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Abstract. Let $H$ be a real Hilbert space and let $C$ be a nonempty closed convex subset of
$H$ . A mapping $T$ : $Carrow H$ is called generalized hybrid if there are $\alpha,$

$\beta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for all $x,$ $y\in C$ . In this article, we extend this class of generalized hybrid mappings in a
Hilbert space to more wide classes of nonlinear mappings in a Hilbert space and a Banach
space. Then, we prove fixed point theorems and convergence theorems for these classes of
nonlinear mappings in a Hilbert space and a Banach space.
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1 Introduction
Let $H$ be a real Hilbert space and let $C$ be a nonempty closed convex subset of $H$ . Let $\mathbb{N}$

and $\mathbb{R}$ be the sets of positive integers and real numbers, respectively. Let $f$ : $C\cross Carrow \mathbb{R}$ be
a bifunction. Then, an equilibrium problem (with respect to $C$) is to find $\hat{x}\in C$ such that

$f(\hat{x}, y)\geq 0$ , $\forall y\in C$.

The set of such solutions $\hat{x}$ is denoted by $EP(f)$ , i.e.,

$EP(f)=\{\hat{x}\in C:f(\hat{x}, y)\geq 0, \forall y\in C\}$ .

For solving the equilibrium problem, let us assume that the bifunction $f$ : $C\cross Carrow \mathbb{R}$ satisfies
the following conditions:

(Al) $f(x, x)=0$ for all $x\in C$ ;
(A2) $f$ is monotone, i.e., $f(x, y)+f(y, x)\leq 0$ for all $x,$ $y\in C$ ;
(A3) for all $x,$ $y,$ $z\in C$ , lim $supt\downarrow 0f(tz+(1-t)x, y)\leq f(x, y)$ ;
(A4) for all $x\in C,$ $f(x, \cdot)$ is convex and lower semicontinuous.
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The following theorem appears implicitly in Blum and Oettli [3].

Theorem 1.1. Let $C$ be a nonempty closed convex subset of $H$ and let $f$ be a bifunction of
$C\cross C$ into $\mathbb{R}$ satisfying $(A1)-(A4)$ . Let $r>0$ and $x\in H$ . Then, there exists $z\in C$ such
that

$f(z, y)+ \frac{1}{r}\langle y-z,$ $z-x\rangle\geq 0$ , $\forall y\in C$.

The following theorem was also given in Combettes and Hirstoaga [8].

Theorem 1.2. Assume that $f$ : $C\cross Carrow \mathbb{R}$ satisfies $(A1)-(A4)$ . For $r>0$ and $x\in H$ ,
define a mapping $T_{r}:Harrow C$ as follows:

$T_{r}x= \{z\in C:f(z, y)+\frac{1}{r}\langle y-z,$ $z-x\rangle\geq 0$ , $\forall y\in C\}$

for all $x\in H$ . Then, the following hold:

(1) $T_{r}$ is single-valued;
(2) $T_{r}$ is a fimly nonexpansive mapping, i. e., for all $x,$ $y\in H$ ,

$\Vert T_{r}x-T_{r}y\Vert^{2}\leq(T_{r}x-T_{r}y,$ $x-y\rangle$ ;

(3) $F(T_{f})=EP(f)$ ;
(4) $EP(f)$ is closed and convex.

The following three nonlinear mappings are deduced from a firmly nonexpansive mapping
$T_{r}$ in a Hilbert space. A mapping $T:Carrow H$ is said to be nonexpansive, nonspreading [20],
and hybrid [32] if

$\Vert$ Tx–Ty$\Vert\leq||x-y\Vert$ ,

$2\Vert Tx-Ty\Vert^{2}\leq\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$

and
$3\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$

for all $x,$ $y\in C$ , respectively. Motivated by these mappings, Aoyama, Iemoto, Kohsaka and
Takahashi [1] introduced a class of nonlinear mappings called $\lambda$-hybrid in a Hilbert space.
Kocourek, Takahashi and Yao [17] also introduced a more wide class of nonlinear mappings
containing the class of $\lambda$-hybrid mappings: A mapping $T:Carrow H$ is called generalized hybrid
if there are $\alpha,$

$\beta\in \mathbb{R}$ such that
$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for all $x,$ $y\in C$ . They proved the following fixed point theorem and nonlinear ergodic theorem
in a Hilbert space; see Kocourek, Takahashi and Yao [17].

Theorem 1.3. Let $C$ be a nonempty closed convex subset of a Hilbert space $H$ and let $T$ :
$Carrow C$ be a generalized hybrid mapping. Then $T$ has a fixed point in $C$ if and only if $\{T^{n}z\}$

is bounded for some $z\in C$ .
Theorem 1.4. Let $H$ be a Hilbert space and let $C$ be a closed convex subset of H. Let
$T:Carrow C$ be a generalized hybrid mapping with $F(T)\neq\emptyset$ and let $P$ be the mertic projection
of $H$ onto $F(T)$ . Then, for any $x\in C$ ,

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$
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converges weakly to an element $p$ of $F(T)$ , where $p= \lim_{narrow\infty}PT^{n}x$ .
In this article, we extend the class of generalized hybrid mappings in a Hilbert space to

more wide classes of nonlinear mappings in a Hilbert space and a Banach space. Then, we
prove fixed point theorems and convergence theorems for these classes of nonlinear mappings
in a Hilbert space and a Banach space.

