Singular integral operators on $B^{p,\lambda}$ with Morrey-Campanato norms

日本大学経済学部 松岡勝男* (Katsuo Matsuoka)
College of Economics
Nihon University

大阪教育大学教育学部 中井英一[†] (Eiichi Nakai)

Department of Mathematics

Osaka Kyoiku University

This is an announcement of our recent work.

1 Definitions

For r > 0, let $B(x, r) = \{ y \in \mathbb{R}^n : |x - y| < r \}$ and $B_r = B(0, r)$, and for $B \subset \mathbb{R}^n$, let

$$f_B = \int_B f(y) \, dy = rac{1}{|B|} \int_B f(y) \, dy,$$

where |B| is the Lebesgue measure of B, and let

$$m(B,f,t)=|\{x\in B:|f(x)|>t\}|$$

and

$$m_B(f,t) = \frac{m(B,f,t)}{|B|},$$

where $0 \le t < \infty$.

First, we define the Morrey-Campanato norms on balls.

Definition 1. For $1 \leq p < \infty$, $\lambda \in \mathbb{R}^n$, $0 < \alpha \leq 1$ and the ball B_r , let

$$||f||_{L_{p,\lambda}(B_r)} = \sup_{B(x,s)\subset B_r} \frac{1}{s^{\lambda}} \left(\oint_{B(x,s)} |f(y)|^p dy \right)^{1/p},$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 42B35; Secondary 46E35, 46E30, 26A33

The first author was supported by Nihon University Individual Research Grant for 2009. The second author was supported by Grant-in-Aid for Scientific Research (C), No. 20540167, Japan Society for the Promotion of Science.

^{*1-3-2} Misaki-cho, Chiyoda-ku, Tokyo 101-8360. Japan; E-mail: katsu.m@nihon-u.ac.jp

[†]Kashiwara, Osaka 582-8582, Japan; E-mail: enakai@cc.osaka-kyoiku.ac.jp

$$||f||_{WL_{p,\lambda}(B_r)} = \sup_{B(x,s)\subset B_r} \frac{1}{s^{\lambda}} \sup_{t>0} t \, m_{B(x,s)}(f,t)^{1/p},$$

$$||f||_{\mathcal{L}_{p,\lambda}(B_r)} = \sup_{B(x,s)\subset B_r} \frac{1}{s^{\lambda}} \left(\oint_{B(x,s)} |f(y) - f_{B(x,s)}|^p \, dy \right)^{1/p}$$

and

$$||f||_{\text{Lip}_{\alpha}(B_r)} = \sup_{x,y \in B_r, x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

Then, the following relation between the Campanato spaces and the Lipschitz spaces is shown.

Theorem 1 (Meyers [M], Spanne [S]). If $1 \leq p < \infty$, $0 < \lambda = \alpha \leq 1$ and r > 0, then $\mathcal{L}_{p,\lambda}(B_r) = \operatorname{Lip}_{\alpha}(B_r)$ modulo null-functions and there exists a constant C > 0, dependent only on n and λ , such that

$$C^{-1} \|f\|_{\mathcal{L}_{p,\lambda}(B_r)} \le \|f\|_{\mathrm{Lip}_{\alpha}(B_r)} \le C \|f\|_{\mathcal{L}_{p,\lambda}(B_r)}.$$

The same conclusion holds on \mathbb{R}^n .

Next, we introduce "new" function spaces B^{σ} spaces, i.e. $B^{p,\lambda}$ with Morrey-Campanato norms (see [MN] for details, and cf. [KM₂]).

Definition 2. For $0 \le \sigma < \infty$, $1 \le p < \infty$, $\lambda \in \mathbb{R}^n$ and $0 < \alpha \le 1$, let B^{σ} - E_{name} spaces $B^{\sigma}(E)(\mathbb{R}^n)$ and \dot{B}^{σ} - E_{name} spaces $\dot{B}^{\sigma}(E)(\mathbb{R}^n)$ be the sets of all functions f such that the following functionals are finite, respectively:

$$||f||_{B^{\sigma}(E)} = \sup_{r>1} \frac{1}{r^{\sigma}} ||f||_{E(B_r)} \quad \text{and} \quad ||f||_{\dot{B}^{\sigma}(E)} = \sup_{r>0} \frac{1}{r^{\sigma}} ||f||_{E(B_r)}$$

with

$$E = L^p, WL^p, L_{p,\lambda}, WL_{p,\lambda}, \mathcal{L}_{p,\lambda} \text{ and } \operatorname{Lip}_{\alpha}.$$

