A Reverse of Generalized Ando-Hiai Inequality

藤井正俊(大阪教育大学) 金英玉 (水原大学) 黒木貴之(大阪教育大学) 中本律男(茨城大学)

§1 Introduction

The Löwner-Heinz inequality says that the function t^{α} is operator monotone for $\alpha \in [0, 1]$.

$$(LH)$$
 $A \ge B \ge 0 \implies A^{\alpha} \ge B^{\alpha} \text{ for } \alpha \in [0,1].$

It induces the α -geometric operator mean defined for $\alpha \in [0,1]$ as

$$A \sharp_{\alpha} B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\alpha} A^{\frac{1}{2}}.$$

if A > 0, i.e., A is invertible, by the Kubo-Ando theory [1] see also [7].

Ando and Hiai [2] proposed a log-majorization inequality, whose essential part is the following operator inequality. We say it the Ando-Hiai inequality, simply (AH).

$$(AH) A\#_{\alpha}B \le I \implies A^r\#_{\alpha}B^r \le I (r \ge 1).$$

In some sense, (AH) might be motivated by the following operator inequality, which is a super extension of Löwner-Heinz inequality, the case of r = 0 in below:

Furuta inequality (FI). If $A \ge B \ge 0$, then for each $r \ge 0$,

$$(A^{\frac{r}{2}}A^{p}A^{\frac{r}{2}})^{\frac{1}{q}} \ge (A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1}{q}}$$

and

$$(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{1}{q}} \ge (B^{\frac{r}{2}}B^{p}B^{\frac{r}{2}})^{\frac{1}{q}}$$

hold for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$.

By using the mean theoretic notation, the Furuta inequality has the following expression by virtue of (LH):

(FI) If
$$A \ge B > 0$$
, then

$$A^{-r} \sharp_{\frac{1+r}{p+r}} B^p \leq A$$
 for $p \geq 1$ and $r \geq 0$.

Moreover, to make a simultaneous extension of both (FI) and (AH), Furuta added variables as in the extension of (LH) to (FI). Actually he established so-called grand Furuta inequality, simply (GFI). It is sometimes said to be generalized Furuta inequality, [3], [6] and [9].

Grand Furuta inequality (GFI). If $A \ge B > 0$ and $t \in [0, 1]$, then

$$[A^{\frac{r}{2}}(A^{-\frac{t}{2}}B^{p}A^{-\frac{t}{2}})^{s}A^{\frac{r}{2}}]^{\frac{1-t+r}{(p-t)s+r}} \le A^{1-t+r}$$

holds for $r \ge t$ and $p, s \ge 1$.

It is easily seen that

(GFI) for
$$t = 1$$
, $r = s \iff (AH)$

(GFI) for
$$t = 0$$
, $(s = 1) \iff$ (FI).

Based on an idea of Furuta inequality, we proposed two variables version of Ando-Hiai inequality, [4] and [5].

Generalized Ando-Hiai inequality (GAH). For A, B > 0 and $\alpha \in [0, 1]$, if $A \sharp_{\alpha} B \leq I$, then

$$A^r \sharp_{\frac{\alpha r}{\alpha r + (1-\alpha)^s}} B^s \leq I \quad for \quad r, s \geq 1.$$

It is obvious that the case r = s in (GAH) is just Ando-Hiai inequality. Now we consider two one-sided versions of (GAH):

(1) For A, B > 0 and $\alpha \in [0, 1]$, if $A \sharp_{\alpha} B \leq I$, then

$$A^r \sharp_{\frac{\alpha r}{\alpha r+1-\alpha}} B \leq I \quad r \geq 1.$$

(2) For A, B > 0 and $\alpha \in [0, 1]$, if $A \sharp_{\alpha} B \leq I$, then

$$A \sharp_{\frac{\alpha}{\alpha+(1-\alpha)s}} B^s \leq I \quad s \geq 1.$$

It is known in [5] that (1) and (2) are equivalent and they are equivalent to (FI). Furthermore generalized Ando-Hiai inequality (GAH) is understood as the case t = 1 in (GFI):

§2 Generalisation of Seo's result

Recently Seo showed the following reverse inequality of (AH) in [8].

Theorem S. Let A,B be positive invertible operators. Then

$$A\#_{\alpha}B \leq I \Longrightarrow A^r\#_{\alpha}B^r \leq \left\| (A\#_{\alpha}B)^{-1} \right\|^{1-r} I \quad (0 \leq r \leq 1).$$

Thus we give a generalization of Theorem S. As a matter of fact, we show the following theorem.