2 Preliminaries
Let $H$ be a (real) Hilbert space with inner product $\langle\cdot,$ $\cdot\rangle$ and norm $\Vert\cdot\Vert$ . From [31], we know

the following basic equalities. For $x,$ $y,$ $u,$ $v\in H$ and $\lambda\in \mathbb{R}$ , we have

$\Vert\lambda x+(1-\lambda)y\Vert^{2}=\lambda\Vert x\Vert^{2}+(1-\lambda)\Vert y\Vert^{2}-\lambda(1-\lambda)\Vert x-y\Vert^{2}$ (2.1)

and
2 $\langle x-y,$ $u-v\rangle=\Vert x-v\Vert^{2}+\Vert y-u\Vert^{2}-\Vert x-u\Vert^{2}-\Vert y-v\Vert^{2}$. (2.2)

Let $C$ be a nonempty closed convex subset of $H$ and $x\in H$ . Then, we know that there
exists a unique nearest point $z\in C$ such that $\Vert x-z\Vert=\inf_{y\in C}\Vert x-y\Vert$ . We denote such a
correspondence by $z=P_{C}x$ . $P_{C}$ is called the metric projection of $H$ onto $C$ . It is known that
$P_{C}$ is nonexpansive and

$\langle x-P_{C}x,$ $P_{C}x-u\rangle\geq 0$

for all $x\in H$ and $u\in C$ ; see [31] for more details.
Let $E$ be a real Banach space with norm $\Vert\cdot\Vert$ and let $E^{*}$ be the dual space of $E$ . We denote

the value of $y^{*}\in E^{*}$ at $x\in E$ by $\langle x,$ $y^{*}\rangle$ . When $\{x_{n}\}$ is a sequence in $E$ , we denote the strong
convergence of $\{x_{n}\}$ to $x\in E$ by $x_{n}arrow x$ and the weak convergence by $x_{n}arrow x$ . The modulus
$\delta$ of convexity of $E$ is defined by

$\delta(\epsilon)=\inf\{1-\frac{\Vert x+y\Vert}{2}$ : $\Vert x\Vert\leq 1,$ $\Vert y\Vert\leq 1,$ $\Vert x-y\Vert\geq\epsilon\}$

for every $\epsilon$ with $0\leq\epsilon\leq 2$ . A Banach space $E$ is said to be uniformly convex if $\delta(\epsilon)>0$ for
every $\epsilon>0$ . A uniformly convex Banach space is strictly convex and reflexive. Let $C$ be a
nonempty closed convex subset of a Banach space $E$. A mapping $T:Carrow E$ is nonexpansive
if $\Vert Tx-Ty$ li $\leq\Vert x-y\Vert$ for all $x,$ $y\in C$ . A mapping $T$ : $Carrow E$ is quasi-nonexpansive if
$F(T)\neq\emptyset$ and $\Vert Tx-y\Vert\leq\Vert x-y\Vert$ for all $x\in C$ and $y\in F(T)$ , where $F(T)$ is the set of fixed
points of $T$ . If $C$ is a nonempty closed convex subset of a strictly convex Banach space $E$ and
$T$ : $Carrow C$ is quasi-nonexpansive, then $F(T)$ is closed and convex; see Itoh and Takahashi
[16]. Let $E$ be a Banach space. The duality mapping $J$ from $E$ into $2^{E^{*}}$ is defined by

$Jx=\{x^{*}\in E^{*}:\langle x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}||^{2}\}$

for every $x\in E$ . Let $U=\{x\in E : \Vert x\Vert=1\}$ . The norm of $E$ is said to be G\^ateaux
differentiable if for each $x,$ $y\in U$ , the limit

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-||x\Vert}{t}$ (2.3)
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exists. In the case, $E$ is called smooth. We know that $E$ is smooth if and only if $J$ is a
single-valued mapping of $E$ into $E^{*}$ . We also know that $E$ is reflexive if and only if $J$ is
surjective, and $E$ is strictly convex if and only if $J$ is one-to-one. Therefore, if $E$ is a smooth,
strictly convex and reflexive Banach space, then $J$ is a single-valued bijection. The norm of
$E$ is said to be uniformly G\^ateaux differentiable if for each $y\in U$ , the limit (2.3) is attained
uniformly for $x\in U$ . It is also said to be Fr\’echet differentiable if for each $x\in U$ , the limit
(2.3) is attained uniformly for $y\in U$ . A Banach space $E$ is called uniformly smooth if the
limit (2.3) is attained uniformly for $x,$ $y\in U$ . It is known that if the norm of $E$ is uniformly
G\^ateaux differentiable, then $J$ is uniformly norm to weak$*$ continuous on each bounded subset
of $E$ , and if the norm of $E$ is Fr\’echet differentiable, then $J$ is norm to norm continuous. If $E$

is uniformly smooth, $J$ is uniformly norm to norm continuous on each bounded subset of $E$ .
For more details, see [28, 29]. The following results are also in [28, 29].

Theorem 2.1. Let $E$ be a Banach space and let $J$ be the duality mapping on E. Then, for
any $x,$ $y\in E$ ,

$\Vert x\Vert^{2}-\Vert y\Vert^{2}\geq 2\langle x-y,j\rangle$ ,

where $j\in Jy$ .
Theorem 2.2. Let $E$ be a smooth Banach space and let $J$ be the duality mapping on E. Then,
$\langle x-y,$ $Jx-Jy\rangle\geq 0$ for all $x,$ $y\in E$ . $Ib$rther, if $E$ is strictly convex and $\langle x-y,$ $Jx-Jy\rangle=0$ ,
then $x=y$ .

