0oooo0O0oooo
017530 20110 82-89 82

VISCOSITY APPROXIMATION METHODS FOR FAMILIES OF
STRICTLY PSEUDOCONTRACTIVE MAPPINGS AND NONSELF
NONEXPANSIVE MAPPINGS

(BIK*% [EZ %£F (SACHIKO ATSUSHIBA)

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - || and let C
be a nonempty closed convex subset of H. Then, a mapping T : C — C is called
nonexpansive if ||z — Ty|| < ||z — y|| for all z,y € C. We denote by F(T') the set of
fixed points of T. Browder [3] introduced the following iterations and proved strong
convergence theorem:

Up =onu+ (1 —a,)Tu, forevery n=1,2,.... (1.1)

where {a,} is a sequence in (0,1) converging to 0, and v € C. Reich [13] and
Takahashi and Ueda [21] extended Browder’s result to those of a Banach space.
Wittmann [24] obtained a strong convergence theorem in Hilbert spaces by using the
iteration procedure which was initially introduced by Halpern [6]:

z; €C and
Tpi1=anZ1+(1—ap)Tz,, n=12,..., (1.2)

where a,, € [0,1] (see [24, 19] for the proof). Moudafi8] generalize Browder’s and
Halpern’s theorems [3, 6]. Moudafi’s generalizations are called viscosity approxi-
mations. Xu extend Moudafi’s theorems toe uniformly smooth Banach spaces (see
also [20]). Petrusel and Yao [11] studied viscosity approximations with generalized
contraction mappings and nonexpansive mappings, and they proved strong conver-
gence theorems for the mappings. Wangkeeree [23] studied viscosity approximations
with nonself nonexpansive mappings and proved strong convergence theorems for the
mappings.

In this paper, we study implicit and explicit viscosity approximations with gen-
eralized contraction mappings and strictly pseudocontractive mapppings, and prove
strong convergence theorems for the families of strictly pseudocontractive mappings
Further, we study implicit and explicit viscosity approximations with generalized con-
traction mappings and nonself nonexpansive mappings. We prove strong convergence
theorems for the nonself nonexpansive mappings.
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2. PRELIMINARIES

Throughout this paper, we denote by N and R the set of all positive integers, the
set of all real numbers, respectively. We also denote by R* the set of all nonnegative
real numbers. Let E be a real Banach space with norm || - ||. We denote by B, the
set {z € E : ||z|| < 7}. Let E* be the dual space of a Banach space E. The value of
z* € E* at z € E will be denoted by (z,z*). Let E be a real Banach space and let
C be a nonempty closed convex subset of E. We denote by I the identity operator
on E. The multi-valued mapping J from E into E* defined by

J(x) ={z* € B* : {z,2*) = ||z||* = ||z*||*)} forevery z€E

is called the duality mapping of E. From the Hahn-Banach theorem, we see that
J(z) # 0 for all z € E. For g > 1, we denote by J, the generalized duality mapping,

Jo(z) ={z" € E" : (z,2") = ||, |]"|| = ||=l|*""} for every z € E.

We recall that
Jo(z) = |lz[|77*J (z)
for x # 0. We recall that

1
p(t) =sup {3l + 51+ o = 1) = 1ol < L I <.

E is said to be uniformly smooth if lim; o p(t)/t = 0. Let ¢ > 1. E is said to be
g-uniformly smooth if there is a constant ¢ > 0 such that p(t) < ct? (see, for example,

10, 4]).
A Banach space E is said to be strictly convex if
Iz + |
— <1
2
for z,y € E with ||z|| = |lyl| = 1 and z # y. In a strictly convex Banach space, we

have that if ||z]| = |ly|l = || (1 = A)z + Ay|| for z,y € E and A € (0,1), then z = y.
For every € with 0 < ¢ < 2, we define the modulus d(¢) of convexity of E by

. T+
o0 =int {1- B2 o <1yl < 11 w12 <.

A Banach space E is said to be uniformly convex if § (¢) > 0 for every € > 0. If E' is
uniformly convex, then for r,e with r > £ > 0, we have ¢ (f;) > 0 and

<r(1-5(2)

for every z,y € E with ||z|| <, |ly|| £ r and ||z — y|| > €. It is well-known that a
uniformly convex Banach space is reflexive and strictly convex. Banach space E is
said to be smooth if

r+vy

t —
N
t—0 t
exists for each z and y in S;, where S; = {u € E: ||u|| = 1}. The norm of E is said to
be uniformly Gateaux differentiable if for each y in S;, the limit is attained uniformly
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for z in S;. We know that if E' is smooth, then the duality mapping is single-valued
and norm to weak star continuous and that if the norm of F is uniformly Géateaux
differentiable, then the duality mapping is single-valued and norm to weak star,
uniformly continuous on each bounded subset of E.