<u>Theorem 1.</u> Let A, B be positive invertible operators and $\alpha \in [0,1]$. Then

$$A\#_{\alpha}B \leq I \Longrightarrow A^r \#_{\frac{\alpha r}{\alpha r + (1-\alpha)s}}B^s \leq \left\| (A\#_{\alpha}B)^{-1} \right\|^{\frac{\alpha (r-s) + (1-r)s}{\alpha r + (1-\alpha)s}} I \quad (0 \leq r, s \leq 1)$$

To prove this, we need some lemmas.

<u>Lemma 2</u>. (Araki-Cordes inequality)

$$||A^p B^p A^p|| \le ||ABA||^p$$
 for $A, B \ge 0$ and $0 \le p \le 1$.

It is well-known that Lemma 2 is equivalent to (LH), and so the following lemma is regarded as a reverse of both (LH) and Lemma 2.

<u>Lemma 3.</u> If $A \ge B > 0$, then

$$||A^{\frac{p}{2}}B^{-p}A^{\frac{p}{2}}||B^{p} \ge A^{p} \quad (0 \le p \le 1).$$

<u>proof.</u> $A \ge B > 0$ implies $A^p \ge B^p$ for all $0 \le p \le 1$ and then

$$I \ge A^{-\frac{p}{2}} B^p A^{-\frac{p}{2}} \ge \|A^{\frac{p}{2}} B^{-p} A^{\frac{p}{2}}\|^{-1}.$$

Hence we have $||A^{\frac{p}{2}}B^{-p}A^{\frac{p}{2}}||B^p| \ge A^p$.

Finally, we cite a convenient formula on exponent of operators.

<u>Lemma 4.</u> Let A, B be an invertible operators. Then

$$(BAB^*)^r = BA^{\frac{1}{2}}(A^{\frac{1}{2}}B^*BA^{\frac{1}{2}})^{r-1}A^{\frac{1}{2}}B^* \quad (r \in \mathbf{R})$$

We prove Theorem 1 in the below.

<u>Proof of Theorem 1.</u> If we put

$$C = A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$$
 then the assumption $A\#_{\alpha}B \leq I$ implies $C^{\alpha} \leq A^{-1}$.

By Lemma 3, we have

$$A^r = A^{\frac{1}{2}}A^{r-1}A^{\frac{1}{2}} \le \left\|A^{-\frac{1-r}{2}}C^{-\alpha(1-r)}A^{-\frac{1-r}{2}}\right\|A^{\frac{1}{2}}C^{\alpha(1-r)}A^{\frac{1}{2}}.$$

In addition, by Lemma 2, we have

$$A^r \le \left\| A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}} \right\|^{1-r} A^{\frac{1}{2}} C^{\alpha(1-r)} A^{\frac{1}{2}}.$$

On the other hand, multiplying $C^{-\frac{1}{2}}$ on both sides of $C^{\alpha} \leq A^{-1}$, we have

$$C^{\alpha-1} \le \left(C^{\frac{1}{2}}AC^{\frac{1}{2}}\right)^{-1}$$
.

We apply this to Lemma 3. Namely we have

$$\begin{split} B^{s} &= \left(A^{\frac{1}{2}}CA^{\frac{1}{2}}\right)^{s} \\ &= A^{\frac{1}{2}}C^{\frac{1}{2}}\left(C^{\frac{1}{2}}AC^{\frac{1}{2}}\right)^{s-1}C^{\frac{1}{2}}A^{\frac{1}{2}} \text{ by Lemma 4} \\ &\leq \left\|\left(C^{\frac{1}{2}}AC^{\frac{1}{2}}\right)^{-\frac{1-s}{2}}C^{-(\alpha-1)(1-s)}\left(C^{\frac{1}{2}}AC^{\frac{1}{2}}\right)^{-\frac{1-s}{2}}\right\|A^{\frac{1}{2}}C^{\frac{1}{2}}C^{(\alpha-1)(1-s)}C^{\frac{1}{2}}A^{\frac{1}{2}} \\ &\leq \left\|\left(C^{\frac{1}{2}}AC^{\frac{1}{2}}\right)^{-\frac{1}{2}}C^{-(\alpha-1)}\left(C^{\frac{1}{2}}AC^{\frac{1}{2}}\right)^{-\frac{1}{2}}\right\|^{1-s}A^{\frac{1}{2}}C^{\frac{1}{2}}C^{(\alpha-1)(1-s)}C^{\frac{1}{2}}A^{\frac{1}{2}}. \end{split}$$

