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1 Introduction

In this paper, we introduce Morrey and Campanato spaces of martingales, and state
some basic properties of these spaces. We give only outline of the proofs of these
properties. This paper is an announcement of the authors’ recent results. The
details will be given in the authors’ forthcoming paper [6].

We consider a probability space (£2, F, P) such that F = o({J, F»n), where
{Fr}n>0 is a nondecreasing sequence of sub-c-algebras of F. We suppose that
every o-algebra F, is generated by countable atoms.

We state definitions and notation in the next section. In Section 3, we give basic
properties of martingale Morrey and Campanato spaces and compare these spaces
with martingale Lipschitz spaces by Weisz [11].

At the end of this section, we make some conventions. Throughout this paper,
we always use C to denote a positive constant that is independent of the main
parameters involved but whose value may differ from line to line. Constants with
subscripts, such as C,, is dependent on the subscripts. If f < Cg, we then write
f<gorg2 f;andif f < g =< f, wethen write f ~ g.
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2 Definitions and notation

Let (2, F, P) be a probability space, and {F, }»>0 & nondecreasing sequence of sub-
o-algebras of F such that F = g(|J,, F,,). For the sake of simplicity, let F_; = F.
In this paper we always suppose that every o-algebra F, is generated by countable
atoms, where B € F, is called atom, more precisely (F,, P)-atom, if any A C B,
A € F,, satisties P(A) = P(B) or P(A) = 0. Denote by A(F,) the set of all atoms
in F,.

The expectation operator and the conditional expectation operators relative to
Fn are denoted by E and E,,, respectively.

It is known that, if p € (1, 00), then any L,-bounded martingale converges in
Lyp. Moreover, if f € Ly, p € [1,00), then (fp)n30 With fp, = E,f is an L,-bounded
martingale and converges to f in L, (see for example [7]). For this reason a function
f € Ly and the corresponding martingale (f,)n>0 with f, = E,f will be denoted
by the same symbol f.

Let M be the set of all martingale such that fo = 0. For p € [1,00], let LS be
the set of all f € L, such that Eof = 0. For any f € L0, let f, = E,f. Then
(fa)n>0 is an Ly-bounded martingale in M. In this case we regard as LY C M.

Now we introduce martingale Morrey space L, and martingale Campanato

spaces Lp ».

Definition 2.1. Let p € [1,00) and A € (—o0,0). For f € Ly, let
1 1 d 1/p
=sup su PdP :
Wl =50 50 PED (P(B) /B /! )

1 1 Vp
=sup su —E, flPdP ,
fllps =s1p sup s ( o5 /B f = Buf] )

and define
Lp,A = {f € Lg : “f”Lp,A < OO}, ‘Cp,)\ = {f € Lg : ”f“ﬁp,A < OO}

Then functionals ||f||z, , and ||f|lc,, are norms.
The stochastic basis {F,}.>0 is said to be regular, if there exists a constant

R > 2 such that
(21) fn S an—l

holds for all nonnegative martingales (f,)n>o0-
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Remark 2.1. In general, L, C L, with ||f|lc,, < 2||fllz,,. Actually, for any

B € A(F,),
(g5 [ 17~ BnsPar)

< (35 lfl”dP)l/er (5055 /. IEnfl”dP)l/p
2( /|f|”dP)1/p.

Moreover, if {F; }a>0 is regular and A < 0, then we can prove that L,y = £, with
equivalent norms (Theorem 3.1 and Remark 3.1).

Remark 2.2. By the definition, if 0 > A’ > A, then we have that L, C L, » C Lp 2
with [|fllz,, < IfllL, v < 11fllze and Lg, C Lpx C Loy with || flle,, < Iflle,, <
20 fllzee- I A< —1/p, then L) C Ly C Ly with [ fllz, /2 < [Ifllz,, < Ifllz,-

Remark 2.3. By the definition and Remark 2.1, if Fo = {0, Q}, then L, C L, C
Ly with || fll, < [Ifllc, < 201z,

Definition 2.2. Let BMO = £, and Lip, = £, , if o > 0.

Our definitions of BMO and Lip, are different from ones by Weisz [11]. To
compare both we give another definition of martingale Morrey and Campanato

spaces.