Let u be a mean on positive integers N, i.e., a continuous linear functional on [*
satisfying |||l = 1 = (1). We know that p is a mean on N if and only if

inf{a, : n € N} < u(f) <sup{a, : n € N}

for each f = (a1,as,...) € I°°. Occasionally, we use u,(a,) instead of u(f). So, a
Banach limit y is a mean on N satisfying u,(an) = pn(@nt1). Let f = (a1,a2,...) € 1%
and let u be a Banach limit on N. Then,

lim a, < ﬂ(f) = ﬂ'n(an) < lim Ay
Specially, if a, — a, then u(f) = pn(as) = a (see [17, 19]).

Let E be a real Banach space and let C be a nonempty closed convex subset of E.
Then, a mapping T : C — C is called nonexpansive if | Tz — Ty|| < |l — y|| for all
z,y € C. We denote by F(T) the set of fixed points of T. A function ¥: R* — Rt is
said to be L-function if ¥(0) = 0, ¥(t) > 0 for ¢t > 0 and for any s > 0, there exists
u > s such that 9¥(t) < s for t € [s,u]. A mapping f from E into E is said to be
(¥, L)-contraction if 9 : Rt — R* is L-function and ||f(z) — f(z)|| < ¥(||z — y||)
for all z,y € E with z # y. A mapping f: C — C is said to be Meir-Keeler type
mapping if for any € > 0 there exists 6 = d(¢) > 0 such that for any z,y € E with
lz—yll <e+d6 ||f(z)— f(y)| <e (see [9]). If fis k-contractive, then f is a Meir-
Keeler type mapping and (¢, L)-contraction. By a generalized contraction mapping
we mean a Meir-Keeler type mapping or (¢, L)-contraction (see [2, 7, 9, 11, 12, 16]).
Let & = {T;}"_, be a family of mappings from C into itself and let F(&) be the set
of common fixed points of {7}, i.e., F = NS, F(T,).

3. STRONG CONVERGENCE THEOREMS FOR FAMILIES OF STRICTLY
PSEUDOCONTRACTIVE MAPPINGS

In this section, we study implicit and explicit viscosity approximations with families
of strict pseudocontractive mappings (see also [4]).

A mapping T : C — C is called pseudocontractive if there exists some j(x —y) €
J(z — y) such that (Tz — Ty,j(z — y)) < ||z — yl||® for all z,y € C. A mapping
T : C — C is called strongly pseudocontractive if there exists a constant o € (0,1)
such that

<T$ - Ty,](l‘ - y)> < a||a: - y“2 (l‘,y € C)

for some j(z —y) € J(z —y). A mapping T : C — C is called k-strictly pseudo-
contractive in the Browder-Petsyshin sense if I — T is k-inversely strongly monotone,
ie., for all z,y € C and j(z — y) € J(z — y)

(Tz - Ty, j(z —y)) < e - ylI* — kllz —y = T(z — y)|I*.
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If E is a g-uniformly smooth Banach space with single-valued generalized duality
mapping j,, T': C — C' is called (g)-k-strictly pseudocontractive if for all z,y € C
(T2 — Ty, jo(z - y)) < llz =yl — kllz —y = T(z - y)|I°

We note that for ¢ = 2, the class of (¢)-k-strictly pseudocontractive mappings coin-
cides with that of strictly pseudocontractive mappings (see also [10]).
Let C be a nonempty convex subset of a Banach space E. Let T3, T5,...,T, be

mappings of C into itself and let a;, as,. .., a, be real numbers such that 0 < ¢; < 1
for every i = 1,2,...,r. Then, we define a mapping W of C into itself as follows (see
[18, 14]):

Uy =0T + (]. - Oél)f,
Uz = aToU; + (1 — )1,
: (3.1)
Ui =0 1T Upo+ (1 — 1)1,
W=U =0,T,U_1 + (1 —,)I.

Such a mapping W is called the W-mapping generated by 71,75, ..., T, and a4, g, . . . , Q.
Let a1, ang,y ..., an-(n = 1,2,...) be real numbers such that 0 < o,; < 1 for every
i=1,2,...,7. Let W,(n =1,2,...) be the W-mappings generated by T3, T3, ..., T.

and o1, na, .. ., Opy.
Now consider the following implicit iteration scheme:

Tp = Bnf(zn) + (1 — Bn)Wpz, forevery n €N,

where {3,} is a sequence of real numbers such that 0 < 3, < 1 for every n € N. And
we study the following explicit iteration scheme: z; = z € C,

Tni1 = Bnf(zn) + (1 = Bo)Waz, forevery n €N,
where {8,} is a sequence of real numbers such that 0 < 8, < 1 for every n € N.

We can prove a strong convergence theorem by an implicit viscosity approximation
method (see also [1, 4]).