We note that $B^{\sigma}(L_{p,\lambda})(\mathbb{R}^n)$ unifies $L_{p,\lambda}(\mathbb{R}^n)$ and $B^{p,\lambda}(\mathbb{R}^n)$ and that $B^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)$ unifies $\mathcal{L}_{p,\lambda}(\mathbb{R}^n)$ and $CMO^{p,\lambda}(\mathbb{R}^n)$. Actually, we have the following relations:

$$B^{0}(L_{p,\lambda})(\mathbb{R}^{n}) = L_{p,\lambda}(\mathbb{R}^{n}), \quad B^{0}(\mathcal{L}_{p,\lambda})(\mathbb{R}^{n}) = \mathcal{L}_{p,\lambda}(\mathbb{R}^{n})$$
 (1)

and

$$B^{\lambda+n/p}(L_{p,-n/p})(\mathbb{R}^n) = B^{p,\lambda}(\mathbb{R}^n), \quad B^{\lambda+n/p}(\mathcal{L}_{p,-n/p})(\mathbb{R}^n) = CMO^{p,\lambda}(\mathbb{R}^n).$$
 (2)

We also have the same properties for $\dot{B}^{\sigma}(L_{p,\lambda})(\mathbb{R}^n)$ and $\dot{B}^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)$.

Remark. We recall the definitions of several function spaces on \mathbb{R}^n (see [AGL], [FLL], [LY₁], [LY₂] and [MN]): For $1 \leq p < \infty$, $\lambda \in \mathbb{R}^n$ and $0 < \alpha \leq 1$,

$$B^{p,\lambda}(\mathbb{R}^{n}) = \left\{ f : \|f\|_{B^{p,\lambda}} = \sup_{r \ge 1} \frac{1}{r^{\lambda}} \left(\int_{B_{r}} |f(y)|^{p} \, dy \right)^{1/p} < \infty \right\},$$

$$CMO^{p,\lambda}(\mathbb{R}^{n}) = \left\{ f : \|f\|_{CMO^{p,\lambda}} = \sup_{r \ge 1} \frac{1}{r^{\lambda}} \left(\int_{B_{r}} |f(y) - f_{B_{r}}|^{p} \, dy \right)^{1/p} < \infty \right\},$$

$$\dot{B}^{p,\lambda}(\mathbb{R}^{n}) = \left\{ f : \|f\|_{\dot{B}^{p,\lambda}} = \sup_{r > 0} \frac{1}{r^{\lambda}} \left(\int_{B_{r}} |f(y)|^{p} \, dy \right)^{1/p} < \infty \right\},$$

$$CBMO^{p,\lambda}(\mathbb{R}^{n}) = \left\{ f : \|f\|_{CBMO^{p,\lambda}} = \sup_{r > 0} \frac{1}{r^{\lambda}} \left(\int_{B_{r}} |f(y) - f_{B_{r}}|^{p} \, dy \right)^{1/p} < \infty \right\},$$

$$L_{p,\lambda}(\mathbb{R}^{n}) = \left\{ f : \|f\|_{L_{p,\lambda}} = \sup_{x \in \mathbb{R}^{n}, r > 0} \frac{1}{r^{\lambda}} \left(\int_{B(x,r)} |f(y)|^{p} \, dy \right)^{1/p} < \infty \right\},$$

$$WL_{p,\lambda}(\mathbb{R}^{n}) = \left\{ f : \|f\|_{\mathcal{L}_{p,\lambda}} = \sup_{x \in \mathbb{R}^{n}, r > 0} \frac{1}{r^{\lambda}} \sup_{t > 0} t \, m_{B(x,r)}(f,t)^{1/p} < \infty \right\},$$

$$\mathcal{L}_{p,\lambda}(\mathbb{R}^{n}) = \left\{ f : \|f\|_{\mathcal{L}_{p,\lambda}} = \sup_{x \in \mathbb{R}^{n}, r > 0} \frac{1}{r^{\lambda}} \left(\int_{B(x,r)} |f(y) - f_{B(x,r)}|^{p} \, dy \right)^{1/p} < \infty \right\}$$

and

$$\operatorname{Lip}_{\alpha}(\mathbb{R}^n) = \left\{ f : \|f\|_{\operatorname{Lip}_{\alpha}} = \sup_{x,y \in \mathbb{R}^n, \, x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty \right\}.$$

