$1$1$18$6$1)

= f(z1)f(ze) f(z18) S (x1) S (x18) f(26) f(21) f(21) [ (%18) f (26) f (21)

= 1212112121212112212121221121212121121211212122112121212112121

= 11212121212121212121211 = 11121121211211212112111 = 2.
Therefore it is shown that the group homomorphism f is surjective. Finally, we will prove
that f does not map a meridian of K, to a meridian of K,. We can fix meridians for K;
and K, by z; and 1, without loss of generality. An SL(2;Z)-representation p of G(Kj) is

defined by
p(1)=((1) }) p(2)=(_11 ?)

We can check easily that p is a representation of G(K3). Note that the trace of p(1) is 2.
On the other hand, we get

plse) = prazizn = (7 7).

Then the trace of p(f(z;)) is not equal to 2. Hence f(z;) is not conjugate to 1. It
follows that the epimorphism f does not map a meridian of K; to a meridian of K,. This

completes the proof.

4. PROBLEM

In this section, we propose a problem related to epimorphisms between knot groups.
We review the result of the partial order with respect to the existence of an epimorphism
on the set of prime knots with up to 11 crossings.
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Theorem 4.1 (Kitano-Suzuki [4], Horie-Kitano-Matsumoto-Suzuki [2]). The following
pairs admit epimorphisms between their knot groups, which map meridians to meridians:

(857 31)7 (8107 31)) (815a 31), (8187 31), (8191 31)7 (820a 31), (821a 31)1

(91,31), (9, 31), (916, 31), (923, 31), (924, 31), (928, 31), (940, 31),

(105, 31), (109, 31), (1032, 31), (1040, 31), (1061, 31), (1062, 31), (1063, 31), (1064, 31),

(1065, 31), (1066, 31), (1076, 31), (1077, 31), (1078, 31), (1082, 31), (1084, 31), (105, 31),
(1087, 31), (10gg, 31), (1099, 31), (10103, 31), (10106, 31), (10112, 31), (10114, 31), (10139, 31),
(10140, 31), (10141, 31), (10142, 31), (10143, 31), (10144, 31), (10159, 31), (10164, 31),

(1lags, 31), (11aa4, 31), (11agse, 31), (11asz, 31), (11asz, 31), (11ass, 31), (11ar, 31),
(1lazz,34), (11ars, 31), (11a100, 31), (11a106, 31), (11a107, 31), (11a108, 31), (11a109, 31),
(11ay17,31), (11aya4, 31), (11a139, 31), (11aisr, 31), (11ases, 31), (11ai71, 31), (11aazs, 31),
(11ay76, 31), (11aieq, 31), (11a1ge, 31), (11ag03, 31), (11az12, 31), (11az16, 31), (11azes, 31),
(11ag31, 31), (11azsz, 31), (11a2ss, 31), (11244, 31), (11a24s, 31), (11azer, 31), (11azs3, 31),
(11age4, 31), (11asss, 31), (11asos, 31), (11ases, 31), (11asis, 31), (11assz, 31), (11asss, 31),
(11asqp, 31), (11ags1, 31), (11asse, 31), (11asss, 31), (11n71, 31), (11072, 31), (11n7s, 31),
(11n74,31), (11n7s, 31), (1176, 31), (11177, 31), (11n7s, 31), (11ng1, 31), (11ngs, 31),
(11ngs, 31), (11mg7, 31), (11n04, 31), (117104, 31), (117105, 31), (117106, 31), (117107, 31),
(11n436, 31), (11n164, 31), (111183, 31), (110384, 31), (110485, 31),

(818,41), (937, 41), (940, 41),

(1058, 41), (1059, 41), (1060, 41), (10122, 41), (10136, 41), (10137, 41), (10138, 41),

(1las,41), (11ag,41), (11as, 41), (11a132, 41), (11asse, 41), (11aze7, 41), (11a34s, 41),
(11agae, 41), (11n100,41), (111148, 41), (110157, 41), (11m16541 ),

(11n4g, 51), (117148, 51),

(1074, 52), (10120, 52), (10122, 52), (11n71, 52), (11n185, 52),

(11ass2, 61),

(110351, 62),

(11lagr,63), (11239, 63).

The other pairs of prime knots with up to 11 crossings do not admit any epimorphism

sending a meridian to a meridian.
In this table, the numbering of the knots with up to 11 crossings follows that of the web

page “Knotlnfo” [1], which is operated by Cha and Livingston.

We can see all the epimorphisms for the pairs of Theorem 4.1, in [4] and [2]. As
mentioned in Section 1, each of them maps a meridian to a meridian.

Problem 4.2. Which pair of Theorem 4.1 admit an epimorphism between their knot
groups which does not map a meridian to a meridian? In particular, does there exist such

an epimorphism between 2-bridge knot groups?

We note that Ohtsuki-Riley-Sakuma [7] and Lee-Sakuma [6] studied epimorphisms be-
tween 2-bridge link groups.

Remark 4.3. The Alexander polynomial of K is t* — 2% + 3t2 — 2t + 1. All the prime
knots with up to 11 crossings which have the same Alexander polynomials are 829, 10140,
11n43 and 11ny4. Moreover, compared with the numbers of SL(2;Z/pZ)-representations
of G(82), G(10140), G(11ny3), G(11n74) and G(K;) for p = 2,3,5, we can conclude that
K, is not a prime knot with up to 11 crossings. Hence the pair (K3, K3) does not appear



in Theorem 4.1. In addition, Boileau-Kitano-Morifuji has informed the author that the
knot K is a prime knot, since they checked K is a hyperbolic knot by using SnapPea.
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