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This is an announcement of our recent work.

1 Definitions

For r > 0, let B(z,r) = {y € R": |z — y| < r} and B, = B(0,r), and for B C R",
let .
fo=1 1y =z [ fw
B 1Bl /e

where |B| is the Lebesgue measure of B, and let
m(B, f,t) = |{z € B: |f()] > t}|

and B f1
ma(f, ) = m—(,l—glf—’

where 0 <t < 0.
First, we define the Morrey-Campanato norms on balls.

Definition 1. For 1 <p< oo, A€R", 0 < a <1 and the ball B,, let

_ _1— pd )1/P
Wlon = sup (][() f@)Pdy)

B(z,s)CB, 8
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1
I flwe,ae) = sup = suptmpe,q(f,t)"?,
B(z,s)CB, 8" t>0

1 1/p
I fllc, a8y = sup = (]{;( | |£(¥) = fB(zs)lP dy)

B(z,s)CBr S
and

|f(z) = f(y)|
FllLi o(Br) = SUp T —.
|| || Pa(Br) 4By oy |:L._y|a

Then, the following relation between the Campanato spaces and the Lipschitz

spaces is shown.

Theorem 1 (Meyers [M], Spanne [S]). If 1 <p<o00,0<A=a<1andr >0,
then L, \(By) = Lip,(B,) modulo null-functions and there exists a constant C > 0,
dependent only on n and A, such that

C U ey < I fllLipaar) < Cllf Il acB0)-
The same conclusion holds on R™.

Next, we introduce "new” function spaces B° spaces, i.e. BP* with Morrey-
Campanato norms (see [MN] for details, and cf. [KM,]).

Definition 2. For 0 <o < 00,1 <p<o0o, A€ER" and 0 < a < 1, let B°-E{name}
spaces B°(E)(R") and B”-E{name} spaces B?(E)(R™) be the sets of all functions f
such that the following functionals are finite, respectively:

1 1
Ifllzo(z) = sup — || flles,) and || fllgem) = sup || fllecs,)
r>1 T >0 T

with
E= Lp, WLp, Lp,)‘, WLP,)‘, Lp,)‘ and Lipa.

We note that B(Ly,,)(R"™) unifies L, »(R™) and BP*(R") and that B7(L,»)(R")
unifies £, (R") and CMO”*(R"). Actually, we have the following relations:

B°(Lpp)(R™) = Lys(R™),  B%(Lpn)(R™) = Ly a(R) (1)
and
BM/2(L, ) (RY) = BPART),  BMP(L, ) (RY) = CMOPAR™).  (2)

We also have the same properties for B?(L,)(R") and B?(L,»)(R™).
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Remark . We recall the definitions of several function spaces on R" (see [AGL],
[FLL], [LY4], [LY;] and [MN]): For1<p<oo, A€R*and 0 < a <1,

1 l/P
BPAR™) = {f I fllgea = Sup 3 ( A If ()P dy) < 00} :

1 1/p
MO { ||fHCMop,A=sup—A( |f<y)—f3,|"dy) <oo},
>1 T B,
P (o7 1 " 1/p
BAR) = f Wl =sip s (f P a) < oo,
1/p
CBMOP( {f “fHCBMoN—SUP—( W) - fB,.!‘”dy) <oo},
1 l/P
LyA(R™) ={f 1fllz,, = eSup A (fB(z,r)lf(y)l”dy) <oy,
={fa“f”WL?,\—" sup isuptfns(w(f,t) /”<00}
z€R™ ,r>07” t>0
1 1/?
= {f Ifllc,\ = p 3 (]{3 o |f(¥) — fBn P dy) < oo
and
) o |f(z) = f(y)] }
Lipa®) = {1y, = owp LSO oo},
2 Results

We consider a standard singular integral operator T' and its modified version T
defined by the following:

Tf() =pv. [ K-Sy

where c c
< 2K < K _ 0
K@< i end (VK@) < ol w40

/ K(z)dx =0 forall 0 <e < N;
e<|z|<N

Tf(z) = pv. [ {Kle =) = K(~y)(1 ~ xn,)} F @iy,

where x g is the characteristic function of a set £ C R™.
Here, it is known that

T:LP(R") — LP(R"), 1<p< oo,
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T: L}(R") - WL'(R"),
T : BMO(R") — BMO(R")

and
T : Lip,(R") — Lip,(R"), 0<a<1.