2 Results

We consider a standard singular integral operator T and its modified version \widetilde{T} defined by the following:

$$Tf(x) = \text{p.v.} \int_{\mathbb{R}^n} K(x - y) f(y) dy,$$

where

$$\begin{split} |K(x)| &\leq \frac{C_K}{|x|^n} \quad \text{and} \quad |\nabla K(x)| \leq \frac{C_K}{|x|^{n+1}}, \quad x \neq 0, \\ &\int_{\epsilon < |x| < N} K(x) dx = 0 \quad \text{for all} \quad 0 < \epsilon < N; \\ \tilde{T}f(x) &= \text{p.v.} \int_{\mathbb{R}^n} \left\{ K(x-y) - K(-y)(1-\chi_{B_1}(y)) \right\} f(y) dy, \end{split}$$

where χ_E is the characteristic function of a set $E \subset \mathbb{R}^n$.

Here, it is known that

$$T: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n), \quad 1$$

$$T: L^1(\mathbb{R}^n) \to WL^1(\mathbb{R}^n),$$

 $\tilde{T}: \mathrm{BMO}(\mathbb{R}^n) \to \mathrm{BMO}(\mathbb{R}^n)$

and

$$\tilde{T}: \operatorname{Lip}_{\alpha}(\mathbb{R}^n) \to \operatorname{Lip}_{\alpha}(\mathbb{R}^n), \quad 0 < \alpha < 1.$$

Also, the following two theorems, which show the extension of boundedness properties of T and \tilde{T} to the Morrey spaces and the Campanato spaces, respectively, are well-known.

Theorem 2 (Peetre [P], Chiarenza and Frasca [CF], Nakai [N₁]). Let $1 , <math>-n/p \le \lambda < 0$ and T be a standard singular integral operator. Then T is bounded on $L_{p,\lambda}(\mathbb{R}^n)$, i.e. there exists a constant C > 0 such that

$$||Tf||_{L_{p,\lambda}} \le C||f||_{L_{p,\lambda}}, \quad f \in L_{p,\lambda}(\mathbb{R}^n).$$

And also T is bounded from $L_{1,\lambda}(\mathbb{R}^n)$ to $WL_{1,\lambda}(\mathbb{R}^n)$, i.e. there exists a constant C > 0 such that

$$||Tf||_{WL_{1,\lambda}} \le C||f||_{L_{1,\lambda}}, \quad f \in L_{1,\lambda}(\mathbb{R}^n).$$

Theorem 3 (Peetre [P], Nakai [N₂]). Let $1 , <math>-n/p \le \lambda < 1$ and T be a standard singular integral operator. Then \tilde{T} is bounded on $\mathcal{L}_{p,\lambda}(\mathbb{R}^n)/\mathcal{C}$ and $\mathcal{L}_{p,\lambda}(\mathbb{R}^n)$, i.e. there exist constants $C_1 > 0$ and $C_2 > 0$ such that

$$\|\tilde{T}f\|_{\mathcal{L}_{p,\lambda}} \leq C_1 \|f\|_{\mathcal{L}_{p,\lambda}}, \quad f \in \mathcal{L}_{p,\lambda}(\mathbb{R}^n)/\mathcal{C},$$

and

$$\|\tilde{T}f\|_{\mathcal{L}_{p,\lambda}} + |(\tilde{T}f)_{B_1}| \le C_2 \left(\|f\|_{\mathcal{L}_{p,\lambda}} + |f_{B_1}| \right) \quad f \in \mathcal{L}_{p,\lambda}(\mathbb{R}^n),$$

respectively, where C is the space of all constant functions.

Furthermore, we can extend the boundedness properties of T and \tilde{T} to B^{σ} -Morrey spaces and B^{σ} -Campanato spaces, respectively.

