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1. INTRODUCTION

In [1], Ando, Li and Mathias constructed a geometric mean of k-positive operators on
a Hilbert space and showed that it has many required properties on the geometric mean.
In [6], Lawson and Lim showed that the basic approach due to Horwitz [4] and Ando-
Li-Mathias [1] can be generalized to means on metric spaces, and developed the theory
of the extensions in this context. Among others, they showed that every nonexpansive
and coordinatewise contractive mean has extensions of higher orders. The principle is to
"extend” a k-mean on X to a k + 1-mean. So, to obtain k-means on X is quite difficult.
In [3], Yamazaki et al. proposed a new construction of the geometric mean of n-positive
operators. The idea due to Yamazaki is to "extend” the geometric mean of two positive
operators to the geometric mean of k-positive operators.

In this paper, based on the method due to Lawson-Lim, and the construction due to
Yamazaki [3], we consider a method of extending means to higher orders. We show that
a symmetric convex 2-mean on a complete metric space admits extensions to all higher
orders,

2. EXTENDING MEANS

Let (X, d) be a metric space. A k-ary operation v : X* — X is said to be a k-mean
on X if v satisfies a generalized idempotency law: v(z,z,--- ,z) =z for all z € X. An
operation is said to be a mean if it is a k-mean for some k > 2. A mean is symmetric if
it is invariant under permutations:

U(ZTr), s Txk)) = ¥(21,-++ ,xx) for any permuation 7 on {1,2,--- ,k}.
The following definition is based on an idea due to Yamazaki [3]:
Definition 2.1. For a 2-mean p: X* — X, a shift operator 8 =0, : X* — X* (k> 3)
s defined by
B(x) = (u(z1, T2), p(T2, 3), -+ (T, 1))

for every x = (x4, ,xx) € X*. The shift map B is said to be power convergent if for
each x € X*, there exist some z* € X such that lim, f*(x) = (z*,--- ,z*).

Definition 2.2. A k-mean v is a S-invariant eztension of a 2-mean p if vo 8, = v, that
18,

v(x) = v(p(@1, T2), -+ @k, 7)) for all x = (z1,- -+ 7)) € X
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Proposition 2.3. Assume that u is a 2-mean and the corresponding shift operator 3 =
B, is power convergent. Define p®) : X* — X by p®)(x) = z* where lim, "(x) =
(x*.--- ,z*). Then

(i) p® is a k-mean on X that is a B-invariant extension of .

(i) Any continuous k-mean on X that is a B-invariant extension of p must equal ™.

Proof. (i) For z € X, put x = (z,--- ,z) € X*. Since
,B(X) = (,LL(:L‘,Z),' T ’/J‘(m7x)) = (III, e, T) =X,

it follows that lim, 8"(x) = x and hence u®(x) = z, i.e., u¥) is a k-mean. Furthermore,
since

BB (B(x)) = m(lim B(8(x))) = ms(lim 7 () = ) ),

where m, is the projection into the first coordinate, we have u® o 8 = u® ie., u® is a
B-invarinat extension of u.

(ii) Suppose that v is a continuous k-mean on X that is a S-invariant extension of u.
Since v =v o 8 = v o 3", for each x € X*

v(x) = v(B(x)) = v(B"(x) = v(z*, - ,z*) = 2" = u¥(x)

where lim, 8"(x) = (z*,--- ,z*). Hence v = u®. a
Definition 2.4. A k-mean v is a (3-extension of a 2-mean u if for each x € XF,
lim,, B*(x) = (v(x),- - ,v(x)). In this case we say that 3 power converges to v, denoted

byﬁ,’}»—»uasn—»oo.

Corollary 2.5. If 4 is a 2-mean and the corresponding shift operator 3 = B, is power
convergent, then 8 power converges to a k-mean p*), which by definition is a B-extension
of . Furthermore, if u®) is continuous, then it is the unique (B-invariant extension of u.

3. k-MEANS

For a k-mean v on a metric space (X, d), a subset C C X is v-convex if v(xy,--- ,z¢) €
C whenever z,,--- ,zx € C.

Lemma 3.1. If a k-mean v is a 3-extension of a 2-mean p, then any closed set that is
convex with respect to the mean i is convex with respect to the extension v.