Definition 2.3. Let p € [1,00) and A € (—o00, ). For f € Ly, let

1/p
p
1y e =52 530 555 (5 [ 1P 2P)

1 1/p
11y sr =550 500 5 (s [ 17 = BaPaP)

and define
Lopr={f € LY: |fll,»r <0}, Lppr={f€L):|fllc,,r <}

Remark 2.4. By the definitions we have the relations Ly C Ly with || f|iz,, <
Ifllz, - and Lonr C Lypa with ||flc,, < [Ifllc,nr- If A > 0, then we can
prove that L, r = L, and L, r = L, with the same norms, respectively (see
Proposition 3.4). If —1/p < A <0, then Ly, » G L, and £,y G L, in general
(see Proposition 3.5).
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Remark 2.5. It is known that, if {F, },>0 is regular and A > 0, then £y, r = L, 5 7
with (| fllz,,r < 1fllcynr < Collfllzyy» for each p € [1,00) (see for example [12]).

We also define weak Morrey spaces.
Definition 2.4. For p € [1,00) and A € (—o0,00), Let

1 PBNn{f>t 1/p
Ifllwz,,, =sup sup BEP sup( ( P({B) }))

n>0 BEA(Fn >0

for measurable functions f, and define

WLyp={f€L}:|flwc,, < oco}.

3 Basic properties of Morrey and Campanato spaces

In this section we give basic properties of Morrey and Campanato spaces. The
following theorem gives the relation between Morrey and Campanato spaces.

Theorem 3.1. Let {F,}n>0 be regular, Fo = {B,Q} and (Q, F, P) be nonatomic.
Let p € [1,00).

(i) If A< —1/p, then L,y = L,y = LY and

1

I llepn S M1Flzp 5 = 151z, < 1flle,a-
(i) If-1/p <A <0, then LY, G Lyx = Lpp G L] and

1
1llzo < M llzpsn S Mfllzcer 51Fllepn S MFllz,n < Cliflley-
(iii) [fA=0, then LY, = Lo G Lpo = BMO and
1£lz,0 = Ifllzw: 11 fllBMO < I fll2p0 < CollfllBMO-

(iv) If A > 0, then {0} = L, G L, » = Lip, and

I lluiey < W Fllzpn < Cpll flluip,-
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Remark 3.1. We can prove (i) without the assumption that {F,},>0 is regular or
that (€, , P) is nonatomic. In (i), we can prove that L, = £, and 3||fl|c,, <
Ifllz,» < Clifllz,, in (i) without the assumption that Fy = {0,Q} or that
(Q, F, P) is nonatomic.

To prove the theorem we need a lemma and two propositions.
Lemma 3.2. Let {F,}n>0 be regular. Then every sequence
ByD>B1D>:-DByD-+, By,€A(F),
has the following property: For eachn > 1,
By = By or (1+1/R)P(By) < P(Bn-1) < RP(B,),
where R is the constant in (2.1).
Remark 3.2. Since B, € A(F,) is an (F,, P)-atom, we always interpret B, D B,_1
as B,UA D B,_; for some A € F, with P(A) = 0.
Remark 3.3. By the lemma we see that, there exists m such that B,, = B,, for all

n > m, if and only if lim, ., P(B,) > 0.

Outline of the proof of Lemma 3.2. For the inequality P(B,_1) < RP(B,), we con-
sider the set B,_; = {En-1[xB.] = 1/R}. Then, we can show that P(B,_;) <
P(Bn—l) < RP(Bn)

We can show the part B, = B,_; or (1+ 1/R)P(B,) < P(B,-1), by the fact
that En1[x5, ,\5.] = “iolxp, , O
Proposition 3.3. Let {F,}n>0 be regular, 1 <p < 0o and A > —1/p.

(i) For a sequence By D B; D -+ D By D -+, By € A(Fy), let fo =0 and

-\ P(By-1)
8.) fo= 3P (e —xe ), mz1

Then f = (fa)n>0 is a martingale in M and in L, ,.
(ii) Let 0 > N > A > —1/p. If there exists a sequence By D By D --- D B D
, By, € A(F;) and Jim P(Bk) =0, then LY, G Lox G Lpa. If Fo = {0,Q} also,
then LY, G Lox & LZ,, A G L
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Outline of the proof. (i) The sequence (fn)n>0 belongs to M is easily verified.

By Lemma 3.2, we can take & sequence of integers 0 = ko < k1 < -+ < k; < ---
such that P(B

fa= kaS;P(Bkj)/\ (T’_(_g_;;);)xgkj = XBkj_l)

and (1+ 1/R)P(By;) < P(By;_,) < RP(By,). Then, we can show that (fn)n>0
converges in L, and the limit f belongs to £, .

(ii) By Remark 2.2, we need only to show that £,0\ L # 0 and £, ,\ L, x # 0.