Theorem 4. Let $1 , <math>-n/p \le \lambda < 0$, $0 \le \sigma < -\lambda$ and T be a standard singular integral operator. Then T is bounded on $B^{\sigma}(L_{p,\lambda})(\mathbb{R}^n)$, i.e. there exists a constant C > 0 such that

$$||Tf||_{B^{\sigma}(L_{p,\lambda})} \le C||f||_{B^{\sigma}(L_{p,\lambda})}, \quad f \in B^{\sigma}(L_{p,\lambda})(\mathbb{R}^n).$$

The same conclusion holds for the boundedness on $\dot{B}^{\sigma}(L_{p,\lambda})(\mathbb{R}^n)$.

In the above theorem, if $\lambda = -n/p$ and $\sigma = \lambda + n/p$, then by the relation (2), we have the result in [FLL].

Corollary 5 (Fu, Lin and Lu [FLL]). Let $1 , <math>-n/p \le \lambda < 0$ and T be a standard singular integral operator. Then T is bounded on $B^{p,\lambda}(\mathbb{R}^n)$, i.e. there exists a constant C > 0 such that

$$||Tf||_{B^{p,\lambda}} \le C||f||_{B^{p,\lambda}}, \quad f \in B^{p,\lambda}(\mathbb{R}^n).$$

The same conclusion holds for the boundedness on $\dot{B}^{p,\lambda}(\mathbb{R}^n)$.

Theorem 6. Let $-n \leq \lambda < 0$, $0 \leq \sigma < -\lambda$ and T be a standard singular integral operator. Then T is bounded from $B^{\sigma}(L_{1,\lambda})(\mathbb{R}^n)$ to $B^{\sigma}(WL_{1,\lambda})(\mathbb{R}^n)$, i.e. there exists a constant C > 0 such that

$$||Tf||_{B^{\sigma}(WL_{1,\lambda})} \le C||f||_{B^{\sigma}(L_{1,\lambda})}, \quad f \in B^{\sigma}(L_{1,\lambda})(\mathbb{R}^n).$$

The same conclusion holds for the boundedness from $\dot{B}^{\sigma}(L_{1,\lambda})(\mathbb{R}^n)$ to $\dot{B}^{\sigma}(WL_{1,\lambda})(\mathbb{R}^n)$.

In the above theorem, if $\lambda = -n$ and $\sigma = \lambda + n$, then we have the following.

Corollary 7. Let $-n \leq \lambda < 0$ and T be a standard singular integral operator. Then T is bounded from $B^{1,\lambda}(\mathbb{R}^n)$ to $WB^{1,\lambda}(\mathbb{R}^n)$, i.e. there exists a constant C > 0 such that

$$||Tf||_{WB^{1,\lambda}} \le C||f||_{B^{1,\lambda}}, \quad f \in B^{1,\lambda}(\mathbb{R}^n).$$

The same conclusion holds for the boundedness from $\dot{B}^{1,\lambda}(\mathbb{R}^n)$ to $W\dot{B}^{1,\lambda}(\mathbb{R}^n)$.

Theorem 8. Let $1 , <math>-n/p \le \lambda < 1$, $0 \le \sigma < -\lambda + 1$ and T be a standard singular integral operator. Then \tilde{T} is bounded on $B^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)/\mathcal{C}$ and $B^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)$, i.e. there exist constants $C_1 > 0$ and $C_2 > 0$ such that

$$\|\tilde{T}f\|_{B^{\sigma}(\mathcal{L}_{p,\lambda})} \le C_1 \|f\|_{B^{\sigma}(\mathcal{L}_{p,\lambda})}, \quad f \in B^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)/\mathcal{C},$$

and

$$\|\tilde{T}f\|_{B^{\sigma}(\mathcal{L}_{n,\lambda})} + |(\tilde{T}f)_{B_1}| \le C_2 \left(\|f\|_{B^{\sigma}(\mathcal{L}_{n,\lambda})} + |f_{B_1}| \right) \quad f \in B^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n),$$

respectively. The same conclusion holds for the boundedness on $\dot{B}^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)/\mathcal{C}$ and $\dot{B}^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)$.

In the above theorem, if $\lambda = -n/p$ and $\sigma = \lambda + n/p$, then as a corollary, we have the extension of result in [KM₁].