Theorem 3.1. Let E be a g-uniformly smooth Banach space and let C be a nonempty
closed convex subset of E. Let S = {T;}I_; be a family of (g)-k-strictly pseudocon-
tractive mappings from C' into itself such that F(S) = ()._; F(T;) # 0. Let f be a
generalized contraction mapping. Let {an;}7_; be a sequence of real numbers such
that oy € [a,b] for 0 < @ < b < 1 and let {83,} be a sequence of real numbers such
that 0 < B, < 1 with nhnc}o Bn=0. Let W,(n = 1,2,...) be the W-mappings of C
into itself generated by 71, T3,...,T, and a1, @3, ..., Q.. Let {z,} be a sequence
defined by
Tp = Bnf(zn) + (1 — Gp)Wozy

for every n € N. Then, {z,} converges strongly to p € F(S). Further, p is the unique
solution of the variational inequality :

{(f = Dp,j(u—p) <0
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for all u € F(S).

Now we can prove a strong convergence theorem by an explicit viscosity approxi-
mation method (see also [1, 4]).

Theorem 3.2. Let E be a g-uniformly smooth Banach space and let C' be a nonempty
closed convex subset of E. Let S = {T;}._, be a family of (g)-k-strictly pseudocon-
tractive mappings from C into itself such that F(S) = i, F(T;) # 0. Let f be a
generalized contraction mapping. Let {ox;}_; and {3, } be sequences of real numbers
satisfying the following:

(i) o € [a,b] for 0 <a < b<1and B, € (0,1);

(ii) lim B, =0

n—0oo

(i) 3 B = o0
n=1

.\ . Pa
iv) lim =1,
( ) n—oo /Bn+1
1 T
(V) lim -IB— Z Ian+1,; - C¥m;| = 0.
" =1
Let Wo(n = 1,2,...) be the W-mappings of C into itself generated by 11,13, ...,T:
and a1, Qng, - . ., 0. Let {z,} be a sequence defined by z, =z € C and

Tn+1 = ,an(xn) + (1 - ﬁn)ann

for every n € N. Then, {z,} converges strongly to p € F'(S). Further, p is the unique
solution of the variational inequality :

(f —Dp,j(u—p) <0
for all u € F(S).

4. STRONG CONVERGENCE THEOREMS FOR NONSELF MAPPINGS

In this section, we study implicit and explicit viscosity approximations with gen-
eralized contraction mappings and nonself nonexpansive mappings (see [1]). Now
we can prove a strong convergence theorem by an implicit viscosity approximation
method (see [1]).

Theorem 4.1. Let E be a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping J from E to E*. Let C be a nonempty closed
convex subset of E. Suppose that C is a sunny nonexpansive retract of E. Let P be a
sunny nonexpansive retraction of E onto C, let T be a nonself nonexpansive mapping
of C into E such that F(T) # 0 and let f be a generalized contraction mapping. Let
{an} be a sequence of real numbers such that 0 < o, < 1and lim o, = 0. If {z,} is

given by
Ty, = % 2 P(onf(zy) + (1 — an)(TP)z,)

=1
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for every n € N, then {z,} converges strongly to p € F(T'). Further, p is the unique
solution of the variational inequality :

(f =Dp,j(u—p) <0
for all u € F(T).

We can prove a strong convergence theorem by an explicit viscosity approximation
method (see [1]).

Theorem 4.2. Let E be a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping J from F to E*. Let C be a nonempty
closed convex subset of £. Suppose that C' is a sunny nonexpansive retract of . Let
P be a sunny nonexpansive retraction of E onto C, let T' be a nonself nonexpansive
mapping of C into E such that F(T) # 0 and let f be a generalized contraction
mapping. Let {a,} be a sequence of real numbers such that 0 < a,, < 1, lim &, = 0,

and > >0 a, = oo. If {z,} is given by z; =z € C and
I .
zM4=H§:HmJ@J+U—aJHPM%)
=1

for every n € N, then {z,} converges strongly to p € F(T'). Further, p is the unique
solution of the variational inequality :

(f=Dp,j(u-p)) <0
for all u € F(T).

We also have a strong convergence theorem by an explicit viscosity approximation
method (see [1]).

Theorem 4.3. Let F be a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping J from F to E*. Let C be a nonempty
closed convex subset of E. Suppose that C is a sunny nonexpansive retract of E. Let
P be a sunny nonexpansive retraction of E onto C, let T be a nonself nonexpansive
mapping of C into E such that F(T) # (0 and let f be a generalized contraction
mapping. Let {a,} a sequence of real numbers such that 0 < o, < 1, nlgﬂlo o, =0,

and ) >° o, =o0. If {z,} is given by z; = z € C and

Tn1 = anf(zn) + (1 — an)—:z Z(PT)jxn

=1

for every n € N, then {z,,} converges strongly to p € F(T). Further, p is the unique
solution of the variational inequality :

(f = Dp,j(u—p)) <0
for all u € F(T).
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