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Abstract

We investigate the existence and smoothness of hairs for some transcen-
dental entire functions. We show their existence and smoothness under a
general setting. This is applicable for the function P(z)e?(?), where P(z) and
Q(z) are polynomials. This generalizes the previous results by R.L.Devaney,
M.Krych and M.Viana.

1 Preliminaries

Let f be an entire function and f™ denote the n-th iterate of f, that is,

n times
s em—
fr=Fofo o}
Recall that the Fatou set F(f) is the set of point z where {f"}52, forms a normal family
in a neighborhood of z. We call the complement of F(f) the Julia set of f and denote
it by J(f). By definition, F(f) is open and J(f) is closed in C. Also J(f) is compact if
f is a polynomial, while it is non-compact if f is transcendental. This is due to the fact
that oo is an essential singularity for a transcendental entire function.
The purpose of this paper is to construct so-called hairs, which is subsets of the
Julia set J(f), and to show their smoothness for a certain class of transcendental entire

functions. Devaney and Krych first constructed hairs for exponential family E)(z) =
Ae* (A € C~ {0}) in 1984 ([DK]). Here we briefly explain their results. Define

Bi={z|Q@-1)r<Imz+0< 2+ 1)}, O=argre[-mmn), l€Z

then we can define itinerary S(z) := 8 = (s, 81, ,8n, ) € ZN for a point z € C by
E3}(z) € B,,.
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Theorem 1.1 (Devaney-Krych, 1984). If s € ZN satisfies the following “growth con-
dition”:
0 €R, "n, (2lsa| + )7+ 18] < g"(z0), g(t) = [Ale,
then there exists a continuous curve h,(t) C J(E\) which satisfies the following:
(i) Ex(hs(t)) = hos)(g(t)), where o is the shift map on Z~,
(i) EX(hs(t)) = 0o (n — o0) for every t. a

The curve h,(t) is called a hair. Viana showed that this hair he(t) is a C* curve ([V]).

Later, the existence of hairs was proved for some other class of functions, like Aze? or
the complex standard family (see [F]. Note that this did not mention the smoothness
of hairs). In this paper we consider the existence and smoothness of hairs under a
general setting. In particular we generalize this result for the exponential functions to
f(z) := P(2)e?®, where P(z) and Q(z) are polynomials. We state our detailed setting
and the results of existence in §2. In §3 and §4 we explain the smoothness of hairs. In
85 we state the result for f(2) = P(2)e9) as an application of our general results.

2 C° a priori estimates — existence of a hair h(t) —

Definition 2.1. Let p : [1,,00) — R, be a positive function (called weight function).
Define for a function ¢ : [r,,00) — C,

1ollpr = sup lo()lp(t).

The set of continuous functions ¥ with |||, < oo forms a Banach space X, ..

Our setting is as follows:

A: Let f, : U, = V, (n = 0,1,2,...) be holomorphic diffeomorphisms between un-
bounded domains U,, and V,, in C. The reference mapping g : [7.,00) — R is an increas-
ing C* function such that g(t) > ¢ for t > 7.. (Hence g"(t) = oo (n — 00).) Denote
Tn=9" (%) (n=0,1,2,...).

For the application in §5, we will take f, as a restriction of a single function f to some
domains Up,, that is, f, := f|y,, but in general we do not need this.

Our goal is to construct functions Ay, : [1,,00) = U, (n=0,1,2,...) satisfying
Jnohy(t) =hnpr10g(t) for t € |m,, 00), (1)

and show their smoothness. In order to construct such functions, we start with a function
ki : [m,00) — C, then define h;,, : [7,,00) = C (0 < n < I) by “lifting” it successively
sothat forn=101-1,1-2,...,1,0,

fn o hl,n(t) = hl,n+1 o g(t) (t € [Tm OO)) (2)