Let $E$ be a smooth Banach space. The function $\phi:E\cross Earrow$ $(-$ oo, $\infty)$ is defined by

$\phi(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$ (2.4)

for $x,$ $y\in E$ , where $J$ is the duality mapping of $E$ . We have from the definition of $\phi$ that

$\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z,$ $Jz-Jy\rangle$ (2.5)

for all $x,$ $y,$ $z\in E$ . From $(\Vert x\Vert-\Vert y\Vert)^{2}\leq\phi(x, y)$ for all $x,$ $y\in E$ , we can see that $\phi(x, y)\geq 0$ .
Further, we can obtain the following equality:

$2\langle x-y,$ $Jz-Jw\rangle=\phi(x, w)+\phi(y, z)-\phi(x, z)-\phi(y, w)$ (2.6)

for $x,$ $y,$ $z,$ $w\in E$ . If $E$ is additionally assumed to be strictly convex, then

$\phi(x, y)=0=x=y$ . (2.7)

The following result was proved by Xu [39].

Theorem 2.3. Let $E$ be a unifomly convex Banach space and let $r>0$ . Then there exists a
strictly increasing, continuous and convex function $g:[0, \infty)arrow[0, \infty)$ such that $g(O)=0$ and

$\Vert\lambda x+(1-\lambda)y\Vert^{2}\leq\lambda||x\Vert^{2}+(1-\lambda)\Vert y\Vert^{2}-\lambda(1-\lambda)g(\Vert x-y\Vert)$

for all $x,$ $y\in B_{r}$ and $\lambda\in \mathbb{R}$ with $0\leq\lambda\leq 1$ , where $B_{r}=\{z\in E:\Vert z\Vert\leq r\}$ .

Let $l^{\infty}$ be the Banach space of bounded sequences with supremum norm. Let $\mu$ be an
element of $(l^{\infty})^{*}$ (the dual space of $l^{\infty}$ ). Then, we denote by $\mu(f)$ the value of $\mu$ at $f=$
$(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ . Sometimes, we denote by $\mu_{n}(x_{n})$ the value $\mu(f)$ . A linear functional $\mu$

on $l^{\infty}$ is called a mean if $\mu(e)=\Vert\mu\Vert=1$ , where $e=(1,1,1, \ldots)$ . A mean $\mu$ is called a Banach
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limit on $\iota\infty$ if $\mu_{n}(x_{n+1})=\mu_{n}(x_{n})$ . We know that there exists a Banach limit on $l^{\infty}$ . If $\mu$ is a
Banach limit on $l^{\infty}$ , then for $f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ ,

$\lim_{narrow}\inf_{\infty}x_{n}\leq\mu_{n}(x_{n})\leq\lim_{narrow}\sup_{\infty}x_{n}$ .

In particular, if $f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ and $x_{n}arrow a\in \mathbb{R}$ , then we have $\mu(f)=\mu_{n}(x_{n})=a$ .
For the proof of existence of a Banach limit and its other elementary properties, see [28].

3 New Classes of Nonlinear Operators in Hilbert Spaces

Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$ . A mapping
$S:Carrow H$ is called super hybrid [17] if there are $\alpha,$

$\beta,$ $\gamma\in \mathbb{R}$ such that

$\alpha\Vert Sx-Sy\Vert^{2}+(1-\alpha+\gamma)\Vert x-Sy\Vert^{2}$

$\leq(\beta+(\beta-\alpha)\gamma)\Vert Sx-y\Vert^{2}+(1-\beta-(\beta-\alpha-1)\gamma)\Vert x-y\Vert^{2}$ (3.1)
$+(\alpha-\beta)\gamma\Vert x-Sx\Vert^{2}+\gamma\Vert y-Sy||^{2}$

for all $x,$ $y\in C$ . We call such a mapping an $(\alpha, \beta, \gamma)$ -super hybrid mapping. We notice that
an $(\alpha, \beta, 0)$-super hybrid mapping is $(\alpha, \beta)$-generalized hybrid. So, the class of super hybrid
mappings contains the class of generalized hybrid mappings. A super hybrid mapping is not
quasi-nonexpansive generally. In fact, let us consider a super hybrid mapping $S$ with $\alpha=1$ ,
$\beta=0$ and $\gamma=1$ . Then, we have

$\Vert Sx-Sy\Vert^{2}+\Vert x-Sy\Vert^{2}\leq-\Vert Sx-y||^{2}+3\Vert x-y\Vert^{2}+\Vert x-Sx\Vert^{2}+\Vert y-Sy\Vert^{2}$

for all $x,$ $y\in C$ . This is equivalent to

$\Vert Sx-Sy\Vert^{2}+2\langle x-y,$ $Sx-Sy\rangle\leq 3\Vert x-y\Vert^{2}$

for all $x,$ $y\in C$ . In the case of $H=\mathbb{R}$ , consider $Sx=2-2x$ for all $x\in \mathbb{R}$ . Then,

$|Sx-Sy|^{2}+2\langle x-y,$ $Sx-Sy\rangle$

$=|2-2x-(2-2y)|^{2}+2\langle x-y,$ $2-2x-(2-2y)\rangle$

$=4|x-y|^{2}+4\langle x-y,$ $y-x\rangle$

$=0\leq 3|x-y|^{2}$

for all $x,$ $y\in \mathbb{R}$ . Hence $S$ is super hybrid and $F(S)\neq\emptyset$ . However, $S$ is not quasi-nonexpansive.
Furthermore, we have that

$Tx= \frac{1}{2}Sx+\frac{1}{2}x=\frac{1}{2}(2-2x)+\frac{1}{2}x=1-\frac{1}{2}x$

and hence $T$ is nonexpansive. In general, we have the following theorem for generalized hybrid
mappings and supper hybrid mappings; see Takahashi, Yao and Kocourek [38].