Corollary 9. Let $1 , <math>-n/p \le \lambda < 1$ and T be a standard singular integral operator. Then \tilde{T} is bounded on $CMO^{p,\lambda}(\mathbb{R}^n)/\mathcal{C}$ and $CMO^{p,\lambda}(\mathbb{R}^n)$, i.e. there exist constants $C_1 > 0$ and $C_2 > 0$ such that

$$\|\tilde{T}f\|_{\mathrm{CMO}^{p,\lambda}} \le C_1 \|f\|_{\mathrm{CMO}^{p,\lambda}}, \quad f \in \mathrm{CMO}^{p,\lambda}(\mathbb{R}^n)/\mathcal{C},$$

and

$$\|\tilde{T}f\|_{\mathrm{CMO}^{p,\lambda}} + |(\tilde{T}f)_{B_1}| \le C_2 (\|f\|_{\mathrm{CMO}^{p,\lambda}} + |f_{B_1}|), \quad f \in \mathrm{CMO}^{p,\lambda}(\mathbb{R}^n),$$

respectively. The same conclusion holds for the boundedness on CBMO^{p,λ}(\mathbb{R}^n)/ \mathcal{C} and CBMO^{p,λ}(\mathbb{R}^n).

And, if $\sigma = 0$ and $\lambda = 0$, then by the relation (1), \tilde{T} is bounded on BMO(\mathbb{R}^n). Also, if $0 < \lambda < 1$, then by Theorem 1, the following corollary is obtained.

Corollary 10. Let $0 < \alpha < 1$, $0 \le \sigma < -\alpha + 1$ and T be a standard singular integral operator. Then \tilde{T} is bounded on $B^{\sigma}(\operatorname{Lip}_{\alpha})(\mathbb{R}^n)/\mathcal{C}$ and $B^{\sigma}(\operatorname{Lip}_{\alpha})(\mathbb{R}^n)$, i.e. there exist constants $C_1 > 0$ and $C_2 > 0$ such that

$$\|\tilde{T}f\|_{B^{\sigma}(\operatorname{Lip}_{\alpha})} \leq C_1 \|f\|_{B^{\sigma}(\operatorname{Lip}_{\alpha})}, \quad f \in B^{\sigma}(\operatorname{Lip}_{\alpha})(\mathbb{R}^n)/\mathcal{C},$$

and

$$\|\tilde{T}f\|_{B^{\sigma}(\operatorname{Lip}_{\alpha})} + |(\tilde{T}f)_{B_{1}}| \le C_{2}\left(\|f\|_{B^{\sigma}(\operatorname{Lip}_{\alpha})} + |f_{B_{1}}|\right), \quad f \in B^{\sigma}(\operatorname{Lip}_{\alpha})(\mathbb{R}^{n}),$$

respectively. The same conclusion holds for the boundedness on $\dot{B}^{\sigma}(\operatorname{Lip}_{\alpha})(\mathbb{R}^{n})/\mathcal{C}$ and $\dot{B}^{\sigma}(\operatorname{Lip}_{\alpha})(\mathbb{R}^{n})$.

In the above corollary, if $\sigma = 0$, then \tilde{T} is bounded on $\operatorname{Lip}_{\alpha}(\mathbb{R}^n)$.

3 Proofs of theorems

In the following proofs of theorems, we use the symbol $A \lesssim B$ to denote that there exists a positive constant C such that $A \leq CB$. If $A \lesssim B$ and $B \lesssim A$, we then write $A \sim B$.

Before proving Theorems 4, 6 and 8, we state the following lemma in [MN] (see also $[N_2]$ for the first part of the lemma).

Lemma 11. Let $1 \le p < \infty$, r > 0,

$$h(x) = \begin{cases} 1, & |x| \le 1, \\ 0, & |x| \ge 2, \end{cases} \quad x \in \mathbb{R}^n, \quad such \ that \quad ||h||_{\text{Lip}_1} \le 1, \tag{3}$$

and

$$h_r(\cdot) = h(\cdot/r).$$

(i) If $-n/p \le \lambda < 0$, then for all $f \in L^p_{loc}(\mathbb{R}^n)$ with $||f||_{L_{p,\lambda}(B_{3r})} < \infty$,

$$||f\chi_r||_{L_{p,\lambda}} \le ||f||_{L_{p,\lambda}(B_{3r})}.$$

(ii) If $-n/p \le \lambda \le 1$, then there exists a constant C > 0, dependent only on n and λ , such that for all $f \in L^p_{loc}(\mathbb{R}^n)$ with $||f||_{\mathcal{L}_{p,\lambda}(B_{3r})} < \infty$,

$$||(f - f_{B_{2r}})h_r||_{\mathcal{L}_{p,\lambda}} \le C||f||_{\mathcal{L}_{p,\lambda}(B_{3r})}.$$

Now we prove the theorems. Here, we omit the proof of Theorem 4 due to the similarity with that of Theorem 6.

