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Dynamics of Generalized Chebyshev maps of C?
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1 Introduction

In this note we study generalized Chebyshev maps of C2. They are specific poly-
nomial endomorphisms of C? that have connections with the complex Lie algebras
of type A,. We consider stochastic properties of generalized Chebyshev map of C2.

The theory in higher dimensional complex dynamics is developed using mostly
pluripotential theory. Measures of maximal entropy are constructed and topological
entropies and Lyapunov exponents are computed or estimated in many situations.
The topological entropy of a holomorphic endomorphisms of algebraic degree d on
P* is equal to k logd. The Lyapunov exponents of quadratic maps 22 + ¢ on C are
computed and they are equal to log 2 if ¢ lies in Mandelbrot set. In both cases, the
stochastic invariants do not vary even if parameters change.

One of the most famous theories in the real one-dimensional dynamics is the
kneading theory on the quadratic maps g(z) = az(1 — z). The kneading invariants
varies if the parameter a changes. We know generalized Chebyshev maps are ex-
tension of the quadratic maps. So we attempt to construct a kneading theory on
generalized Chebyshev maps of C2.

2 Stochastic properties of the Green measure

We consider ¢-Chebyshev maps of degree 2 (see [U])

fe(z,y) = (2 - 2cy,y* — 2cx).

The maps have some relations to the complex Lie algebra A,.
The Green'’s function of f.(z,y) is given by

1 n 1
G(z,y) = lim —log(|| f2(z,y) |I* +1)?
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This function gives the super-exponential rate at which the orbit of (z,y) € C?
approaches the line at infinity. That function is Holder-continuous on every compact
subset of {(z,y,c) € C? x C} and plurisubharmonic on C2. The Green’s current is
the positive closed (1,1)-current given by

1 C
T := é;dd G.
The first Julia set is given by J; := supp(T) and
J(fe) = C*\ {Fatou set of f.}.

Set p:=T AT. Then u is known to be a maximal entropy measure.
The second Julia set is defined by J; := supp(u).

As for the topological entropy the following result is known (see [DS]).

Theorem 2.1. (Gromov-Misurewicz-Przytycky) Let f be a holomorphic endomor-
phism of algebraic degree d on P*. Then the topological entropy h:(f) of f is equal
to k logd, i.e. to the logarithm of the mazimal dynamical degree.

Hence the topological entropy of our ¢-Chebyshev map f.(z,y) is equal to 2log2
that does not vary if the parameter ¢ changes.

Bedford and Jonsson[BJ]defined the critical measure (in our case) by

pe = [Crit(f)] AT = —;;dch AT,

where H = log | det Df, |

Then p,. is a well defined positive measure and the mass of p. is equal to the degree
of the critical locus (= 4 in our case). Note that the mass of u. does not vary even
if the parameter ¢ changes.

The sum of the Lyapunov exponents off with respect to u is the number
A(f) = JLI&%log | detDf"(z)|, for p—ae z€P2
Bedford and Jonsson [BJ] show
A(f) = A(fn) +logd + [ G

Using this equality and a result in [A], we can show the following result concerning
the sum of the Lyapunov exponents A(f;).
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Proposition 2.2. (1) Ifc =1, then A(f,) = 2log 2.
(2) If ¢ > 1, then A(f.) > 2log2.

Proof. (1) Bedford and Jonsson [BJ](Theorem 7.4) and Andrei[A](Theorem 4.4)
tell us that if
Crit(fe) NW*(Jm, fe) = &,

then A(f.) = 2log2. So it suffices to prove that
Crit(fL) " W*(Jn, f1) = ¢.

Assume that ¢ = 1. From [U], we know that we can write (z,y) € C? as

T=t +la+ts, y=tty+tits+lots, titots=1
and if (z,y) € Crit(f,), then

(t1 + to +t3) X (b1t + tits + tots) = 1. (2.1)
On the other hand if (z,y) € W*(Jq, f1), then we can express t;,t; and t3 as

t1 =re ty = %e'”,tg =™ r>1. (2.2)

From (2.1) and (2.2) we have an equation
Lo — p2elotni 4 r_lze—(cr«k‘r)i 4 e 4 %e—(2a—r)i 4 e %e-(zf—a)i' (2.3)

By comparing the real part and the imagenary part of (2.3), we can conclude that
there is no solution of (2.3) satisfying r > 1.

Then  Crit(fi) " W?*(Ju, f1) = ¢.

(2) From [U], we can parametrize Crit(f.) = {(ct,c/t) : t € C\{0}} by the ¢-plane.
Set (un(t), vn(t)) := f7(ct,c/t). We consider the circle S* in Crit(f.) defined by

St = {(ce®,ce™®) : 0 < 6 < 27},

In the proof of Proposition 3.1 in [U], we show that if ¢ > 1, {f7(ce®, ce~)}
converges to the line at infinity. Since v,(t) = u,(1/t),

un(e®) = v, (')

and so
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Clearly
Jn={lz:y:0]: |z[=|yl}
Hence
S' Cc We(Jn, f.)
and so
Crit(fo) "\W*(Jn, fe) # ¢-
Then from Theorem 4.4 in [A], we can see that A(f,) > 2log2. ]
AF)
log4 | — ¢ - - — —
C
[+] 1

_____ : a conjecture

This graph of the sum of the Lyapunov exponents may be constant in the interval
[0,1].

If we restrict our maps f.(z,y) to the diagonal line {z = y}, we have quadratic
maps

ge(z) =22 =2cz on C.

