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1 Introduction

We consider the nonlinear Sturm-Liouville problem

(1.1) —u'(t) + f(u(®)) = Au(t), tel:=(0,1),
(1.2) u(t) > 0, tel,
(1.3) u(0) = u(l)=0,

where A > 0 is a positive parameter. f(u) is assumed to satisfy the conditions (A.1)-(A.2):

(A.1) f(u) is C* for u > 0 satisfying f(u) > 0 for u > 0. Furthermore, f(0) = £(0) = 0.

(A.2) f(u)/u is strictly increasing for u.> 0. Moreover, f(u)/u — oo as u — oo.

The following are the typical examples of f(u) which satisfy (A.1) and (A.2).

(1.4) flu) = v (u20),
(1.5) flu) = v»+u™ (u>0),
1
(1.6) flu) = up(1—1+u2) (u>0),

where p > m > 1 are constants.



18

Before stating our result, let us briefly recall some known facts (cf. [1]).
(a) For each given a > 0, there exists a unique solution (X, u) = (A (@), ua) € Ry x C¥(I)
of (1.1)- (1.3) with |lug|l; = @. Here, ||uqllq is the L9-norm of u,, and Ag(a) is called L?-
bifurcation curve.
(b) The set {(Aj(a), uq) : @ > 0} gives all solutions of (1.1)-(1.3) and is an unbounded curve
of class C* in R, x LI(I) emanating from (n2,0). Furthermore, \,(a) is strictly increasing

for @ > 0 and Ag(a) — oo as a — oo.

The objective here is to discuss inverse bifurcation problems for nonlinear Sturm-Liouville
problems from an asymptotic point of view.

The direct bifurcation problem, that is, for a given nopnlinear term f(u), the problem
to investigate the local and global behavior of bifurcation curve has a long history and has
been studied by many authors. We refer to [1-17] and the references therein. However, it
seems that there exists a few works concerning inverse bifurcation problems. We only refer
to [21].

Recently, the following basic result was obtained in [20].

Theorem 1.0 ([20]). Assume that fi(u) and f2(u) are unknown to satisfy (A.1) (A.2).
Further, assume that the connected components of the set V := {u > 0: fi(u) = fa(u)} are
locally finite. Let Ao(1, 0) and A3(2, @) be the L2-bifurcation curves of (1.1)-(1.3) associated
with the nonlinear term f(u) = fi1(u) and f(u) = fo(u), respectively. Assume that Ao(1,a) =
X2(2, ) for any a > 0. Then fi(u) = fo(u) foru > 0.

Motivated by the result above, we here introduce an asymptotic approach to inverse
bifurcation problem for (1.1)- (1.3). To be more precise, we assume that the nonlinear term
f(u) is unknown. Then we show that, if the asymptotic formula for the L%-bifurcation curve
Ag() as o — oo is known precisely, then we are able to characterize the asymptotic property
of f(u) for u > 1. Here, 1 < g < oo is a constant and we fix it throughout this paper. We
call this idea asymptotic approach for inverse bifurcation problems.

As for the asymptotic behavior of A\j(a) and u, 8s a — oo, it is known from (1] that

ua(t)
%allco

(1.7)
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locally uniformly on I as o — 0o. We set g(u) := f(u)/u. Then as o — 20,

(1.8) Agla) = g(llualleo) + &as

where £, = O(1) is the remainder term. By (1.7), we see that |[uallcc = a(1 + o(1)) for
a > 1. By this and (1.8), for a > 1,

(1.9) Ag(a) = g(a) + o(g(a)).

Motivated by (1.9), as a direct problem, more precise asymptotic formula for A\;(a) as @ — oo

has been given in [18].