See Figure 1 and Diagram 1 below. Once h;,(t) (I =0,1,2..., 0 < n <) are defined,
our h,(t) will be obtained as llim hin(t). To ensure the convergence and the smoothness,
—00
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we need to impose various conditions on f, and h,, together with auxiliary functions
R(t), px(t) and ox(t), which are defined below. In particular, the initial curves should
be chosen so that hy1n — hny is small (or fn 0 Ann — Bpy1n41 © g DOt too big). So we
assume the following:

hoo  hoy  hag
hsg  hsy  hsa  hss

’

hn,O hn,l hn,2 hn,3 oo hn,n

hnt10 Pnt11 Pnsr2 hnnasz o0 Rogin Bnsian
hio hi hig  hig ... hig hiny1
(l—=00) | { ! {4 {
ho hi ha hs ... ha hn+1

Diagram 1.
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B: (Initial curves) Suppose that continuous functions Py Pngip © [Tny0) = U, (n =
0,1,2,...), R:[n,00) = R, and a constant 0 < x < 1 satisfy for ¢t € [Tn, 00):

® fn 0 Bns1n(t) = hns1n41 0 g(2); (3)
® hns1n(t) = hna(t) < (1= K)R(2); (4)
o There exists an open set B,(t) C U, with B,(t) C U, such that
fn: Ba(t) = D(hns1n41(9(t)), R(g(2)))
is bijective. In particular, D(hpi1n41(9(¢)), R(g(t))) C Vi; (5)
e For z € B,(t), |f.(2)] ?((t))) > l (6)

We have a sufficient condition for B.

Lemma 2.2. Suppose that continuous functions hn, : [Th,00) = U, (n = 0,1,2,...)
and constants R > 0, 0 < k < 3 satisfy for t € [r,,00):

D(hn+l,n+1(t,)’ R) C V,, wheret' = g(t) € [Tni1, 00); - ()
| fn 0 Pon(t) — hatins109(t)] < R/3; (8)
|fr (P (t))] > 16/k. (9)

If we choose R(t) so that
4R nf{
0= ()] =~ 2O S sy

(which is possible by (9)), then there ezist hpi1p : [Tn,00) = U, (n=0,1,2,...) satisfy-
g B. O

(10)

Let us denote p.(t) = 1/R(t). Using the norm || - ||, defined in the beginning of this
section, the above condition (4) can be expressed as ||hnt1n — Anpllpem < 1 — K.

Under the above settihg, we can show the existence of a hair A, (¢) (n =0,1,---).

Lemma 2.3. Under the assumptions Aand B, there exist continuous functions hin :
[Tn,00) = C (1=0,1,2,.. , 0<n <) such that

Jnohin(t) =hin10g(t) for t€lr,, ), n<l; (11)
”hH-l,'n. - hl,n“p,. Tn (1 - 5) l—-n,; (12)
”hl,n - hn,n”p. Tn <1- K', ", (13)

Therefore there exists continuous functions h,(t) = llim hin(t) satisfying
—00

Janohn(t) =hny10g(t) for t €[m,00) and |hy(t) — Ana(t)] < R(t). (14)
0
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3 (! estimates

We are now going to show that h, are C' under additional assumptions. If we know
that h;, are C!, then the differentiation of (11) gives

log by ,, = log hipi1 © g+ log g —log f, o hyp. (15)
Fix an [ and denote
wn(t) = lOg h;. (t) and ’(\bn(t) = log h‘l+1 n( ) (n = 01 te al)’ (16)

where an appropriate branch of log should be taken along the hairs so that 1, (t) —tfn(t) =
0 (t = 00). Then it follows from (15) that forn =1,2,...

d)n - ";Z'n = ('¢'n+1 - 1/’;n+1) °g-— (log f1’7, o hl,n - log f'r,). ° hl+1,n)' (17)

Our goal is to derive a geometric estimate of the form

[%n(t) = Pnlt)] < constsg ™

with 0 < kg < 1. Note that Theorem in the previous section gives an estimate for the
second term of (17) by const &'~". In order to give recursive estimates on ¢, — ¥ from
n = | down to n = 0, observe the following fact: if ¥, — 1&,,“ goes to 0 as t — oo, by
composing g, (¥ni1 — Yns1) © g may go to 0 faster. This can be formulated in terms of
the norm || - ||, With an appropriate weight function po : [7.,00) = R*. If fact for a
function ¥ : [, 00) = C, we have

po(t)
1% © gllpo,r = Sup [%(9(t))lpo(t) = sup ( o) [ (g(t))lpo(g(t))

pO(t) A s ’ ’ u ()
S(St?fpo(g(t))) (éﬁ‘(’ﬂ'w“)'p"(t)) (Sfpo(g( D)W””” 1)

t

So if sup po(t)
t>r po(g(t)) )
possibility to prove the geometric estimate on ¥, — 9.