Proof. Let A be a closed u-convex set and zq,--- ,zx € A. Put x = (z1,--+ ,zx). Then
by convexity each coordinate of §(x) is in A and by induction each coordinate of 5"(x)
is in A. Since A is closed, it follows that the coordinate limits, which are all v(x), belong
to A. Hence A is v-convex. O

If C is v-convex and v is continuous, then it follows that the closure of C' is v-convex.
We recall that the v-convex hull of a subset C' is the smallest v-convex subset containing
C C X, and can be obtained by intersecting all v-convex sets containing C. In a similar
way, if v is continuous, then the closed v-convex hull of C is can be obtained by intersecting
all closed v-convex sets containing C' and coincides with the closure of the v-convex hull

of C.



Definition 3.2. Let (X, d) be a metric space endowed with a continuous k-mean v. X
is locally convex if there exists at each point a basis of not necessary open neighborhoods
that are v-conver. X is uniformly locally convex if for each € > 0, there ezists § > 0 such
that the diameter of the v-convex hull of A is less than € whenever the diameter of A is
less than 6. X is closed ball convez if all closed balls B.(x) = {y € X : d(z,y) < &} are
v-convez for all x € X.

By definition, given a continuous mean on a metric space, closed ball convexity implies
uniformly local convexity, which in turn implies local convexity, also see [6].

Lemma 3.3. If v is a (B-extension of the continuous 2-mean p and if (X,d) is locally
convez, then v is continuous.

Proof. Let x = (1, ,z¢) € X* and z* = v(x) and let U be an open set containing
z*. Take a closed v-convex neighborhood V' of z* such that V' C U. Since by hypothesis
the sequences 3"(x) power converges to the k-string with entries z*, we have "(x) € V*
for some n large enough.By continuity of 4 and hence of 5", there exists W open in X*
containing x such that (W) C V*. For any y € W, we have 8*(y) € V*, and hence
B™(y) € V* for all ;> n since V is v-convex. Since V is closed it follows that v(y) € V.
Thus v is continuous. d
Definition 3.4. Let pn : X? — X be a 2-mean on a metric space (X,d). For x =
(1, ,zx) € X*, put |x| = {21, , 7}, the underlying set of the k-tuple, and define
the diameter A(x) of x by

A(x) = diam|x| = max{d(z;,z;) : 1 <1i,j < k}.
A mean p is weakly 8-contractive if lim, A(B"(x)) = 0 for each x € X*. A 2-mean p is
convez if

1 1
d(p(z1, T2), p(Y1, 32)) < §d(z1,y1) + §d($2, Y2)

Jor every x1,22,11,y2 € X. Generally, a k-mean v is convez if
k
1
d(V(xh e ,zk)v V(yh et 7yk)) S E ;d(xuyz)

for every (z1,+-- ,xx), (11, ,yx) € X*. It follows that if a mean p is convez, then p is
continuous.

Example 3.5.
(1) Let X be a Banach space with the metric d(z,y) =|| z —y ||. If u is defined by

w(z,y) = %(x +y) for all z,y € X, then u is a symmetric 2-mean and convex. But, if p

is defined by p(z,y) = 2z — y for all z,y € X, then p is a non-symmetric 2-mean and not
convex.
(2) Let A" (resp. .A") be the set of positive invertible elements (resp. selfadjoint elements)
in a unital C*-algebra A. If the manifold A* has a metric L: Ly(X;P) =|| P XP! |
on the tangent space A", then the geodesic and the distance from z to y for z, ye At
are given by

zlty=(1-t)z ' +ty™")  and d(z,y) =z~ -y |
for ¢ € [0,1], also see [2]. If we define the symmetric 2-mean u(z,y) = 2(z + ¢y~ 1),
then p is convex. ~
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(3) Let ), u be symmetric convex 2-mean on a metric space X. Define two symmetric
2-mean

N(z,y) = MMz, y), u(z,y)) and p'(z,y) = p(Mz,y), u(z,y))-
Then X and g are convex.
Lemma 3.6. If p : X2 — X is a convez symmetric 2-mean, then it is weakly (-
contractive.
Proof. For x = (z1,--- , zk) € X* and n E N, put 2 = z; and 2™ = p(zf"'l),mﬁ;n)
fori=1,--- ,k—1and z{" = "V, 2" 1)) Moreover, put A™ = max{d(z" (")) :
li-jl=1}fori=1,--- ,k—1. Forn E N and i — j| =1, it follows form the convex1ty
of u that

n 1) 1 -1) _(n-1
d(z”,2") = du({*™, 2577), wla]" ™, 15 0)
1 1 ~1 1 - 1
< 5™, 2"0) + 5l 27
S Agﬂ—l)
and hence we have 0 < A™ < AV Since {A{™} is bounded below and monotone

decreasing, put A; = lim, A,("') forl=1,---,k—1.
Since u is symmetric, it follows that