Theorem 3.1. Let $C$ be a nonempty closed convex subset of a Hilbert space $H$ and let $\alpha$ ,
$\beta$ and $\gamma$ be real numbers with $\gamma\neq-1$ . Let $S$ and $T$ be mappings of $C$ into $H$ such that
$T= \frac{1}{1+\gamma}S+\overline{1}+\overline{\gamma}^{I}\Delta$ . Then, $S$ is $(\alpha, \beta, \gamma)$-super hybrid if and only if $T$ is $(\alpha, \beta)$-genemlized
hybrid. In this case, $F(S)=F(T)$ .
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Using Theorems 3.1 and 1.3, we have the following fixed point theorem [17] for super hybrid
mappings in a Hilbert space.

Theorem 3.2. Let $C$ be a nonempty bounded closed convex subset of a Hilbert space $H$ and
let $\alpha,$

$\beta$ and $\gamma$ be real numbers with $\gamma\geq 0$ . Let $S$ : $Carrow C$ be an $(\alpha, \beta, \gamma)$-super hybrid
mapping. Then, $S$ has a fixed point in $C$ .

Let $C$ be a nonempty closed convex subset of a Hilbert space $H$ and let $\alpha,$
$\beta$ and $\gamma$ be real

numbers. Then, $U:Carrow H$ is called an $(\alpha, \beta, \gamma)$-extended hybrid mapping [11] if

$\alpha(1+\gamma)||Ux-Uy\Vert^{2}+(1-\alpha(1+\gamma))||x-Uy||^{2}\leq(\beta+\alpha\gamma)||Ux-y\Vert^{2}+(1-(\beta+\alpha\gamma))\Vert x-y\Vert^{2}-(\alpha-\beta)\gamma\Vert x-Ux||^{2}-\gamma\Vert y-Uy\Vert^{2}$

for all $x,$ $y\in C$ . We call such a mapping an $(\alpha, \beta, r)$ -extended hybrid mapping. Putting
$\gamma=\frac{-r}{1+r}$ in (3.1) with $1+r>0$ , we get that for all $x,$ $y\in C$ ,

$\alpha\Vert Sx-Sy\Vert^{2}+(1-\alpha+\frac{-r}{1+r})\Vert x-Sy\Vert^{2}$

$\leq(\beta+(\beta-a)\frac{-r}{1+r})\Vert Sx-y\Vert^{2}+(1-\beta-(\beta-\alpha-1)\frac{-r}{1+r})\Vert x-y\Vert^{2}$

$+( \alpha-\beta)\frac{-r}{1+r}\Vert x-Sx\Vert^{2}+\frac{-r}{1+r}\Vert y-Sy\Vert^{2}$ .

From $1+r>0$ , we have

$\alpha(1+r)\Vert Sx-Sy\Vert^{2}+(1+r-\alpha(1+r)-r)\Vert x-Sy\Vert^{2}$

$\leq(\beta(1+r)-(\beta-\alpha)r)\Vert Sx-y\Vert^{2}+(1+r-\beta(1+r)$

$+(\beta-\alpha-1)r)\Vert x-y\Vert^{2}-(\alpha-\beta)r\Vert x-Sx\Vert^{2}-r\Vert y-Sy\Vert^{2}$

and hence

$\alpha(1+r)\Vert$ $Sx$ – $Sy$ $\Vert^{2}+(1-\alpha(1+r))\Vert x-Sy\Vert^{2}$

$\leq(\beta+\alpha r)\Vert Sx-y\Vert^{2}+(1-(\beta+\alpha r)\Vert x-y\Vert^{2}$

$-(\alpha-\beta)r\Vert x-Sx\Vert^{2}-r\Vert y-Sy\Vert^{2}$ .
This implies that $S$ is extended hybrid. The following theorem is in [11].

Theorem 3.3. Let $C$ be a nonempty closed convex subset of a Hilbert space $H$ and let $\alpha$ ,
$\beta$ and $\gamma$ be real numbers with $\gamma\neq-1$ . Let $T$ and $U$ be mappings of $C$ into $H$ such that
$U= \frac{1}{1+\gamma}T+\overline{1}+\overline{\gamma}2$ I. Then, for $1+\gamma>0,$ $T:Carrow H$ is an $(\alpha, \beta)$-generalized hybrid mapping
if and only if $U:Carrow H$ is an $(\alpha, \beta, \gamma)-$ extended hybrid mapping.

Using Theorems 3.2 and 3.3, we can prove a fixed point theorem [11] for generalized hybrid
nonself-mappings in a Hilbert space.

Theorem 3.4. Let $C$ be a nonempty bounded closed convex subset of a Hilbert space $H$ and
let $\alpha$ and $\beta$ be real numbers. Let $T$ be an $(\alpha, \beta)$-generalized hybrid mapping with $\alpha-\beta\geq 0$ of
$C$ into H. Suppose that there exists $m>1$ such that for any $x\in C,$ $Tx=x+t(y-x)$ for
some $y\in C$ and $t\in \mathbb{R}$ with $1\leq t\leq m$ . Then, $T$ has a fixed point in $C$ .
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4 Convergence Theorems in Hilbert Spaces

In this section, using the technique developed by Takahashi [26], we prove a nonlinear ergodic
theorem of Baillon‘s type [2] for super hybrid mappings in a Hilbert space. Before proving it,
we need the following lemma [11].