Also, the following two theorems, which show the extension of boundedness
properties of 7' and T to the Morrey spaces and the Campanato spaces, respectively,

are well-known,

Theorem 2 (Peetre [P}, Chiarenza and Frasca [CF), Nakai [Ny]). Let 1 < p < o0,
~n/p < A <0 and T be a standard singular integral operator. Then T is bounded
on L, »(R"), i.e. there exists a constant C > 0 such that

ITfllz, s < Cllflz,sr [ € Lpa(R™).

And also T is bounded from Ly x(R™) to WL A(R"), i.e. there erists a constant
C > 0 such that

“TfHWLLA S C]‘f“Ll,A’ f € Ll,A(Rn)‘

Theorem 3 (Pcetre [P], Nakai [Ny]). Let 1 < p<oo, —n/p<A<1landT bea
standard singular integral operator. Then T is bounded on L, (R™)/C and L, A(R™),
i.e. there ezist constants C, > 0 and Cy > 0 such that

ITflleos < Cillfllic,ns  f € Lpa®Y)/C,

and

ITfllc, s + 1 THel < Co(llfllc,s +1fmil)  fELpaR),

respectively, where C is the space of all constant functions.

Furthermore, we can extened the boundedness properties of T' and T to B°-
Morrey spaces and B°-Campanato spaces, respectively.

Theorem 4. Let 1 <p< oo, —n/p < A<0,0<0< -\ andT be a standard
singular integral operator. Then T is bounded on B°(L,»)(R™), i.e. there exists a
constant C > 0 such that

ITfllozn) < CllfllBor, sy, f € B (Lpa)(R™).

The same conclusion holds for the boundedness on B?(Ly»)(R™).



In the above theorem, if A = —n/p and 0 = A + n/p, then by the relation (2),
we have the result in [FLL].

Corollary 5 (Fu, Lin and Lu [FLL]). Let 1 <p < 00, —n/p < A < 0 and T be
a standard singular integral operator. Then T is bounded on BP?(R"), i.e. there

exists a constant C > 0 such that
ITfllges < C|fllpon, f € BPR™).

The same conclusion holds for the boundedness on B””\(R").

Theorem 6. Let —n < A <0,0<0 < —X\ and T be a standard singular integral
operator. Then T is bounded from B°(L, »)(R") to B°(W Ly ,)(R"), i.e. there erists
a constant C > 0 such that

”Tf“B"(WLLA) S C|fllarzyyy, f€ B (Lix)R™).

The same conclusion holds for the boundedness from B°(Ly»)(R") to B®(W Ly ,)(R™).

In the above theorem, if A = —n and ¢ = A + n, then we have the following.

Corollary 7. Let —n < A < 0 and T be a standard singular integral operator. Then
T is bounded from B**(R™) to W B (R"), i.e. there erists a constant C > 0 such
that

ITfllweir < Cllfllgra,  f € BYARY).

The same conclusion holds for the boundedness from BY" (R™) to W BIA(R™). .

Theorem 8. Let 1 <p< oo, —n/p<A<1,0<0<—-A+1and T be a standard
singular integral operator. Then T is bounded on B°(L,)(R™)/C and B°(L,,)(R™),
i.e. there erist constants Cy > 0 -and Cy > 0 such that

ITfllBecyn) < Cill fllBeiz,nyy | € B (Loa)(RM)/C,
and

ITf 5o () + 1T FH)mal < Ca (I fllmozyn) + 1Fmil)  f € BI(Lp2)(RY),

respectively. The same conclusion holds for the boundedness on B?(£,,)(R™)/C and
Bo (Epv}‘)(Rn) N

In the above theorem, if A = —n/p and 0 = A+n/p, then as a corollary, we have

the extension of result in [KM;].

