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1 Introduction

Throughout this note, A, B are positive operators on a Hilbert space, we use the following
notations: AV,B = (1 — w)A + pB, A}, B = AV?(A"Y2BA1/2)»AY2 and Al,B = ((1 -
p)A™! + pB~1)71 see F. Kubo and T. Ando [6]. When u = 1/2 we write AVB, AjB and
A!B for brevity, respectively. The Kontorovich constant is defined as K(¢,2) = g% for
t > 0, while the Specht ratio [9] is denoted by

1
ti-1
S(t)y=———+ for t>0,t#1; and S(1)=1imS(t)=1.
elogti1 t—=1
We start from the famous Young inequality:
aV,b > al Hp# (1)

for positive numbers a, b and u € [0, 1]. The inequality (1) is also called a weighted arithmetic-
geometric mean inequality and its reverse inequality was given in [10] with the Specht ratio

as follows:
aV,b < S(h)al*“b” (2)

forall p€[0,1), where0 <m<a,b< Mand h=%

2,
Recently, an improvement of the inequality (1) was given in [2] as follows:

Theorem F  For a,b > 0, if u € [0,1], 7 = min{y,1 — u} and h = 2, then

a
aV,b > S(h")a'#b*. (3)
Based on this, the refined weighted arithrhetic-geometric operator mean inequality is given

by
AV,B > S(h")At,B. (4)
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See (3, 4] for recent developments of the improved Young inequality. See also [5] for another
type of improvement for the classical Young inequality.

In this short paper, we improve the inequality (3) via the Kantorovich constant as follows:
aV,b > K(h,2) a' #b*
for all 4 € [0,1], where 7 = min{g, 1 — p} and h = 2. It admits an operator extension
AV,B > K(h,2)"A§,B

for positive operators A, B on a Hilbert space. While we provide a new viewpoint and

method which is different from that of the refinement given in [2].

2 Refinement of Young Inequalities

First of all, we cite a refinement of the weighted arithmetic-geometric mean inequality for
n positive numbers, which was shown by Pecarié et.al., see [7; Theorem 1, P.717] and also
1, 8].

Lemma 1. Let z,,---,z, belong to a fixed closed interval I = [a,b] with a < b,

n
P, ,Pn > 0with Y p;=1and A =min{p,---,p,}. If f is a convex function on I, then

=1

> omif(e) — F( ) 2 na| 3 4 @) - £G 32| ®
i=1 =1 =1 =1

We will use lemma 1 as the following form by applying f(z) = —log z:
Corollary 2. If z; € [a,b], 0 < a < b, p1,--- ,pn > 0O with > ;p; = 1 and X =
min {py,- -+ ,Pn}, then

1
n n

z

n 1 n A\ A
%ﬁ:l p;;:j"' Z ( n Zi=l x‘) ) (6)
1=1"1

The case n = 2 in (6) is simplified to the following one, which is a loose extension of [2].

Corollary 3. If a,b> 0, u € [0, 1], then

aV,b > K(h, 2)"a b, (7)
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where 7 = min{u,1 — p} and h = 2.
Replacing a, b by a™!, ™!, respectively, we have the counterpart of (7) itself.

Corollary 4. Ifa,b>0and g € [0,1], then
a'"#bp* > K(h,2)"al,b. (8)

Furthermore Corollary 3 implies Theorem F because of the following fact.

Lemma 5. Ift>0and0<r <3, then
K(t,2)" > S(t"). (9)
To prove Lemma 5, we need the following lemma.

Lemma 6. ([2] Lemma 2.3) Ift > 0andt # 1, then

teT 241
< .
e ~ t+1

(10)

Proof. We give it a proof for convenience. By taking logarithms in (10), it is enough

to prove that f(t) = log(t?+1) —log(t+1) — Z£5logt+1>0fort >0and t # 1.

Since f'(t) = &5 — 7 — 5 + +(t%gl’;—2 = 4 (—t‘ggl'*?, it follows that f/(t) < 0 for
0<t<1land f'(t) >0 fort > 1. Thus we have f(t) > %1_1)111f(t) =0 for all t > 0 with t # 1.
u

Proof of Lemma 5. If ¢t = 1, then it is easy to get S(1) =1 = K(1,2).