Theorem 1.1 ([18]). Let f(u) = uP, where p > 1 is a given constant. Then as o — .
(1.10) M) = aP71 4+ CoalP~V2 4 C) + o(1),

where

1 — 4
Cy =/ 1= ds.
0 /1—s2—2(1—sP+1)/(p +1)

The formula (1.10) has been obtained first for ¢ = 2 in [15] by using the relationship

between Az(a) and the critical value associated with Ay(a).
From a view point of Theorems 1.1, we consider the following inverse problem.

Problem 1. Let f(u) be unknown to satisfy (A.1) and (A.2). Assume that as o — o0,
(1.11) M) = g(a)+ Ag(a)? + O(1),
where A > 0 is a constant. Then can you conclude that f(u) = uP for some constant p > 17

To state our results, we assume additional conditions (A.3) and (A.4). We put f(u) :=

uPh(u).
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(A.3) h(u) is a C! function for u > 0, and there exists a constant & > 0 such that h(u) > &

for u > 0. Furthermore, for an arbitrary fixed constant 0 < € < 1, as u — o,

(1.12) max u’;’((s)s) = O((wP~ h(u))~*?),
(1.13) gg?g(esp u};;’((;l)s) =O((up“1h(u))“1/2).

(A.4) There exists a constant 0 < 4, < 1 such that for (1+4d;)v>u>v > 1,
(1.14) fw) = f(@) + f'(0)(u = v) + O(f (v)/v*)(u — v)*.

The typical examples of h(u) (i.e. f(u)) satisfying (A.3) and (A.4) are:
h(u) =1 (f(u) = uP), h(u) =1+u™" (f(u) =uP+u™ 1l<m< I%l) .

The answer to Problem 1 is as follows.

Theorem 1.2. Assume that all conditions in Problem 1, (A.83) and (A.4) are satisfied.
Then f(u) = uPh(u) with p =1 + (qA)/(2Cs) and h(u) = D + d(u), where C; is a constant
in Theorem 1.1, A is a constant in (1.11), D > 0 is an arbitrary positive constant and

d(u) = O(u=?/2) for u > 1.

Remark 1.3. (i) The next inverse bifurcation problem we consider in a near future
should be to establish the asymptotic uniqueness of unknown f(u) from the asymptotic

behavior of \j(a) as a@ — oo.
(ii) The condition (A.3) is not technical one. Indeed, if we consider f(u) = u®¢* and ¢ = 2,

then g(u) = u*e* does not satisfy (A.3), and we know from [16] that as o — 00
_ 4,0, T 3 a2 T 2 a/2

- (1.15) Xo(a) = a’e* + Vel + ve (1+0(1)),

which is different from (1.11). Therefore, (1.11) does not hold without (A.3).

2 Sketch of the Proof of Theorem 1.2

In what follows, C denotes various positive constants independent of a 3> 1. We write (), u,)

for a unique solution pair of (1.1)-(1.3) with ||ua|; = a. We begin with the fundamental
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tools which play important roles in what follows. It is well known that
21) Ualt) = ta(1=1), t€L, fualo = ua(5),
(2.2) W) >0, 0<t< -;-
Multiply (1.1) by w.,(¢). Then

(Wl(8) + Aua(t) — f(ualt))) wy(t) = 0.
This along with (2.1) implies that
(2.3) %u;‘(t)“’ + %/\uo‘(t)2 — F(u,(t)) = constant

= SMal — Flluall),  (put £=1/2)

where F(u) := [’ f(s)ds. We set
(2.4) Lo(®) = Aluall = %) = 2(F(luall) = F(9)).
This along with (2.2) and (2.3) implies that for 0 < ¢ < 1/2
(2.5) u () = y/La(uald)).

By this and (2.1), we obtain

¢ _ 9 — V2 ([uallds — vaOUa(®) 4y _ o [iele (lualll — 67) 4
lualld, —0? = 2 /O \/La(uat dt =2 / Hem

(2.6) _ 2llua||" /1 1-s

_ 2nuauq st st l_sq) }

{/ / (\/Ba() V7

_ 2”u0t”oo

= i —==2(C2+ M,),
where
(2.7) J(s) = 1_32_23_-{2___1(1_Sp+1)’
(2.8) By(s) = 1—s%— 2 ———(F(luallos) = F(||tallcos)),

AluallZ

(2.9) M, = / (\1/;_?_:_ \1/__33)
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Lemma 2.1. f'(a) < CaP™! fora > 1.

