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NATURAL TRANSFORMATIONS ASSOCIATED TO
ADDITIVE HOMOLOGY CLASSES

SHOJ YOKURA(*)

1. INTRODUCTION

For a topological space X a homology class a(X) shall be called additive if we have
that (X UY) = a(X) + a(Y). Almost all invariants, for example, Euler-Poincaré
characteristic, signature, all the classical characteristic cohomology classes of manifolds,
etc. are additive. When it comes to the case of singular spaces, characteristic classes such
as Chern—Schwartz—MacPherson class [23], Baum—Fulton—-MacPherson’s Todd class [9],
Goresky—MacPherson’s L-class [20], Cappell-Shaneson’s L-class [15] are also additive.
In fact, these characteristic (co)homology classes are all formulated as natural transforma-
tions from suitable (contravariant) covariant functors to the (co)homology theory. This is
an important or key aspect of characteristic (co)homology classes.

Besides these characteristic classes formulated as natural transformations, there are sev-
eral important homology classes which are usually not formulated as such natural trans-
Sformations; for example,

Chern-Mather class ¢ (X) (e.g., [23]),

Segre—Mather class sM (X) (e.g., [38]),

Fulton’s canonical Chern class ¢f' (X) ([17]),

Fulton—-Johnson’s Chern class cZ'7 (X) ([18]),

Milnor class M(X) (e.g., [1], [11], [25], [40], etc.),
e Aluffi class ax ([2], [10]), etc.

In [43] we captured Fulton-Johnson’s Chern class as a natural transformation and also
captured the Milnor class M(X) as a natural transformation, which is a special case of the
Hirzebruch—Milnor class (also see [14]), using the motivic Hirzebruch class [12].

Motivated by the construction or approach in [43], in [47] we generalize the results of
[43] in more general situations and also we consider very abstract situations in category-

functor.
In this paper we give a survey of our results of [47] and finally we make a remark on

the recent theory of Intersection Spaces due to Markus Banagl [5] (see also [4]).

2. SOME BACKGROUNDS

Theories of characteristic classes of singular spaces which have been developed so far
are all formulated as natural transformations from certain covariant functors F to the
homology theory H.,, satisfying a normalization condition that for a smooth variety X
the value of a distinguished element Ax of F(X) is equal to the Poincaré dual of the
corresponding characteristic cohomology class of the tangent bundle:

Tet : F(—) — H.(~) such thatfor X smooth 7(Ax) = cl(TX)N[X].
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Here are the three well-known and well-studied ones:
(1) MacPherson’s Chern class [23] is the unique natural transformation
cMac . F(X) — H (X)

satisfying the normalization condition that for a smooth variety X the value of the
characteristic function is the Poincaré dual of the total Chern class of the tangent
bundle: cM*¢(1x) = ¢(TX) N [X].

(2) Baum-Fulton-MacPherson’s Todd class [9] is the unique natural transformation

tdBFM . Go(X) - H (X)) Q

satisfying the normalization condition that for a smooth variety X the value of the
sturcture sheaf is the Poincaré dual of the total Todd class of the tangent bundle:
tdBFM(Ox) = td(TX) N [X].

(3) Goresky— MacPherson’s homology L-class [20], which is extended as a natural

transformation by Sylvain Cappell and Julius Shaneson [15] (also see [39)), is the
unique natural transformation

LE% : Q(X) » Ho(X)®Q

satisfying the normalization condition that for a smooth variety X the value of the
shifted constant sheaf is the Poincaré dual of the total Hirzebruch-Thom’s L-class
of the tangent bundle: LSS (Qx [dim X)) = L(TX) N [X].
The motivic Hirzeruch class constructed in [12] (see also [29], [28] and [44]) in a sense
unifies these three theories cMe¢, tdBFM and LCS.

Let C be a category of topological spaces with some additional structures, such as the
category of complex algebraic varieties, etc. An additive function on objects Ob5(C) with
values in R-homology classes is a function « such that

e a(X) € H.(X;R)
e a(XUY) = a(X) + a(Y). More precisely,
(X UY) = (tx)sa(X) + (ty)ra(Y)
withex : X - X UY, ey : Y — X UY being the inclusions.

A categorification of the additive function o is meant to be an associated natural transfor-
mation from a certain covariant functor {(—) to the homology theory H,(—; R)

To - 0(—) - H*(_aR)
such that for some distinguished element 6x € {(X) of a special space X
Ta(0x) = a(X).