71
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Corollary 9. Let 1 <p< oo, —n/p< A< 1 and T be a standard singular integral
operator. Then T is bounded on CMOP*(R™)/C and CMOP*(R™), i.e. there eist
constants C, > 0 and Cy > 0 such that

”TfHCMow‘ < Cillfllomors, f € CMOPAR™)/C,

and

1T Flomor + (T £),| < Ca(Ifllomors + |fail),  f € CMOPAR™),

respectively. The same conclusion holds for the boundedness on CBMOP*(R™)/C
and CBMO”*(R™).

And, if 0 = 0 and A = 0, then by the relation (1), T is bounded on BMO(R™).
Also, if 0 < A < 1, then by Theorem 1, the following corollary is obtained.

Corollary 10. Let0<a<1,0< 0 < —a+1 and T be a standard singular integral
operator. Then T is bounded on B°(Lip,)(R*)/C and B°(Lip,)(R"), i.e. there exist
constants C; > 0 and Cy > 0 such that

T £ |8 (Lipy) < CillfllBoLin,), f € B°(Lipa)(R™)/C,
and
WT fllsoipyy + (T F)s] < Ca (IfllBoting) + 1f5al) s f € B°(Lipg)(R™),

respectively. The same conclusion holds for the boundedness on B°(Lip,)(R"™)/C
and B°(Lip,)(R™).

In the above corollary, if o = 0, then T is bounded on Lip,(R").

3 Proofs of theorems

In the following proofs of theorems, we use the symbol A < B to denote that there
exists a positive constant C such that A < CB. If A < B and B < A, we then
write A ~ B.

Before proving Theorems 4, 6 and 8, we state the following lemma in [MN] (see
also [Ny] for the first part of the lemma).

Lemma 11. Let 1 <p< oo, r >0,

1, lxl < 1, n
h(z) = {0, 2> 2, z €R™, such that | h|Lp, <1, (3)

and

hr(-) = h(-/7).
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(i) If =n/p < X <0, then for all f € L} _(R") with Iz, (Bar) < 00,

loc

Xl < Nl 2prBar)-

(ii) If —n/p < X < 1, then there exists a constant C > 0, dependent only on n and
A, such that for all f € L}, (R™) with || f||c, ,(Bs) < 00,

loc

”(f - fBzr)h”"“ﬁp,,\ < C“f“‘Cp,)\(BSr)'

Now we prove the theorems. Here, we omit the proof of Theorem 4 due to the
similarity with that of Theorem 6.

Proof of Theorem 6. Let f € B°(L;,)(R") and r > 1. Then, we prove that for
any ball B,,

IT fllwesany S TN fllBo (L0 0)-
To prove this, let
Tf = T(fXBZT) + T(f(]‘ - XB21'))'

Now, for any ball B(z, s) C B,, it follows that
1
— sup 2t mpz s\(Tf, 2t
5 Sup B(z,s) (T f, 2t)
1 1
< 2{—,\ sUpt mp(z,s) (T (fXBs. )1 1) + = SUPt MB(2,e) (T(f(1 = XB,,)), t)}
S7 >0 §% >0
=2 (11 + Iz) , Say.