d(a{”,2}) = du(z{", 2577), wzl Y, 25Y))
= d(p (x('n Y xl('ill));#($£Z21),mz(':11)))
< 5™, 2570) < 3 A0

and hence A < %Ag"_l). For |i—jl=1land!=2,--- ,k— 2, we have

1 e _
d(@”,2}") < 7d(zi3:", 2} D) 4 2d(z* D, 2{10)

i1 Tj 2
< ;A(" RN
and hence A{™ < 1AMV 4+ 1A%V, In the case of [ = k — 1, we have
d(az{”, ") = (=", 25 7), wal ™0 ™))
< ;d(xg‘ 1) (n—l))

and hence
AR, < Ai" P

As n — o0, it follows that A; < A2 and A, < A; 1+ 3 Al+1 forl =2,--- k-2,
and Ax_; < A2 This in turn implies Ay_; < A 2,Ak_2 < g5, , 5 <
30y, < %Al and we have

k—2
< < < .
0< A1 S A <A



Hence we have A; = 0 for all [ = 1,--- ,k — 1. Since A("(x)) = max{A™, ..., A™M },
in conclusion, we have lim, A(8"(x)) = max{Ay, -+ ,Ar_1} =0. O

Note that if 3, is power convergent, then y must be weakly 3-contractive. The following
lemma, provides a converse:

Lemma 3.7. Let X be a complete metric space endowed with a weakly (3-contractive
continuous 2-mean p. If X is uniformly locally convez, then [ is power convergent, so
that there ezists a [(-extension of p.

Proof. For x € X, set C,(x) equal to the closed p-convex hull of |3%(x)|. By hypothesis
A(B"(x)) = diam|B"(x)| — 0 and then by uniform local convexity diamC,(x) — 0.
Note that since C,,(x) is p-convex, it contains |3™(x)| for all m > n, and hence contains
Cp(x). Then the collection {C,,(x)} is a decreasing sequence of closed u-convex sets whose
diameters converge to 0. Since X is a complete metric space the intersection consists of
a single point {z*}, and it is now easy to show that 3"(x) converges to the k-tuple with
all entries z*. g
Definition 3.8. Let (X, d) be a metric space. The sup metric dy on X* is defined by

dr(x,y) = max{d(z;,y) : 1 <i < k}
forallx = (1, ,z1),y = (y1, - , %) € X*. A map v of a metric space (X*,dy) into
a metric space (X™,dy,) is said to be nonexpansive if

dm(7(x),7(y)) < di(x,Y)

for all x,y € X*.

Lemma 3.9. Let (X,d) be a metric space endowed with a continuous 2-mean p. Then
the following conditions are equivalent:

(i) The 2-mean u: X% — X is nonezpansive.

(ii) The shift operator 8 = (3, : X* — X* is nonezpansive.

These conditions imply

(iii) X 1s closed ball convez.

Proof. (i) == (ii): Since p is nonexpansive, it follows that
dk(B(x), B(y)) = dr((1(@1, Z2), -+, pi(zh, 1)), (Y1, H2) -+ 5 4(Yks 1))
= max{d(u(z1, %2), 4(Y1,2)), - -, (ks T1), 1(Yx, 1))}
< max{dz((z1, 22), (y1,¥2)), - - - , Aol (2k, 21), (Yk, 1)) }
= max{max{d(z1, 1), d(z2,%2)}, - - - , max{d(zx, ), d(z1,91)}}
= max{d(z1,%1), - ,d(Tk, Y&) }
= di(x,y)-

(i) = (i): For x = (z1,2;) € X? and some z € X, we put X = (z;,Z3,2) € X>. Then
we have p(x) = m;(6(X)) where 7, is the projection into the first coordinate. Hence

d(u(x), u(y)) = d(m(8(%)), m(8(3)))
< ds3(%,¥) = da(x,y).
(i) = (iii): For e > 0 and z € X, y1,y; € Bc(z) imply
d(z, (11, 42)) = d(p(z, ), (Y1, 2)) < d2((z, ), (Y1, 92)) = max{d(z,y1),d(z,y2)} < €
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and we have pu(yy,42) € B(z). Hence B.(z) is u-convex for all z € X and X is closed
ball convex. O

Lemma 3.10. If 4 is a nonezpansive 2-mean on a metric space X and if p has a (-
extension pF), then p® is a nonerpansive.

Proof. Let m; : X* — X denote the projection into the first coordinate. For x € X*,
BB (x) = m(im () = lim(ms o ) (x).

