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1. Introduction and preliminaries.

The triangle inequality is one of the most fundamental inequalities in
analysis and has been studied by several authors. In this note, we consider
an another aspect of the classical triangle inequality of a normed linear space
X, that is, for every z,y € X,

Iz +yll < ]l + llyll-
For an inner product space H we recall the parallelogram law
Iz +ylI* + lz = ylI* = 2(|z]* + 9]*) (2, € H).
This implies that the parallelogram inequality
Iz + 9l < 2(llzl* + llyll*)  (Vz,y € H) (1)

holds. S. Saitoh noted the inequality (1) may be more suitable than the
classical triangle inequality, and used the inequality (1) to the setting of a
natural sum Hilbert space for two arbitrary Hilbert spaces.

In general, for any normed linear space X, we easily have

lz +yl* < 2(zl® + llyl*)  (Vz,y € X). (2)

Recently, Belbachir, Mirzavaziri and Moslehian [1] introduced the notion
of g-norm (1 < g < o) in a vector space X over K(= R or C), where the
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definition of g-norm is a mapping || - || from X into R*(={a € R:a > 0})
satisfying the following conditions:

(i) [zl =0&z=0,
(i) ozl =lalllzl] (z € X, <cK),
i) flz+yl? <27 (2l + [lyll?) (2,9 € X).

We easily show that every norm is a g-norm. Conversely, they proved that
for all ¢ with 1 < g < oo, every g-norm is a norm in the usual sense.

Let ¥, of all continuous convex functions % on the unit interval [0, 1]
satisfying ¥(0) = ¥(1) = 1 and max{l1—¢,¢} < ¢(t) < 1fort with0 <t < 1.

In this note, we generalize the notion of g-norm, that is, we introduce the
notion of ¢-norm by considering the fact that an absolute normalized norm
on R? corresponds to a continuous convex function 1 on the unit interval
[0,1] with some conditions. We show that a ¢-norm is a norm in the usual

sense.
2. A 9-norm is really a norm.

At first, we introduce the notion of 1-norm on a vector space X.

Definition 1. Let X be a vector space and ¥ € W¥,;. Then a mapping
|| -] : X — R* is called ¥-norm on X if it satisfies the following conditions:

(i) lzll=0z=0
(i) ozl = lallzll (z€ X,a€K)

1
< '
(iif) e +yll < in 90 ICizll; gDl for any =z, y € X

Note that for all ¢ with 1 < ¢ < oo, any ¥,-norm || - || is just a g-norm.



Indeed, since the function 1, takes the mininum at ¢ = 1/2 and

Ya(1/2) = ((1/2)7 + (1/2)7)"e = 2V,
the condition (iii) of Definition 1 implies
1

z +yl| < ———||(||zll, = 21-Ya(|| 2|17 + ||ly||7)V/9,

lz+ yll qu(1/2)“(” I 11D, ()l + llyll*)
Thus we have ||z + y||? < 297!(||z||? + |ly||?) and so || - || becomes a g-norm.

If ¢ = 41, then the condition (iii) of Definition 1 is just a triangle in-

equality. Thus we suppose that 1 # ;.

Proposition 2. Let X be a vector space and i € ¥, with ¢ # 1;. Then
every norm on X in the usual sense is a -norm.

Conversely, we show that every ¥-norm is a norm in the usual sense. To
do this, we need the following lemma given in [1].

Lemma 3. Let X be a vector space. Let || - | : X — R* be a mapping
satisfying the conditions (i) and (ii) in Definition 1. Then || - || is a norm if
and only if the set Bx = {z € X : ||z|| < 1} is convex.

Since every 1;-norm is just a usual norm, we suppose that 1y € ¥V, with
¥ # 1. Put ¢ with 0 < ¢y < 1 such that ming<i<1 ¥(t) = ¥(to). Then we
have the following lemma.

Lemma 4. Let || - || be a ¢-norm on X. Then, for every z,y € Bx,
(1 — to)fU + toy € By.

Here we define the set 4, foralln=1,2,---, by
Ay=1{0,1}, A.={(1-to)a+tob:a,be€ Ars} (n=1,2,---).

Put A = UL ,A,. It is clear that A = [0,1]. We also define a function f by

flz,y,t) = (1 —t)z+ty for all z,y € Bx and all t € [0, 1].
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Lemma 5. For every z,y € Bx we have f(z,y,t) € Bx for all t € A.

By Lemma 5, we have the following theorem.

Theorem 6. Let X be a vector space and ¢ € ¥, with ¢ # ;. Then every
y-norm on X is a norm in the usual sense.
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