Lemma 4.1. Let $C$ be a nonempty closed convex subset of a real Hilbert space H. Let $T$

be a generalized hybrid mapping from $C$ into itself. Suppose that $\{T^{n}x\}$ is bounded for some
$x\in C.$ Define $S_{n}x= \frac{1}{n}\sum_{k=1}^{n}T^{k}x$ . Then, $\lim_{narrow\infty}\Vert S_{n}x-TS_{n}x\Vert=0$ . In particular, if $C$ is
bounded, then

$\lim_{narrow\infty}\sup_{x\in C}\Vert S_{n}x-TS_{n}x\Vert=0$ .

Using Lemma 4.1, we can prove the following nonlinear ergodic theorem [11].

Theorem 4.2. Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$ .
Let $\alpha,$

$\beta$ and $\gamma$ be real numbers with $\gamma\geq 0$ and let $S:Carrow C$ be an $(\alpha, \beta, \gamma)$ -super hybrid
mapping with $F(S)\neq\emptyset$ and let $P$ be the mertic projection of $H$ onto $F(S)$ . Then, for any
$x\in C$ ,

$S_{n}x= \frac{1}{n}\sum_{k=1}^{n}(\frac{1}{1+\gamma}S+\frac{\gamma}{1+\gamma}I)^{k_{X}}$

converges weakly to $z\in F(S)$ , where $z= \lim_{narrow\infty}PT^{n}x$ and $T= \frac{1}{1+\gamma}S+\overline{1}+\overline{\gamma}^{I}\Delta$ .
We can also prove the following strong convergence theorems [11] of Halpern‘s type for super

hybrid mappings in a Hilbert space,

Theorem 4.3. Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$ .
Let $\gamma$ be a real number with $\gamma\neq-1$ and let $S:Carrow H$ be a mapping such that

$\Vert Sx-Sy\Vert^{2}+2\gamma\langle x-y,$ $Sx-Sy\rangle\leq(1+2\gamma)\Vert x-y\Vert^{2}$

for all $x,$ $y\in C$ . Let $\{\alpha_{n}\}\subset[0,1]$ be a sequence of real numbers such that

$\alpha_{n}arrow 0$ , $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ and $\sum_{n=1}^{\infty}|\alpha_{n}-\alpha_{n+1}|<\infty$ .

Suppose $\{x_{n}\}$ is a sequence generated by $x_{1}=x\in C,$ $u\in C$ and

$x_{n+1}= \alpha_{n}u+(1-\alpha_{n})P_{C}\{\frac{1}{1+\gamma}Sx_{n}+\frac{\gamma}{1+\gamma}x_{n}\}$ , $n\in$ N.

If $F(S)\neq\emptyset$ , then the sequence $\{x_{n}\}$ converges strongly to an element $v$ of $F(S)$ , where
$v=P_{F(S)}u$ and $P_{F(S)}$ is the metric projection of $H$ onto $F(S)$ .
Theorem 4.4. Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$ and let
$\alpha,$

$\beta$ and $\gamma$ be real numbers with $\gamma\geq 0$ . Let $S:Carrow C$ be a $(\alpha, \beta)\gamma)$ -super hybrid mapping
with $F(S)\neq\emptyset$ and let $P$ be the metric projection of $H$ onto $F(S)$ . Suppose $\{x_{n}\}$ is a sequence
genemted by $x_{1}=x\in C,$ $u\in C$ and

$\{\begin{array}{l}x_{n+1}=\alpha_{n}u+(1-\alpha_{n})z_{n},z_{n}=\frac{1}{n}\sum_{k=1}^{n}(\frac{1}{1+\gamma}S+\frac{\gamma}{1+\gamma}I)^{k}x_{n}\end{array}$
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for all $n\in N$ , where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . Then $\{x_{n}\}$ converges strongly
to Pu.

5 Fixed Point Theorems in Banach Spaces

Let $E$ be a real Banach space and let $C$ be a nonempty closed convex subset of $E$ . Then, a
mapping $T:Carrow E$ is said to be firmly nonexpansive [6] if

$\Vert$Tx-Ty$\Vert^{2}\leq\langle x-y,j\rangle$ ,

for all $x,$ $y\in C$ , where $j\in J(Tx-Ty)$ . It is known that the resolvent of an accretive operator
in a Banach space is a firmly nonexpansive mapping; see [6] and [7]. Using Theorem 2.1, we
have that for any $x,$ $y\in C$ and $j\in J(Tx-Ty)$ ,

$\Vert Tx-Ty\Vert^{2}\leq\langle x-y,j\rangle\Leftrightarrow 0\leq 2\langle x-Tx-(y-Ty),j\rangle$

$\Rightarrow 0\leq\Vert x-y\Vert^{2}-\Vert Tx-Ty\Vert^{2}$

$\Leftrightarrow\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}$

$\Leftrightarrow\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$ .

This implies that $T$ is nonexpansive. We also have that for any $x,$ $y\in C$ and $j\in J(Tx-Ty)$ ,

$\Vert Tx-Ty\Vert^{2}\leq\langle x-y,j\rangle\Leftrightarrow 0\leq 2\langle x-Tx-(y-Ty),j\rangle$

$\Leftrightarrow 0\leq 2\langle x-Tx,j\rangle+2\langle Ty-y,j\rangle$

$\Rightarrow 0\leq\Vert$x–Ty$\Vert^{2}-\Vert$ Tx-Ty$\Vert^{2}+||Tx-y\Vert^{2}-\Vert$Tx-Ty $\Vert^{2}$

$\Leftrightarrow 0\leq\Vert x-Ty\Vert^{2}+\Vert y-Tx\Vert^{2}-2\Vert Tx-Ty||^{2}$

$\Leftrightarrow 2\Vert Tx-Ty\Vert^{2}\leq\Vert x-Ty\Vert^{2}+\Vert y-Tx\Vert^{2}$.