First, by applying the boundedness of T from L;,(R") to WL;\(R") (Theo-
rem 2) and (i) of Lemma 11, we have

L < ”T(fXBzr)HWLl,A(Br) < ”T(fXB2r)”WL1,)\ S HfXBerLL,\
S ”f”L1,,\(Ber) 5 TU“f”BG(Ll,,\)'

Next, we estimate I,. It follows that for = € B,,

T - xm )@ S [ O g < o4 oo -

R”\ Ba, Iy,n

Therefore, since A < 0, we obtain

I NT(f(L = xBa ) lwey e < 7 MTFA = XBo ) 2o S N5l o 0)-

Thus, we have for any ball B,,

1T fllwe, ey S TN fllBe (2, 0)-
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This shows the conclusion.
The proof of the boundedness from B (L, »)(R™) to B°(W Ly ,)(R™) is the same

as above. O

Proof of Theorem 8. Let f € B°(L,,)(R") and r > 1. Then, we prove that that
for any ball B,,
ITfllz,nBr) S TN FllBo (L0 05

and then I(Tf)31| S I|f"Bo(£p,A) + l-fBl]‘
Now, let f = f — fg,, and let k be defined by (3). Then, for z € B,, it follows

that
Tf(2) = T(2) + T(fo)(2)
= T(fha)@) + [ FL~ o) (K (e — )~ K(~9) dy

+ f(xe, — har) W) K (—y) dy + fB,.(T1)(z)
= L(r)(z) + L(r)(z) + I3(r) + Iy(r)(z), say.

Here, note that 7'1 is a constant function and I3(r) is constant.
First, since (xg, — har)/| - |* is in L7 (R"), it follows that

XB; — h T r) F
[3(r)| < ——BT-F—z— MAllzeBa) S W llzrBar) S N llBe(cp- (4)

L

To estimate I;(r), applying the boundedness of T on £, (R")/C (Theorem 3)

and (ii) of Lemma 11, we have

1 () 2paeeey < IT(Fhar)licn S Wfh2rlicon S W llepaien S 771 FliBo (2 0)-

Similarly, by the boundedness of T on £, »(R™) (Theorem 3) and (ii) of Lemma 11,

we obtain

(P, a8 + |2 ()5, | < IT(Fhar)lic,» + [(T(Fher)) s,
S| Fharllz,n + 1(Fhar) Bl S 70N fllBo(e,n + |(Fh2e)B . (5)

Next, we get for z € B,,

L) (@) < r / M) = ful gy < 24 £l o . (6)

Rn\ B2, |yln+1

If —n/p < A <0, then we have

1 (M)le, o8 S NR(M)llLyoB) < 12(r)lles.) S 7Nl fllBo(c,,)-



If 0 < A < 1, then we have for any z, z € B,,

(L(r)(z) = L2(r)(2)] < / IfWIK (2~ y) — K(z - y)| dy

R™\Ba,.
s |$ _ ZI If(y) :+{B4r| dy
R"\ Ba, |yl

Sz — 2l fligo (e, )

and so

_ N 1-X
0O (B2 o S e

Therefore, by Theorem 1,
122l cpn(8r) ~ (M) llLipy 80y S 7N fllBo(2,0-
Thus, we have for any ball B,,
1T f ey aean = 112(r) + Lo(r) + I(r) + Ia(7) ||, 1)
SN fllBoce, )
which gives the conclusion
ITf 8o (o) S IfllBo(e, -
Finally, we estimate each term of right hand side in the inequality
(THeul < (L) s |+ 1(B(D) s, | + 1 s(1)] + [1(1))-
By taking 7 = 1 in (4), (5) and (6), it follows that
(D] S 1 fllBo(e,

((LW)e] S flBoten) + 1(Fh2)eil = 1 lBo(c,0) + |5, — fadl

and
|(L2(1) B, | S I fllBocc, )5

respectively. Moreover,

'fB1 - fB4| 5 ”f”C,,,A(B4) 5 |If||B°(ﬁp.A)'

Therefore, we prove that

(TH)p] S F 3oz, + |55l

Thus, we complete the proof of the desired coclusion.

The proof of the boundedness of T on B?(L,)(R™)/C and on B?(L,,)(R") is

the same as above.

O
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