Proof of Theorem 6. Let $f \in B^{\sigma}(L_{1,\lambda})(\mathbb{R}^n)$ and $r \geq 1$. Then, we prove that for any ball B_r ,

$$||Tf||_{WL_{1,\lambda}(B_r)} \lesssim r^{\sigma} ||f||_{B^{\sigma}(L_{1,\lambda})}.$$

To prove this, let

$$Tf = T(f\chi_{B_{2r}}) + T(f(1 - \chi_{B_{2r}})).$$

Now, for any ball $B(x,s) \subset B_r$, it follows that

$$\frac{1}{s^{\lambda}} \sup_{t>0} 2t \, m_{B(x,s)}(Tf, 2t)
\leq 2 \left\{ \frac{1}{s^{\lambda}} \sup_{t>0} t \, m_{B(x,s)}(T(f\chi_{B_{2r}}), t) + \frac{1}{s^{\lambda}} \sup_{t>0} t \, m_{B(x,s)}(T(f(1-\chi_{B_{2r}})), t) \right\}
= 2 \left(I_1 + I_2 \right), \quad \text{say.}$$

First, by applying the boundedness of T from $L_{1,\lambda}(\mathbb{R}^n)$ to $WL_{1,\lambda}(\mathbb{R}^n)$ (Theorem 2) and (i) of Lemma 11, we have

$$I_{1} \leq \|T(f\chi_{B_{2r}})\|_{WL_{1,\lambda}(B_{r})} \leq \|T(f\chi_{B_{2r}})\|_{WL_{1,\lambda}} \lesssim \|f\chi_{B_{2r}}\|_{L_{1,\lambda}}$$

$$\leq \|f\|_{L_{1,\lambda}(B_{6r})} \lesssim r^{\sigma} \|f\|_{B^{\sigma}(L_{1,\lambda})}.$$

Next, we estimate I_2 . It follows that for $x \in B_r$,

$$|T(f(1-\chi_{B_{2r}}))(x)| \lesssim \int_{\mathbb{R}^n \setminus B_{2r}} \frac{|f(y)|}{|y|^n} dy \lesssim r^{\lambda+\sigma} ||f||_{B^{\sigma}(L_{1,\lambda})}.$$

Therefore, since $\lambda < 0$, we obtain

$$I_2 \leq \|T(f(1-\chi_{B_{2r}}))\|_{WL_{1,\lambda}(B_r)} \leq r^{-\lambda} \|T(f(1-\chi_{B_{2r}}))\|_{L^{\infty}(B_r)} \lesssim r^{\sigma} \|f\|_{B^{\sigma}(L_{1,\lambda})}.$$

Thus, we have for any ball B_r ,

$$||Tf||_{WL_{1,\lambda}(B_r)} \lesssim r^{\sigma} ||f||_{B^{\sigma}(L_{1,\lambda})}.$$

This shows the conclusion.

The proof of the boundedness from $\dot{B}^{\sigma}(L_{1,\lambda})(\mathbb{R}^n)$ to $\dot{B}^{\sigma}(WL_{1,\lambda})(\mathbb{R}^n)$ is the same as above.

Proof of Theorem 8. Let $f \in B^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)$ and $r \geq 1$. Then, we prove that that for any ball B_r ,

$$\|\tilde{T}f\|_{\mathcal{L}_{p,\lambda}(B_{\tau})} \lesssim r^{\sigma} \|f\|_{B^{\sigma}(\mathcal{L}_{p,\lambda})},$$

and then $|(\tilde{T}f)_{B_1}| \lesssim ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})} + |f_{B_1}|.$

Now, let $\tilde{f} = f - f_{B_{4r}}$ and let h be defined by (3). Then, for $x \in B_r$, it follows that

$$\begin{split} \tilde{T}f(x) &= \tilde{T}\tilde{f}(x) + \tilde{T}(f_{B_{4r}})(x) \\ &= T(\tilde{f}h_{2r})(x) + \int_{\mathbb{R}^n} \tilde{f}(1 - h_{2r})(y) \left(K(x - y) - K(-y)\right) \, dy \\ &+ \int_{\mathbb{R}^n} \tilde{f}(\chi_{B_1} - h_{2r})(y) K(-y) \, dy + f_{B_{4r}}(\tilde{T}1)(x) \\ &= I_1(r)(x) + I_2(r)(x) + I_3(r) + I_4(r)(x), \quad \text{say.} \end{split}$$

Here, note that $\tilde{T}1$ is a constant function and $I_3(r)$ is constant.