Ift > 0 and t # 1, then, logarithmic-arithmetic mean inequality implies
tr—1 < "+1
logtr — 2

DN | =

for 0<r<

Combining with (10) we have

Frir -1 1T -1 1141 ]
e logtr  tr e logtr —trtr+1 2 2ar -

Since f(z) = 2 (x > 0) is concave for 0 < r < 1, it follows that

r+1_ (t+1 o[ +1)?"
2 T2 - 4 '

S(t")

Hence we have

S <

t2’”+1l< [(Hl)2
tr =

= 2)". d
2 4t } K(t.2)
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3 Applications to Operator Young Inequality

Theorem 7. Suppose that two operators A, B and positive real numbers m, m’, M, M’
satisfy either of the following conditions:
(i) 0O<mI<A<mI<MI<BL<MI
(i) 0<mI<B<mI<MI<ALSMI
Then
AV,B > K(h,2)"A},B (11)

for all 4 € [0, 1], where r = min{g,1— u}, h = —An’% and b = %’

Proof. From Corollary 3, we have
(1-p)+pz 2 K(z,2)"z"
for any z > 0. And hence
_— > : YU
(1-pl+pX> Lin, K(z,2)"X

for the positive operator X such that 0 < hI < X < W'I.
Substituting A=/2BA~1/2 for X in the above inequality we have:

In the case of (i), l <h =¥ < A71/2BA~Y/2 < M = I, we have
(1—p)I +pA~YV2BATY2 > hg;:iélh' K(z,2)"(A"Y2BA Y2,
It is easy to check that K(z,2) is an increasing function for z > 1, then
(1 —w)I +pA"V2BA™Y2 > K(h,2)"(A"Y2BA /%), (12)
In the case of (ii), we have 0 < 1/h' < A~/2BA~'/2 < 1/h < 1, then
(1—p)I+pA~Y2BAY2 > l/h;girsll/h K(z,2)"(A"Y2BAY2)¥,

Since K(z,2) is a decreasing function for 0 < z < 1, we have

(1 —p) I+ pA~Y2BA™Y2 > K(1/h,2)"(A"Y2BA™Y2)H, (13)
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Multiplying both sides by A'/2 to inequality (12) and (13) and using K (1/h,2) = K(h, 2)
for h > 0, we obtain the refined arithmetic-geometric operator mean inequality. a

By replacing A, B by A™!, B!, respectively, then the noncommutative geometric-
harmonic mean inequality can be obtained as follows:

Theorem 8. Assume the conditions as in Theorem 7. Then
Ai,B > K(h,2)"Al,B. (14)

From Lemma 5, it’s easy to get the following

Corollary 9. [2] Assume the conditions as in Theorem 7. Then
AV,B > S(h")A},B. (15)

In the remainder, we focus on extending the refined weighted arithmetic-harmonic mean
inequality to an operator version for another type of improvement.

n
Lemma 10. Ifz,---,2, >0and p1,---,p, > 0 with 3 p;, =1, then
=1

n n -1 n n —1
1 1
7t — T > 7t — —x; 16
;:1 Pz (;:1 pzxz) > nALEZI T (?xl nm) J (16)
where A = min{p1,p2, - - - pr}.
Proof. Let f(z) = 27! in lemma 1, then the desired inequality is obtained. a

Theorem 11. If € [0,1], A and B are positive operators, then
AV,B > Al,B + 2r(AVB — AlB), (17)

where 7 = min{y, 1 — u}.

Proof. From the case n = 2 in Lemma 10, we have, for z > 0 and p € [0, 1],

(=) +pz™ = (1 —p) + pz)™' > 2r[1+2x_1 — (1;%)_1}

Thus it follows that

(L= +pT™ > (L= p)I +pT)7! +2r[1 +2T—1 - (I;T> _1] (18)
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for a strictly positive operator T and p € [0, 1].
We may assume that A, B are invertible. Put T = A2 B~143 in (18), then

(1= )] + p(ARB1AR) ™ > (1 — )l + pAZ B~ A7)
[+ (A2BT1AD)L <I+A%B—1A%)-1}

9
+ 5 5

Multiplying both sides by A? we have

A+B (A-l + B“)_l]

(1= p)A+uB > (1 - A~ + pB1)1 +zr[ : :

so that
AV,B > Al,B+2r(AVB - A!B).
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