If A = 0, then we can show that the limit f above is not bounded and have

Loo\ L, #0.
If0> X > A > —1/p, then we can show that f € £, and f & L, » and have

Lo\ Lpx #0.
a

Proposition 3.4. Let 1 < p < oc.

(1) [ffo = {w, Q} and \ < —l/p, then Lg = Lp,,\ = Lp’)‘y}' = £p,)‘ = Ep’)\,]: with
I epnr = U llps = Wfllz, S Wil S WFll2pn s < 20 F 2,07

(ii) If X > 0, then L,y = Ly 7 and Ly = Ly 7 with the same norms, respec-

tively.

Outline of the proof. (i) If A < —1/p, then P(B)™*~V/? < P(Q)~*~1/7 for any B €
A(F,) or B € F,. From this, we have || f|z,, - = [ fllz,» = llfliz,- The rest are
deduced from Remark 2.1 and Remark 2.4.

(ii) By Remark 2.4 we need to show only || |z, , » < || fllz, - We can show this
by the assumption that each F, is generated by A(F,). O

Outline of the proof of Theorem 8.1. (i) We have the conclusion by Proposition 3.4.
(ii) By Proposition 3.3 and Remark 2.1, we only need to prove ||f||z,, < C| fllc, -
For any f € £, and any B € A(F,),

(5057 [ 1P aP) "o (555 17~ Enf|de)1/p+ 5 [ 1)
< PBP Sl + |5 [ 2P|, s w B
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since .

By Lemma 3.2 we can choose By; € A(F;), 0 = kg < k3 < -+ < ky < n, such
that By, D By, D By, D -++ D By,, = B and that (1 +1/R)P(By;) < P(By,_,) <
RP(By;). Then, we can show

l'ﬁ(_lB_) /B f(w)dP{ ~ P(B* ||fllz, -

Therefore we have ||f||z,, $|fllc, .-

(iii) By Remark 2.2 and Proposition 3.3, we only need to show that ||f|[z., <
|fllz,0- We can show this by the assumptions that F is generated by U,F, and
that each F, is generated by A(F,).

(iv) We can show L, , = {0} by the assumptions that F is generated by U,Fy,
each F, is generated by A(F,), and F is nonatomic.

The rests are obtained from Proposition 3.3, Proposition 3.4 and Remark 2.5.

O

We show that L, G Ly and £, 57 G L, in general by an example.
Proposition 3.5. Let (2, F, P) be as follows:

Q=10,1), A(Fo)={lL;=02"(G+1)2™"):5=0,1,---,2" -1}
Fn=0(A(F,)), F=0(UF,), P = the Lebesque measure.

If—l/p < A <O, then Lp,)\,]: ;Ct Lp,)‘ and ,Cp,,\,]: g ﬁp,x.
Outline of the proof. We only need to construct f such that
(32) f €L A \ Lp’,\,].- and f € Ep,,\ \ Ep,A,.F-

Step 1: Denote the characteristic function of I, ; by x» ; and let

2n—1
fo= Y fatmamis  Frg = P(Ing)*(Xn412) — Xnt1,241),
=0

where we choose m such that P(I,1m0)P**! < P(I,0). Then, we can show

Jan € LyaN Ly, and “fn”Lp,,\ = ”fn”Cp,x =1
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and ”fn”Lp,,\,}-’ “fn”c“,_ > 27" 5 00 as n — o0.

Step 2: Let f, be as in Step 1. Then, we can show || fuxk.ellz,» 5> | faXkellc,rx =
2(—-n+k)/\. ‘

Step 3: Let f,, be as in Step 1 and let
f = Z 2n/\/2f2an,l-
n=1

Then we have
||f“Lp,A’ Hf“Cp,\ = 22 M2 = 1— 2)\/2

On the other hand, we have that
”f”L,,,,\,;, Hf“[,p,,\,f > onA/2 o o(=2n4n)A _ 9-nA/2

for all n. This shows (3.2). O

At the end of this section we prove the relation of || f|., , and || f|lwz,.

Proposition 3.6. If1 <p < oo and —1/p = ), then
I1fllz.x < Clifliwe,.

Outline of the proof. Let || f|lwz, = 1. For B € A(F,), let n = P(B)* = P(B)~'/?
and

fw), [f @)l >n,

f=Ff +f77’ f (w)z{o, l_f(w)’_<_7]

Then by P(|f| > t) <t and Holder’s inequality we have
_1_/ f7(w)]dP < —2—
P(B)*! Jp —p-1

and

1
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