Lemma 2.1 is proved by direct calculation. So we omit the proof. By (A.3) and Lemma

2.1, for a > 1,

(2.10) ClaP P < A< CaPt,
(2.11) Clo? < f(a) < Co?,
(2.12) C~laP! < g(a) < CoPt.

The following Lemma 2.2 plays essential roles to prove Theorem 1.2.
Lemma 2.2. M, = O(g(a)™"/?) as a — .

We tentatively accept this lemma and prove Theorem 1.2. Lemma 2.2 will be proved in

Section 3.

Proof of Theorem 1.2. By Lemma 2.2 and Taylor expansion, for a > 1,

9 -1/q
(2.13) ltallo = « (1 - W(Cg + Ma)>

(2.14) = a (1 + q%(Cz + M,) + 2((;:; 1)(02 + Mo)*(1+ 0(1))) :

By this, Lemmas 2.1 and 2.2,
flltalloo)

YT el T
- ;(1—7<02+M) 0@ ) (1(e)+ 25 1(@)(Co+ M)+ Oe)) 46,
_ fle) | 2C, £ f(a) 202 fla _ fle)
05 - 2) e 22 o
= i@ﬂ%( f'(a) - Ex)) (9(@) + Ag(@)'/* + O(1)) 72 + O(1)

_ g) q\jga)(f() a)+0(1).

= g(a) + Ag(a)2+ O(1).

This implies that for a > 1

(215) 7@~ L2 — o fgta),
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where r := 14 (gA)/(2C;). Then we solve (2.15) directly, and easily obtain that » = p, and
fora>1

(2.16) f(a) = Da® + O(aP+V/2),

where D > 0 is an arbitrary constant. Thus the proof is complete.

3 Proof of Lemma 2.2.

In this section, we prove Lemma 2.2. Let an arbitrary 0 < ¢ < 1 be fixed. For 0 < s <1,

we put
(3.1) Ka(s) = J(s) — Bals)
~ S Flltalle) = Fltalls)} = =31 = %),
Then
1 (1 — s Ky(s)
3.2 M, = d
42 /0 JTOVBAS(T6) + /Bals)

(1 —3s9)K,(s)

/1_6 VI (8)y/Ba(8)(/J(s) + y/Bal(s))
(1 - Sq)Ka(s)

1—e¢
+
/e VI(5)y/Ba()(y/J(5) + y/Ba(s))
(1 - Sq)er(s)

¢ ds
+/o V() Ba(s)(/J(8) + y/Bal(s))
= Ml,o: + M‘Z,a + MS,&'

ds

ds

Lemma 3.1. Fora>1
(3.3) [Mi,6] = O(g(lltallec) "*?).

Proof. By (3.1),

K, Q|| o0
09 A M
This implies that
(3.5) Kal) _fa
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Since f(u) = g(u)u, for 1 — € < s < 1, by Taylor expansion, we obtain

K, (s) f'(1ualloos)

i et
_ g (luallsos)liuallos + glliualloos) | . o1

(38) 9(ltellod) + o e

__g'Uluallcos)lualleos + g{llualloos) £o p—

- 9(luall) (1 Sl ”) N
We put
(3.7) H(s,u) = psp‘lh?((%i)z + usph];((zs)).
For u > 1,
(3.8) gw) = (p— DuP2h(u) +u"~H (u).