For further estimates (C*, k = 1,2,...), we need to prepare the following.

< 1, then || - || pp,r-norm is contracted by composing g. This gives a

Definition 3.1. In what follows, we shall introduce weight functions py, oy : [T, 00) —

R, to measure the norm || - ||, of w,(:zl — ¢ and the norm || - lloy,r Of W for k =
0,1,2,..., with ox(t) < pi(t). Given those weight functions, define

pe(t)lg’ (t)[* -
a(t) = —22 - 1 and au{T) = sup aw(t

+() pe(g(t)) +(7) t.>_£) ()
for k=0,1,2,... and t,7 > 7.. We also need

Dai(t) = sup |(10g £)® (2),
zE€By(t)

where B,(t) := {Z €U, :|fn(2) - hn+1,n+l(g(t))| < R(g(t)))|}-
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Suppose there exist weight functions pg, 0g : [Tx.00) = R, satisfying Cy, Dy and Fy.
Col hu, hl+1,l are Cl with h;,l(t)’h;-i—l,l(t) 75 0 and ’t,[)l’l(t) = logh;vl(t), wl+1,l(t) =
log hi,,,(t) satisfy

H1/)l+1,l - "abl,l“po,‘rz < and “wl,lllao,n < 00.

S . po(t)
Dg: lim ag(7) = limsup ——~—
o Hxg Golr) = limsup 2 00

Fo: Ky :=supsup D, 1(t)R(t)pe(t) < oo.

n20 t>7,

Lemma 3.2. Suppose A, B, Cy, Dy and ¥y are satisfied. Then h;, are C* (I =
0,1,2,..., 0 £ n < 1) and there exists kg < 1 and Co such that Yi.(t) = loghj,(t)
satisfy

1s1m = Vinllpora < Cokg™ (1=0,1,2,..., 0<n <), (19)
Therefore the limits h,(t) are also C* and v, (t) = log bl (t) satisfies
||tn — ¢n,n”po,rn < Co/(1 —Ko) and llwnHao,‘rn < Co/(1 — ko) + “"pn nlloorn < 00.

4 Higher order derivatives — estimate for ¢,§l’“)(k =1,2,...)—

We now try to apply similar estimates as in the previous section to ¢l(’;) (k=1,2,...),
but the estimates must involve with more terms. Differentiating (15) and using hj, =
e¥n, we have

IM n=(Yins109) -9 + (logg) = ((log f.)' 0 hu) ¥, (20)
= (¥n+1°9) * (9) + (Yl 09) - 9" + (logg")"
~ ((og f,)" 0 hu) €20 — ((log fr)' © hun) P9 . (21)
More generally, it is easy to check the following by the induction:
Lemma 4.1. Fork=1,2,..., we have
z(,'ff _ ( l(l;)+1 o g) (@) + Z const (W) ° g) gu) .. gl 4 (logg)®
1<0<k
G122 je21
J1t+ie=k A
- Z const ((log )00 hl,n) ew‘v“z,b,(f;) e l(’n” ), (22)
1<e<k, 0<v
J12 2 Jp21
i+ tiu=k

where the coefficients “const” are some constants depending the indices £, j1, j2,.... O
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Remark 4.2. (1) Note that in the right hand side of (22), only the first term contains
k-th derivative of v, and all other terms involve lower order derivatives of ¥, (or none).
Therefore if lower order derivatives are “under control,” it is expected that we can proceed
as in the previous section.

(2) For the exponential map f(z) = Ae* and g(t) = |Ale!, we have (log ') = 1 and
(log f)® =0 (£ > 1). So the formula (22) simplifies substantially. Moreover giv) ... gl3®)
is a constant multiple of g which also simplifies the expression.

Suppose weight functions pg, 0% : [T, 00) = R, are given. We require the following:
Cyi: huy, hiy1y are C*+1 and oy, = loghy; and 41, = log by, satisfy

k k k
W% = 9 )loem <00 and %7 lopm < o0.