If we restrict the maps g.(z) to the real line, we have real one-dimensional quadratic
maps p.(z;). For the maps p.(z;) the kneading theory is well-known. It presents
some invariants that vary if the parameter ¢ moves along the interval [0,1]. Hence
we will reach a quantity which varies if ¢ moves along the interval [0,1].

3 Slices of critical measures and computer exper-
iments

We begin with the critical measures. By direct calculation, we have

e= [ _[Crit(f)IAT = T =2
[ /Cz[ rit(f.)] it

Instead of integrating the current T over whole the ¢-plane, we consider the integra-
tion along the unit circle in the t-plane. The reasons why we choose the unit circle,
are that the approximation

Galt) = g5 Jog(| £2(2,9) I? +1)% (31)
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of the Green’s function G(ct, c/t) restricted to the t-plane is symmetric with respect
to the unit circle and that the rate of escape to infinity has the minimum on the
unit circle if ¢ > 1. We consider the trunated current restricted to the Crit(f.). We
see that

A" Gn(, ) | zmer )= dd°Gin(t) = 21% A Go(r, 8)dr A db, (3.2)

02 10 1 0
where Azéﬁ+;5 'ﬁw

The graph of 7 A G,,(r, 6) in the case n = 3 and ¢ = 1 is depicted in the following.

6

We see many spikes on the unit circle .

If the unit circle in the ¢-plane intersects supp(T), the graph of the truncated current
r A G, has many spikes in the circle whose heights approach infinity as n — co. We
call the unit circle in the ¢-plane the critical circle.

We measures the average growth rate of the spikes of = £ Gy, along the unit circle

in the t-plane. Set
1

27
9n() = £ /0 (r A Gy) |ret db.

Recall that  dd°Gn(t) = 21% A Go(r,0)dr A df.



Lemma 3.1

4 o
(1) EGn(re ) lr=1=0,

@) (2Galr O =0

The proof is left to the reader. Then we have
L (0G0 oo df 3.3
9n(0) = 5= [ (55Gn) lr=1 d8. (33)

We consider the sequence {gn(c)7} for ¢ > 0.

We show some computer experiments of the graphs g;(c), g2(c)? and g3(c)% .

Case n = 1.

Plot[£sint, {c, 0, 5}, PlotRange -» All]

Case n = 2.

g2 = LigtLinePlot [T2]
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Case n = 3.

Inf3]=
ListLinePlot [graph/ (60 Pi)]
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4 A conjecture and some results

Based on the facts in the previous section we conjecture the following.

Conjecture 4.1.  Ifc > 0, there exists a limit

. 1
Jim (gn(c)>.

Concerning this conjecture we have some results.

Proposition 4.2. Ifc=1, then

o 97+ 53V57
gn(1) =2"- 912
and so szrgogn(l)?lf =2.

Proof. Let

felet,eft) =: (un(t),vn(8),  Kal(t) =1+ | ua(t) [* + | va(t) I* .

1
2n+1

Then Gn(t) =
We will calculate g,(1). By (3.3), it equals

log K, (t).

1 o 52
/0 (53Gn) I d8.

dn
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By Lemma 3.1.(1), we see that

02 1 o2

577108 Kn(re) 1= (s 2 108 Knlre®) |

Set

ko (r, 0) = (%)2"'“ + 4(%)2"‘ 144 42 4((%)2'"" +12" cos(3 - 2™16).

Clearly
km(r,0) = ky(r?, 27719).

Claim. Assume thatc=1 andn >2. Then
Ko (re®) = kn(r, ).

The proof of this Claim is straightforward.

Hence
1 & _ g+l 8 + cos(3 - 2""16)

(W—)-Brz log Kn(re)) |r= 11 + 8cos(3 - 27-14)°

Clearly

/2w 8 + cos(3 - 2"16) o = /2 ( 8 + cos(36) 16 57+53VE7
o ‘11+8cos(3-27-16)" ~ Jo ‘11 + 8cos(36) 288

Then we obtain the proposition. a

Next we consider a case where the parameter ¢ approaches oo.

Proposition 4.3.

5
lim g, A
im gn(c) = 3

Cc—00

and so lim (lim gn(c ))% = 2.

n—oo c—x

Proof. First we note that K,(c,r,6) and mKn(c, r,0) are polynomials in ¢ with
the same degree. Then KL"EQ:;K » converges uniformly as ¢ — oo.

1 1 2 1 82
lim gn(c) = —-——/ lim (7o 55 K) bt 0.

C—00 47 2n+1 0 C—

Both u,(t) and v,(t) are also polynomials in ¢. Let uh,(t) and vh,(t) be the highest
degree terms with respect to c of u,(t) and v,(t) . Then we can easily see that if
n > 2, then

ha(t) = (*(t* - ))2" ,
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and
1 gn-— 1

vhn(t) = (c:’(t—2 — 2t))

Set  Khy, =| uhn(re®®) |2 + | vha(re®) 2.
1 & 1 &
Then cl—l—glo K 81"2K mthn

By direct calculations, we have

1 92 1
( T 573 Khn) lr=1= m[4-2"‘1{6(6+2“‘1)+(—45+8-2"‘1) cos 39+2:2""* cos 66}).

2
Therefore [ (77— th aa T Khy) et d6 = I,(6),

36) sin 36(12 - 2™ — 24)
2 (5 —4cos36)

where I,(8) =2""%{2".0+6-2"tan"'(3tan

Hence

a1 92 z Sq
/0 (o K hn) |ret d6 = [L(0) 5, + [Ln(0)]% + [In(0)]5" = 57 - 4,

Kh, or? 3
Hence L o 52 5
lim =)o cllngo (55Gn) lr=1d0 = . |
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