By this and (3.6), we obtain

Kq(s)

L)~ s ualle) (1= S o0) ) + 57

9(llualloo)
= —1{1_ h(llualloos) _ ph,(”uOl”OOs)
- P (1 h(llualloo)) lualloos™ 5o i)

€a
¥ a7 (& lualloo)(+ 0(1))

By this and mean value theorem, for 1 — € < s < s; < 83 < 1, we obtain

Ka(s1) p-1 (1 _ h(llualloo51)) ~ ltalons? lh’(llualloosl)

(3.10) 9 = psy h(llualloo)) h(l1%alloo)

(3.9)

€a
9(J1ualloo)

) h'(||“a||oo82))
et (———— Falloo(1 = 1) = l[uialloos?
U TAualie) ) Male( = 81) = lluallooss

§a
* 9 QHOO)H(sl, ltalloo) (1 + o(1))

= O(9(lluallew) ™) + 0O (ﬁ‘))
= 0(9(|[tallos)2).

Since K,(1) =0, by (3.5), (3.10) and Taylor expansion, for 1 —e < s <1,

(3.11) %(fl - % (Ka(l) KL (1)(s—1) + %Kg(sl)(s _ 1)2)

= (s - 1)+ 0(g(lualle) D) 177

+ H(s1, lualleo)(1 + 0(1))

P (luellwost)
h(||talloo)
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By this, (3.1) and Taylor expansion, for 1 —e < s < 1,

(3.12) J(s) = (p—1-6)1-5)?

(3.13) Bo(s) = J(s)— Ka(s) > %—’-(1 -s)+ 6—21(1 —5)2.

Then we obtain

bo(1 = s9)|Ka(s)|

=« J(s)y/Ba(s)

(3.14) < C/l (§a/(2) + O(g(llual="?))A —5) |
1=¢ J(€a/N)(1 = 5) + (6:/2)(1 — 52

ds

IMl,aI S /1.

N 1o J&a 1 —1j2y [t l1-s
= €S r=sts + Olelluall™) [ Gt

< C( §,\E+O(9(Hua|loo)_1/2)) = 0(9(llugllow)*?).

Thus the proof is complete. g
Lemma 3.2. M;, = O(9(||talles) ¥?) as a — 0.

Proof. Since f(u) = uPh(u), for 0 < s <1 —¢,

1 lualloe 1
. o — . p - 1 _ Sp+1
(3.15) Kals) AluallZ, Auanxs Fhityt p+ it )
1 (12zer|l o lealico
= p+l - PR (1) dt
&+ DMl {[t A0 poims ™ e O }
1
e _ obtl
Py 1(1 sPTH).

Since £, > 0, for e < s < 1—,

1
MluallZ,

luallee . 1 lalle Lo
/” PR () dE| < /“ [P LR (1) | di

Uallsos T h(lvallo)[#all& Jiualles
e llooh (I talloos)
h(l|ualloo)

= O(g([[ualleo) ).

(1-5)

(3.16)

T e<s<l

By this and mean value theorem, for e < s < s; < 1 — ¢,

1
(P + DA[uallZ,

K,(s)

: {IlsallZ h(luallos) = B2 s™+ A(||talleos) }
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1

(317 +O(g(Jualle) /) = =1 = %)
¢ La-en ( ol () _ 1)
el o) = B(les) + Ololc) )
< poor- ot ¢ Pelelelond L o))
= O(g(lluallee) ).
Note that for 0 < s <1 —,
(3.18) J(s) > 6, > 0.
By this and (3.14), for e < s <1 —e and a>> 1,
(3.19) Ba(s) 2 J(s) - Kals) > 2 > 0.

Then by this and direct calculation, we obtain
1—¢ —1/2
Mool SC [ |Kal()|(1 = 59)ds = O(g([[uallec) ™).

Thus the proof is complete. 3
Lemma 3.3. Ms, = O(g(||tallc)*/?) as a — oo.

The proof of Lemma 3.3 is similar to that of Lemma 3.2. So we omit the proof. Since

a = |Jtuglloo(1 +0(1)), Lemma 2.2 follows from Lemmas 3.1-3.3. Thus the proof is complete.
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