First, since $(\chi_{B_1} - h_{2r})/|\cdot|^n$ is in $L^{p'}(\mathbb{R}^n)$, it follows that

$$|I_3(r)| \le \left\| \frac{\chi_{B_1} - h_{2r}}{|\cdot|^n} \right\|_{L^{p'}} \|\tilde{f}\|_{L^p(B_{4r})} \lesssim \|\tilde{f}\|_{L^p(B_{4r})} \lesssim \|f\|_{B^{\sigma}(\mathcal{L}_{p,\lambda})}. \tag{4}$$

To estimate $I_1(r)$, applying the boundedness of \tilde{T} on $\mathcal{L}_{p,\lambda}(\mathbb{R}^n)/\mathcal{C}$ (Theorem 3) and (ii) of Lemma 11, we have

$$||I_1(r)||_{\mathcal{L}_{p,\lambda}(B_r)} \le ||T(\tilde{f}h_{2r})||_{\mathcal{L}_{p,\lambda}} \lesssim ||\tilde{f}h_{2r}||_{\mathcal{L}_{p,\lambda}} \lesssim ||f||_{\mathcal{L}_{p,\lambda}(B_{6r})} \lesssim r^{\sigma} ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})}.$$

Similarly, by the boundedness of \tilde{T} on $\mathcal{L}_{p,\lambda}(\mathbb{R}^n)$ (Theorem 3) and (ii) of Lemma 11, we obtain

$$||I_{1}(r)||_{\mathcal{L}_{p,\lambda}(B_{r})} + |(I_{1}(r))_{B_{1}}| \leq ||T(\tilde{f}h_{2r})||_{\mathcal{L}_{p,\lambda}} + |(T(\tilde{f}h_{2r}))_{B_{1}}|$$

$$\lesssim ||\tilde{f}h_{2r}||_{\mathcal{L}_{p,\lambda}} + |(\tilde{f}h_{2r})_{B_{1}}| \lesssim r^{\sigma}||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})} + |(\tilde{f}h_{2r})_{B_{1}}|.$$
 (5)

Next, we get for $x \in B_r$,

$$|I_2(r)(x)| \le r \int_{\mathbb{R}^n \setminus B_{2r}} \frac{|f(y) - f_{B_{4r}}|}{|y|^{n+1}} dy \lesssim r^{\lambda + \sigma} ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})}.$$
 (6)

If $-n/p \le \lambda \le 0$, then we have

$$||I_2(r)||_{\mathcal{L}_{p,0}(B_r)} \lesssim ||I_2(r)||_{L_{p,0}(B_r)} \leq ||I_2(r)||_{L^{\infty}(B_r)} \lesssim r^{\sigma} ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})}.$$

If $0 < \lambda < 1$, then we have for any $x, z \in B_r$,

$$|I_{2}(r)(x) - I_{2}(r)(z)| \leq \int_{\mathbb{R}^{n} \setminus B_{2r}} |\tilde{f}(y)| |K(x - y) - K(z - y)| \, dy$$

$$\lesssim |x - z| \int_{\mathbb{R}^{n} \setminus B_{2r}} \frac{|f(y) - f_{B_{4r}}|}{|y|^{n+1}} \, dy$$

$$\lesssim |x - z| \, r^{-1 + \lambda + \sigma} ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})},$$

and so

$$\frac{|I_2(r)(x) - I_2(r)(z)|}{|x - z|^{\lambda}} \lesssim \left(\frac{|x - z|}{r}\right)^{1 - \lambda} r^{\sigma} ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})} \lesssim r^{\sigma} ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})}.$$

Therefore, by Theorem 1,

$$||I_2(r)||_{\mathcal{L}_{p,\lambda}(B_r)} \sim ||I_2(r)||_{\operatorname{Lip}_{\lambda}(B_r)} \lesssim r^{\sigma} ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})}$$