This implies that $T$ is a nonspreading mapping in the sense of norm. Furthermore we have
that for any $x,$ $y\in C$ and $j\in J(Tx-Ty)$ ,

$\Vert Tx-Ty\Vert^{2}\leq\langle x-y,j\rangle\Leftrightarrow 0\leq 4\langle x-Tx-(y-Ty),j\rangle$

$\Leftrightarrow 0\leq 2\langle x-Tx-(y-Ty),j\rangle+2\langle x-Tx-(y-Ty),j\rangle$

$\Rightarrow 0\leq\Vert x-y\Vert^{2}-\Vert Tx-Ty\Vert^{2}+\Vert x-Ty\Vert^{2}+\Vert y-Tx\Vert^{2}-2\Vert$ $Tx$ – $Ty$ $\Vert^{2}$

$\Leftrightarrow 3\Vert$ $Tx$ – $Ty$ $\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert x-Ty\Vert^{2}+\Vert y-Tx\Vert^{2}$ .

This implies that $T$ is a hybrid mapping in the sense of norm. Thus, it is natural that we
extend a generalized hybrid mapping in a Hilbert space by Kocourek, Takahashi and Yao [17]
to Banach spaces as follows: Let $E$ be a Banach space and let $C$ be a nonempty closed convex
subset of $E$ . A mapping $T:Carrow E$ is called generalized hybrid [13] if there are $\alpha,$ $\beta\in \mathbb{R}$ such
that

$\alpha\Vert$ $Tx$ – $Ty$ $\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$ (5.1)

for all $x,$ $y\in C$ . We may also call such a mapping an $(\alpha, \beta)$-generalized hybrid mapping.
We note that an $(\alpha, \beta)$ -generalized hybrid mapping is nonexpansive for $\alpha=1$ and $\beta=0$ ,
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nonspreading for $\alpha=2$ and $\beta=1$ , and hybrid for $\alpha=\frac{3}{2}$ and $\beta=\frac{1}{2}$ . We first prove a fixed
point theorem for generalized hybrid mappings in a Banach space. For proving this, we need
the following lemma; see, for instance, [33] and [28].

Lemma 5.1. Let $C$ be a nonempty closed convex subset of a uniformly convex Banach space
$E$, let $\{x_{n}\}$ be a bounded sequence in $E$ and let $\mu$ be a mean on $l^{\infty}$ . If $g$ : $Earrow \mathbb{R}$ is defined by

$g(z)=\mu_{n}\Vert x_{n}-z\Vert^{2}$ , $\forall z\in E$,

then there exists a unique $z_{0}\in C$ such that

$g(z_{0})= \min\{g(z):z\in C\}$ .
Using Lemma 5.1, we can prove the following theorem [13].

Theorem 5.2. Let $C$ be a nonempty closed convex subset of a $unifor^{r}mly$ convex Banach space
$E$ and let $T$ be a mapping of $C$ into itself. Let $\{x_{n}\}$ be a bounded sequence of $E$ and let $\mu$ be
a mean on $l^{\infty}$ . If

$\mu_{n}\Vert x_{n}-Ty\Vert^{2}\leq\mu_{n}\Vert x_{n}-y\Vert^{2}$

for all $y\in C$ , then $T$ has a fixed point in $C$ .
Using Theorem 5.2 and properties of Banach limit, we prove a fixed point theorem [13] for

generalized hybrid mappings in a Banach space.

Theorem 5.3. Let $E$ be a uniformly convex Banach space and let $C$ be a nonempty closed
convex subset of E. Let $T:Carrow C$ be a generalized hybrid mapping. Then the following are
equivalent:

$(a)F(T)\neq\emptyset$ ;
$(b)\{T^{n}x\}$ is bounded for some $x\in C$ .
On the other hand, Kocourek, Takahashi and Yao [18] extended a generalized hybrid map-

ping in a Hilbert space to Banach spaces as follows: Let $E$ be a smooth Banach space and
let $C$ be a nonempty closed convex subset of $E$ . A mapping $T$ : $Carrow E$ is called generalized
nonspreading [18] if there are $\alpha,$

$\beta,$
$\gamma,$

$\delta\in \mathbb{R}$ such that

$\alpha\phi(Tx, Ty)+(1-\alpha)\phi(x, Ty)+\gamma\{\phi(Ty,Tx)-\phi(Ty, x)\}$ (5.2)
$\leq\beta\phi(Tx, y)+(1-\beta)\phi(x, y)+\delta\{\phi(y,Tx)-\phi(y, x)\}$

for all $x,$ $y\in C$ , where $\phi(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$ for $x,$ $y\in E$ . We call such a mapping an
$(\alpha, \beta, \gamma, \delta)$-generalized nonspreading mapping. If $E$ is a Hilbert space, then $\phi(x, y)=\Vert x-y\Vert^{2}$

for $x,$ $y\in E$ . So, we obtain the following:

$\alpha\Vert$Tx–Ty$\Vert^{2}+(1-\alpha)\Vert$x–Ty$\Vert^{2}+\gamma$ { $\Vert$ Tx–Ty$\Vert^{2}-\Vert$ x–Ty $\Vert^{2}$ }
$\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}+\delta\{\Vert Tx-y\Vert^{2}-||x-y\Vert^{2}\}$

for all $x,$ $y\in C$ . This implies that

$(\alpha+\gamma)\Vert Tx-Ty\Vert^{2}+\{1-(\alpha+\gamma)\}\Vert x-Ty\Vert^{2}$

$\leq(\beta+\delta)\Vert Tx-y\Vert^{2}+\{1-(\beta+\delta)\}||x-y\Vert^{2}$

for all $x,$ $y\in C$ . That is, $T$ is a generalized hybrid mapping in a Hilbert space. The following
is Kocourek, Takahashi and Yao’s fixed point theorem [18].
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Theorem 5.4. Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$ be a
nonempty closed convex subset of E. Let $T$ be a genemlized nonspreading mapping of $C$ into
itself. Then, the following are equivalent:

$(a)F(T)\neq\emptyset$ ;
$(b)\{T^{n}x\}$ is bounded for some $x\in C$ .

Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$ be a nonempty
subset of $E$ . Let $T$ be a mapping of $C$ into itself. Define a mapping $\tau*$ as follows:

$T^{*}x^{*}=JTJ^{-1}x^{*}$ , $\forall x^{*}\in JC$,

where $J$ is the duality mapping on $E$ and $J^{-1}$ is the duality mapping on $E^{*}$ . A mapping $\tau*$

is called the duality mapping of $T$ ; see [37] and [12]. It is easy to show that $\tau*$ is a mapping
of $JC$ into itself. In fact, for $x^{*}\in JC$ , we have $J^{-1}x^{*}\in C$ and hence $TJ^{-1}x^{*}\in C$ . So, we
have

$T^{*}x^{*}=JTJ^{-1_{X^{*}}}\in JC$ .

Then, $T^{*}$ is a mapping of $JC$ into itself. Furthermore, we define the duality mapping $\tau**$ of
$\tau*$ as follows:

$T^{**}x=J^{-1}T^{*}Jx$ , $\forall x\in C$ .
It is easy to show that $T^{**}$ is a mapping of $C$ into itself. In fact, for $x\in C$ , we have

$T^{**}x=J^{-1}T^{*}Jx=J^{-1}JTJ^{-1}Jx=Tx\in C$ .

So, $\tau**$ is a mapping of $C$ into itself. We know the following result in a Banach space; see [9]
and [37].

Lemma 5.5. Let $E$ be a smooth, strictly convex and $refle\mathfrak{X}ve$ Banach space and let $C$ be a
nonempty subset of E. Let $T$ be a mapping of $C$ into itself and let $\tau*$ be the duality mapping
of $JC$ into itself. Then, the following hold:

(1) $JF(T)=F(T^{*})$ ;
(2) $\Vert T^{n}x\Vert=\Vert(T^{*})^{n}Jx\Vert$ for each $x\in C$ and $n\in$ N.

Let $E$ be a smooth Banach space, let $J$ be the duality mapping from $E$ into $E^{*}$ and let $C$

be a nonempty subset of $E$ . A mapping $T$ : $Carrow E$ is called skew-generalized nonspreading if
there are $\alpha,$

$\beta,$
$\gamma,$

$\delta\in \mathbb{R}$ such that

$\alpha\phi(Ty, Tx)+(1-\alpha)\phi(Ty, x)+\gamma\{\phi(Tx, Ty)-\phi(x, Ty)\}$ (5.3)
$\leq\beta\phi(y, Tx)+(1-\beta)\phi(y, x)+\delta\{\phi(Tx, y)-\phi(x, y)\}$

for all $x,$ $y\in C$ , where $\phi(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$ for $x,$ $y\in E$ . We call such a mapping an
$(\alpha, \beta, \gamma, \delta)$-skew-generalized nonspreading mapping. Let $T$ be an $(\alpha, \beta, \gamma, \delta)$-skew-generalized
nonspreading mapping. Observe that if $F(T)\neq\emptyset$ , then $\phi(Ty, u)\leq\phi(y, u)$ for all $u\in F(T)$

and $y\in C$ . Indeed, putting $x=u\in F(T)$ in (5.3), we obtain

$\phi(Ty, u)+\gamma\{\phi(u, Ty)-\phi(u, Ty)\}\leq\phi(y,u)+\delta\{\phi(u, y)-\phi(u, y)\}$.
So, we have that

$\phi(Ty, u)\leq\phi(y,u)$ (5.4)

for all $u\in F(T)$ and $y\in C$ . Now, we can prove a fixed point theorem [13] for skew-generalized
nonspreading mappings in a Banach space.
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Theorem 5.6. Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$ be a
nonempty closed subset of $E$ such that $JC$ is closed and convex. Let $T$ be a skew-genemlized
nonspreading mapping of $C$ into itselt. Then, the following are equivalent:

$(a)F(T)\neq\emptyset$ ;
$(b)\{T^{n}x\}$ is bounded for some $x\in C$ .

6 Convergence Theorems in Banach Spaces
Let $E$ be a smooth Banach space and let $C$ be a nonempty closed convex subset of $E$ . Let

$T:Carrow E$ be a generalized nonspreading mapping. Then, we have that for any $u\in F(T)$

and $x\in C,$ $\phi(u, Tx)\leq\phi(u, x)$ . This property can be revealed by putting $x=u\in F(T)$ in
(5.2). Similarly, putting $y=u\in F(T)$ in (5.2), we obtain that for $x\in C$ ,

$\alpha\phi(Tx, u)+(1-\alpha)\phi(x, u)+\gamma\{\phi(u, Tx)-\phi(u, x)\}$

$\leq\beta\phi(Tx, u)+(1-\beta)\phi(x, u)+\delta\{\phi(u, Tx)-\phi(u, x)\}$

and hence
$(\alpha-\beta)\{\phi(Tx, u)-\phi(x, u)\}+(\gamma-\delta)\{\phi(u, Tx)-\phi(u, x)\}\leq 0$ . (6.1)

Therefore, we have that $\alpha>\beta$ together with $\gamma\leq\delta$ implies that

$\phi(Tx, u)\leq\phi(x, u)$ .