Let r(A) be the spectral radious of A. Then we have

$$\begin{split} \left\| \left(C^{\frac{1}{2}} A C^{\frac{1}{2}} \right)^{-\frac{1}{2}} C^{-(\alpha - 1)} \left(C^{\frac{1}{2}} A C^{\frac{1}{2}} \right)^{-\frac{1}{2}} \right\| &= r \left((C^{\frac{1}{2}} A C^{\frac{1}{2}})^{-1} C^{-(\alpha - 1)} \right) \\ &= r \left(A^{-1} C^{-\alpha} \right) \\ &= r \left(A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}} \right) \\ &= \left\| A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}} \right\|, \end{split}$$

so that
$$B^s \leq \left\|A^{-\frac{1}{2}}C^{-\alpha}A^{-\frac{1}{2}}\right\|^{1-s}A^{\frac{1}{2}}C^{(\alpha-1)(1-s)+1}A^{\frac{1}{2}}.$$

Therefore, it follows that

$$A^{r} \#_{\frac{\alpha r}{\alpha r + (1-\alpha)s}} B^{s} \leq \left\{ \left\| A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}} \right\|^{1-r} A^{\frac{1}{2}} C^{(1-r)\alpha} A^{\frac{1}{2}} \right\}$$

$$\#_{\frac{\alpha r}{\alpha r + (1-\alpha)s}} \left\{ \left\| A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}} \right\|^{1-s} A^{\frac{1}{2}} C^{(\alpha-1)(1-s)+1} A^{\frac{1}{2}} \right\}$$

$$= \left\| A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}} \right\|^{\frac{\alpha (r-s)+(1-r)s}{\alpha r + (1-\alpha)s}} A^{\frac{1}{2}} \left\{ C^{(1-r)\alpha} \#_{\frac{\alpha r}{\alpha r + (1-\alpha)s}} C^{(\alpha-1)(1-s)+1} \right\} A^{\frac{1}{2}}$$
by $aX \#_{\gamma} bY = a^{1-\gamma} b^{\gamma} X \# Y$

$$= \left\| A^{-\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{-\alpha} A^{-\frac{1}{2}} \right\|^{\frac{\alpha (r-s)+(1-r)s}{\alpha r + (1-\alpha)s}} A^{\frac{1}{2}} C^{\alpha} A^{\frac{1}{2}}$$

$$= \left\| \left\{ A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\alpha} A^{\frac{1}{2}} \right\}^{-1} \right\|^{\frac{\alpha (r-s)+(1-r)s}{\alpha r + (1-\alpha)s}} (A \#_{\alpha} B)$$

$$\leq \left\| (A \#_{\alpha} B)^{-1} \right\|^{\frac{\alpha (r-s)+(1-r)s}{\alpha r + (1-\alpha)s}} I$$

Hence the proof is complete.

Remark. Theorem S is obtained by putting r = s in Theorem 1.

REFERENCE

- 1. T.Ando, Topics on Operator Inequalities, Lecture notes (mimeographed), Hokkaido Univ., Sapporo, 1978.
- 2. T.Ando and F.Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197,198 (1994), 113-131.
- 3. M.Fujii and E.Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 2751-2756.
- 4. M.Fujii and E.Kamei, Ando-Hiai inequality and Furuta inequality, Linear Algebra Appl., 416 (2006), 541-545.
- 5. M.Fujii and E.Kamei, Variants of Ando-Hiai inequality, Operator Theory: Adv. Appl., 187 (2008), 169-174.
- 6. M.Fujii, A.Matsumoto and R.Nakamoto, A short proof of the best possibility for the grand Furuta inequality, J. Inequal. Appl., 4 (1999), 339-344.
- 7. F.Kubo and T.Ando, Means of positive linear operators, Math. Ann. 246 (1980), 205-224.
- 8. Y.Seo On a reverse of Ando-Hiai inequality. Banach J. Math. Anal.4(2010), 87-91
- 9. T.Yamazaki, Simplified proof of Tanahashi's result on the best possibility of generalized Furuta inequality, Math. Inequal. Appl., 2 (1999), 473-477.