Thus, we have for any ball B_r .

$$\|\tilde{T}f\|_{\mathcal{L}_{p,\lambda}(B_r)} = \|I_1(r) + I_2(r) + I_3(r) + I_4(r)\|_{\mathcal{L}_{p,\lambda}(B_r)}$$
$$\lesssim r^{\sigma} \|f\|_{B^{\sigma}(\mathcal{L}_{p,\lambda})},$$

which gives the conclusion

$$\|\tilde{T}f\|_{B^{\sigma}(\mathcal{L}_{p,\lambda})} \lesssim \|f\|_{B^{\sigma}(\mathcal{L}_{p,\lambda})}.$$

Finally, we estimate each term of right hand side in the inequality

$$|(\tilde{T}f)_{B_1}| \le |(I_1(1))_{B_1}| + |(I_2(1))_{B_1}| + |I_3(1)| + |I_4(1)|.$$

By taking r = 1 in (4), (5) and (6), it follows that

$$|I_3(1)| \lesssim ||f||_{B^{\sigma}(\mathcal{L}_{n,\lambda})},$$

$$|(I_1(1))_{B_1}| \lesssim ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})} + |(\tilde{f}h_2)_{B_1}| = ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})} + |f_{B_1} - f_{B_4}|$$

and

$$|(I_2(1))_{B_1}| \lesssim ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})},$$

respectively. Moreover,

$$|f_{B_1} - f_{B_4}| \lesssim ||f||_{\mathcal{L}_{p,\lambda}(B_4)} \lesssim ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})}.$$

Therefore, we prove that

$$|(\tilde{T}f)_{B_1}| \lesssim ||f||_{B^{\sigma}(\mathcal{L}_{p,\lambda})} + |f_{B_1}|.$$

Thus, we complete the proof of the desired coclusion.

The proof of the boundedness of \tilde{T} on $\dot{B}^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)/\mathcal{C}$ and on $\dot{B}^{\sigma}(\mathcal{L}_{p,\lambda})(\mathbb{R}^n)$ is the same as above.

References

- [AGL] J. Alvarez, M. Guzmán-Partida and J. Lakey, Spaces of bounded λ -central mean oscillation, Morrey spaces, and λ -central Carleson measures, Collect. Math., 51 (2000), 1–47.
- [CF] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., 7 (1987), 273–279.
- [FLL] Z. Fu, Y. Lin and S. Lu, λ-central *BMO* estimates for commutators of singular integral operators with rough kernels, Acta Math. Sin. (Engl. Ser.), **24** (2008), no. 3, 373–386.
- [KM₁] Y. Komori-Furuya and K. Matsuoka, Some weak-type estimates for singular integral operators on CMO spaces, Hokkaido Math. J., 39 (2010), 115–126.
- [KM₂] Y. Komori-Furuya and K. Matsuoka, Strong and weak estimates for fractional integral operators on some Herz-type function spaces, Proceedings of the Maratea Conference FAAT 2009, Rendiconti del Circolo Mathematico di Palermo, Serie II, Suppl., 82 (2010), 375–385.
- [LY₁] S. Z. Lu and D. C. Yang, The decomposition of weighted Herz space on \mathbb{R}^n and its applications, Science in China (Series A), 38 (1995), 147–158.
- [LY₂] S. Lu and D. Yang, Hardy-Littlewood-Sobolev theorems of fractional integration on Herz-type spaces and its applications, Canad. J. Math., **48** (1996), no. 2, 363–380.
- [MN] K. Matsuoka and E Nakai, Fractional integral operators on $B^{p,\lambda}$ with Morrey-Campanato norms, Proceedings of Function Spaces IX (Krakow, Poland, 2009), Banach Center Publications, to appear.
- [M] N. G. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc., 15 (1964), 717–721.
- [N₁] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, **166** (1994), 95–103.
- [N₂] E. Nakai, Singular and fractional integral operators on Campanato spaces with variable growth conditions, Rev. Mat. Complut., **23** (2010), no. 2, 355–381.
- [P] J. Peetre, On convolution operators leaving $L_{p,\lambda}$ spaces invariant, Ann. Math. Pure Appl., **72** (1966), 295–304.
- [S] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa (3), **19** (1965), 593–608.