Here, 7, o 8" is nonexpansive, so is u(¥), O

Theorem 3.11. Let X be a complete metric space equipped with a symmetric convex 2-
mean u : X2 — X. Then the shift operator (3 is power convergent, and hence there ezists
a unique convez k-mean u® : X*¥ — X that B-extends u.

Proof. By Lemma 3.6, it follows that u is weakly (-contractive. Since u is convex, p is
nonexpansive and it follows from Lemma 3.9 that X is closed ball convex. Therefore,
X is uniformly locally convex. By Lemma 3.7, 3 is power convergent and we have (-
extension p®) of u. Since u*) is nonexpansive, u® is continuous. Therefore, u® is a
unique continuous k-mean that is a S-extension of u. Finally we show u® is convex:

k
A, HD ) < 7 3 o)

v =1

for all x = (z1, - ,zx) and y = (Y1, * , Yk).
Put B*(x) = (.'L'(") . ,m}c")) and then z{™ = (™ 1),3:,_?_1 Mforli=1,---,k—1and
2™ = p(z" Y, z{*"V). Moreover, put for each m = 1,--- ,k

d(xgl&k) y(n+k))

< amd(wg"),yl")) + azod(xz 7y§n)) +-+ akod(xk » Ug ))

IA

< a12d(Z1, Y1) + Q20 d(22, ¥2) + - - - + Cknd(Tk, Yr)
for positive real numbers a;; such that
ay+az+---+a,=1 foralli=0,---,n

and

1 1
Qp = §a,,~_1 + 5&1_11_1 forallli=1,-.- k.

Put an irreducible probability matrix A = %(I,c + Sk) where I}, is the identity matrix and
St is the shift unitary matrix, then we have
Ain Q10 1 ... 1
=A"| : and A" — — as n — 0o,
Ay, (7% 1 --- 1
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since A has the stationary probability vector % : |. Hence
1

d(p® (x), 1® (y)) = lim d(6™ (x), B(y))
< 1171111 max{d(m1 ,y{")), d(xi ),?Jz(cn))}

k
k; T, Ys)-

| —

O

Theorem 3.12. Let X be a complete metric space equipped with a symmelric convex
2-mean p: X2 — X. Then for each k > 3, p®) : X* — X is uniquely determined in a
family of convex means which is a B-invariant extension of .

4., CONCLUDING REMARKS

Let X be a complete metric space equipped with a symmetric convex 2-mean p : X2 —
X and u® the convex k-mean obtained by p. We further assume that X is equipped a
closed partial order <, that is, z, < ¥, for all n implies lim,, z,, < lim, y, . Let <; be the
product order on X* defined by

(xl,---,wk)sk(yl,---,yk‘) ifand only if z; <y; 1<j<k.

Definition 4.1. A k-mean v on X is said to be monotone for the partial order < if
v(x) < v(y) for all x,y € X* with x <, y.

Theorem 4.2. If a symmetric convez 2-mean u is monotone for the closed partial order
<, then u*) s monotone for k > 3:

x<y = uPx) <u(y).
Proof. Let x,y € X* with x <; y. Then by assumption we have u(z;, Zi+1) < p(¥ir Yit1)

for ¢ = 1,--- , k and hence 8"(x) <x 8"(y), n = 1,2,---. By the closeness of the order,
lim, §"(x) < lim, 8"(y) and we have u*(x) <, u®(y). O

Finally, we shall present Yamazaki’s geometric mean of k-positive operators on a Hilbert
space in [3]. We use the following Thompson metric on the convex cone {2 of positive
- invertible operators:

d(A, B) = max{log M(A/B),log M(B/A)}

where M(A/B) = inf{\ > 0: A < AB}, see [7]. We remark that (2 is a complete metric
space with respect to this metric and the corresponding metric topology on €2 agrees with
the relative norm topology. For positive invertible operators A and B on a Hilbert space,
the operator geometric mean A § B of A and B is defined by

AtB=ak( ‘%BA“%)%A%,
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also see [5]. Then the geometric mean A § B is a symmetric convex 2-mean on ) endowed
with the respect to the Thompson metric:

d(AfC,Bt D)< % d(A, B) +% d(C, D).

For Ay,--- , Ax of any k-tuple of positive invertible operators on a Hilbert space, the
shift operator (3 is defined by

B(Ay, -+, Ar) = (Aifds, -+, AdAr).

By Theorem 3.12 there exists lim,, 3*(A;, - - - , Ax) uniformly. Hence Yamazaki’s geometric
mean of k-positive operators is defined by

Y(Al, (R ,Ak) = 1171111 T O ,Bn(Al, tee, Ak)
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