Now, we can prove the following nonlinear ergodic theorem [18] for generalized nonspreading
mappings in a Banach space.

Theorem 6.1. Let $E$ be a uniformly convex Banach space with a Fr\’echet differentiable nom
and let $C$ be a nonempty closed convex sunny generalized nonexpansive retmct of E. Let
$T:Carrow C$ be a genemlized nonspreading mapping with $F(T)\neq\emptyset$ such that $\phi(Tx, u)\leq\phi(x, u)$

for all $x\in C$ and $u\in F(T)$ . Let $R$ be the sunny genemlized nonexpansive retmction of $E$

onto $F(T)$ . Then, for any $x\in C$ ,

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

converges weakly to an element $q$ of $F(T)$ , where $q= \lim_{narrow\infty}RT^{n}x$ .
Using Theorem 6.1, we obtain the following theorem.

Theorem 6.2. Let $E$ be a uniformly convex Banach space with a Frechet differentiable norm.
Let $T:Earrow E$ be an $(\alpha, \beta, \gamma, \delta)$-genemlized nonspreading mapping such that $\alpha>\beta$ and $\gamma\leq\delta$ .
Assume that $F(T)\neq\emptyset$ and let $R$ be the sunny genemlized nonexpansive retmction of $E$ onto
$F(T)$ . Then, for any $x\in E$ ,

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

converges weakly to an element $q$ of $F(T)$ , where $q= \lim_{narrow}$oo $RT^{n}x$ .
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Using Theorem 6.1, we can also prove Kocourek, Takahashi and Yao’s nonlinear ergodic
theorem (Theorem 1.4) in Introduction.

Remark We do not know whether a nonlinear ergodic theorem of Baillon‘s type for non-
spreading mappings holds or not.

Next, we prove a weak convergence theorem of Mam’s iteration [21] for generalized non-
spreading mappings in a Banach space. For proving it, we need the following lemma obtained
by Takahashi and Yao [36].

Lemma 6.3. Let $E$ be a smooth and unifomly convex Banach space and let $C$ be a nonempty
closed subset of $E$ such that $JC$ is closed and convex. Let $T$ : $Carrow C$ be a generalized
nonexpansive mapping such that $F(T)\neq\emptyset$ . Let $\{\alpha_{n}\}$ be a sequence of real numbers such that
$0\leq\alpha_{n}<1$ and let $\{x_{n}\}$ be a sequence in $C$ generated by $x_{1}=x\in C$ and

$x_{n+1}=R_{C}(\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n})$ , $\forall n\in N$ ,

where $R_{C}$ is a sunny genemlized nonexpansive retmction of $E$ onto C. Then $\{R_{F(T)}x_{n}\}$

converges strongly to an element $z$ of $F(T)$ , where $R_{F(T)}$ is a sunny generalized nonerp ansive
retmction of $C$ onto $F(T)$ .

Using Lemma 6.3 and the technique developed by [14], we can prove the following weak
convergence theorem.

Theorem 6.4. Let $E$ be a uniforrnly convex and unifomly smooth Banach space and let $C$

be a nonempty closed convex sunny generalized $none\varphi ansive$ retmct of E. Let $T$ : $Carrow C$ be
a genemlized nonspreading mapping with $F(T)\neq\emptyset$ such that $\phi(Tx, u)\leq\phi(x, u)$ for all $x\in C$

and $u\in F(T)$ . Let $R$ be the sunny genemlized $none\varphi ansive$ retmction of $E$ onto $F(T)$ . Let
$\{\alpha_{n}\}$ be a sequence of real numbers such that $0\leq\alpha_{n}<1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$ .
Then, a sequence $\{x_{n}\}$ genemted by $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}$ , $\forall n\in N$

converges weakly to $z\in F(T)$ , where $z= \lim_{narrow\infty}Rx_{n}$ .
Using Theorem 6.4, we can prove the following theorems.

Theorem 6.5. Let $E$ be a unifomly convex and unifomly smooth Banach space. Let $T:Earrow$

$E$ be an $(\alpha, \beta, \gamma, \delta)$ -genemlized nonspreading mapping such that $\alpha>\beta$ and $\gamma\leq\delta$ . Assume
that $F(T)\neq\emptyset$ and let $R$ be the sunny genemlized nonexpansive retmction of $E$ onto $F(T)$ .
Let $\{\alpha_{n}\}$ be a sequence of real numbers such that $0\leq\alpha_{n}<1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$ .
Then, a sequence $\{x_{n}\}$ genemted by $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}$ , $\forall n\in N$

converges weakly to $z\in F(T)$ , where $z= \lim_{narrow\infty}Rx_{n}$ .
Theorem 6.6 (Kocourek, Takahashi and Yao [17]). Let $H$ be a Hilbert space and let $C$ be a
nonempty closed convex subset of H. Let $T$ : $Carrow C$ be a genemlized hybrid mapping uyith
$F(T)\neq\emptyset$ and let $P$ be the mertic projection of $H$ onto $F(T)$ . Let $\{\alpha_{n}\}$ be a sequence of
real numbers such that $0\leq\alpha_{n}<1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$. Then, a sequence $\{x_{n}\}$

genemted by $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}$ , $\forall n\in N$

converges weakly to $z\in F(T)$ , where $z= \lim_{narrow\infty}Px_{n}$ .
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