Dy lim ax(7) < 1.
T—>00

Ei: For1</{<kandjy,...,Je > 1with 5, + .- -+ jy =k,

pe(t)lg™)(2) -+ g9(1)]
g pe(9(®))

Fr For 1<0<k,v>0,4;,...,5, > 1 with €+, + -+ jo =k,

P (t)
D,, t)R(t
supsup Dnens R -y o

Pr(t)
Supsup Dntlt) o0 (@) - 05, ()

: . pe(t)  a;(t)
ifvr>1, for1<i<v, supsupDy,,(t *
2 PN O R DR

Here if v = 0, set o}, (t)---0;,(t) = 1. Note that the last condition should be satisfied
only when v > 1.

< 00;

< Q.

Under these assumptions, we can show the following:

Lemma 4.3. Letk > 1. Suppose A,B,C; (0<j<k),D; (0<j Sk),Ej (1<j<k)
and F; (0 < j < k) are satisfied. Then h, are C**1 (n = 2,3,...) and there exist
constants 0 < kx < 1 and C}, such that '

19500 = Y Nl < Cimt (n=0,1,2,...). (23)
Therefore the limits h(t) are also C**! and v, = log !, satisfies

[P = 6B pera < Ci/ (1= 8x)  and |95 log,rms [[¥lop,r < Ci.
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5 Examples

As an application of our results, we consider the following function:

f(2) = P(2)e?®  P(2) =bpz™+---+ by, Q(2) = agz’® +---+a12+aq
m=degP >0, d=deg@Q > 1, (aq #0, b, #0).

By a linear change of coordinate and multiplying P by €%, we may assume that aq = 1
and ag = 0. Since the function f(z) = P(2)e?® is structurally finite, we can define the
itinerary s € ({0,1,--- ,d — 1} x Z)N, where d = deg Q. See Figure 2. For the details,
see [Ki]. So'by taking f, : U, = V, to be the restriction of f to a suitable domain U,
according to s, we can apply our results for general setting and obtain the smooth hair
he(t) corresponding to s. Here for simplicity, we consider only a fixed itinerary s, that
is, a constant sequence of a single symbol. So the hair h,(t) is invariant as a set for this
s. Also fo = fi =--- = f, = -+ and this is a restriction of f to a suitable domain
Uy=Uy=-=U,=---.

Let g(t) = t™e!" be the “reference function” to compare.

Figure 2. The case of d =3

Lemma 5.1. For any € > 0, there erists R > 0 such that for t € C with |t| > R, there
erists a unique w = w(t) such that [w| < e, P(t(1 + w))eRt+w) = gmet’ gnd |tw| < C,
where C' is a constant. O

To apply the previous result, we change the notation as follows: We set
h0,0(t) = hl,l(t) = e e == hn,n(t) — ..

and denote this by ho(t). Also we set hn(t) := hno(t). Then by using the function w(t)
in Lemma 5.1, we define ho(t) and start constructing h,(t).
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Proposition 5.2. There exist . > 0 and C*®-function hy : [T%,00) = C such that
hy(t) # 0 and

f o holt) = g(t) (= t™e™) (24)

ho(t) :=t(1 + w(t)) =t +O(1) (ast— oo) (25)

(log ky(£))® = o(#) (k=0,1,2,...). (26)

Moreover hg, hy := f~}(hg o g) satisfies A and B with R(t) = Fic—oT_r;s(%' 0

Proposition 5.3. Let ox(t) = t*+? (k =10,1,2,...). Suppose that px(t) (k =0,1,2,...)
satisfy

ox(t) < pi(t) (27)

ey 2 < @
pi(t) < const EF% (1<e<k) (29)
pi(t) < const - tg(t) (30)

pu(t) < const ft’gf? (k>1) (31)
pi(t) < const tﬁ’igt.)l (1<j<k). (32)

ThenC; 0<j<k),D; 0<j<k)E; (1<j<k)andF; (0<j<k) are satisfied.
O

et
Corollary 5.4. For a suitable choice of const and pr > 0, pi(t) = const:—m: satisfies the

hypothesis. |
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