To construct such a covariant functor {(—), we introduce generalized relative Grothen-
dieck groups, using comma categories in a more abstract category-functorial situation.
The construction of such a covariant functor is hinted by the definition of the relative
Grothendieck group Ko(Vc/X) and more clearly by the description of the oriented bor-
dism group £2,(X). This bordism group Q,,(X) of a topological space X is defined to
be the free abelian group generated by the isomorphism classes [M LN e ] of continuous

maps M 2, X from closed oriented smooth manifolds M of dimension m to the given
topological space X, modulo the following relations

M M5 X+ B X = o a2 x,
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(2) 0=[0— X],
/ !
@) it M 2 X and M’ % X are bordant, then [M 2 X] = [M' & X).
In the definition of the bordism group two categories are involved:

e the category coC*™ of closed oriented smooth manifolds,
e the category 7 OP of topological spaces

Here we emphasize that even though we consider a finer category coC* for a source space
M the map h : M — X of course has to be considered in the cruder category T OP.
The bordism group Q..(—) is a covariant functor

Q. : TOP — AB,

where AB is the category of abelian groups. We can consider this covariant functor on a
different category finer than the category 7 OP of topological spaces, €.g., the category V¢
of complex algebraic varieties. Namely we consider continuous maps h : M — V from
closed oriented manifolds M to a complex algebraic variety V', and we get a covariant
functor
Q. : Vo — AB.

In this set-up three different categories coC*®, TOP and V¢ are involved, i.e., we have the
following forgetful functors

coc® £ ToP &y
where “s” and “t” mean “source object” and “target object”.

A commutative triangle
M Y Y]
|4

really means a commutative triangle in the base category 7 OP:

fs(®) > §, (M)

\/

More generally we can deal with a cospan C, E» B < C; of categories C,, C;, B equipped
with coproduct structures:

From this cospan C, S, & C: we get the canonical generalized (S,%)-relative

Grothendeick groups K (Cs S, B /% (—)) and also from the following commutative dia-
grams of categories and functors

Cs-i)'B"(—'-x—-Ct

N A

BI
we obtain a categorification of an additive function a(X) on objects Obj(C,) with values
a(X) e F(X):
K(Cs S B/3(-)) ~T'(-).
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In particular, for the following commutative diagram

Cs _('5_;..3..;_6__08

~NLe

BI
with & : C — B being a full functor, then the natural transformation 7, : K (Cs S,
B/%(~)) — &'(—) satisfying the condition that 7, ([(V, V,idv)]) = a(V) € & (V) for
V € Obj(C,) is unique.
We apply these to geometric situations and in particular all additive homology classes
such as characterisitic classes cited above are captured as natural transformations (cf. [41]).

3. GENERALIZED RELATIVE GROTHENDIECK GROUPS

Definition 3.1. Let C be a bimonoidal category equipped with two monoidal structures
& with unit § and ® with unit 1. The Grothendieck group K (C) is defined to be the free
abelian group generated by the isomophism classes [X] of objects X € Obj(C) modulo
the relations

X]+[Y]=[XoY], 0=][0.
If we furthermore define

(X]x[Y]:=[X®Y],

then the Grothedieck group K (C) becomes a ring, called the Grothendieck ring of the
bimonoidal category.

Example 3.2. The category of sets, the category of topological spaces, the category of
manifolds, etc. are bimonoidal categories with the disjoint sum and the Cartesian product.

A functor @ : C; — C, of two monoidal categories is a functor which preserves @ and
® in the relaxed sense that there are natural transformations:

®(A) ®c, ®(B) —» ®(A &¢, B),

®(A) ¢, ®(B) — ®(A ®¢, B).
In some usage it requires both isomorphisms

O(A) @c, ®(B) = ®(AS¢, B)

@(A) Qc, (P(B) = Q(A ®c, B)’
in which case it is sometimes called a strong monoidal functor. However, the cases with
which we deal satisfy that as to the monidal structure & we have the isomorphism ®(A4)&¢,

®(B) = $(A @®¢, B), but possibly we have ®(A4) @¢, ®(B) & ®(A ®¢, B), as given in
the following example.

Example 3.3. Let H.(—) : TOP — AB be the integral homology functor. Then we have
H.(XUY)=H(X)® H.(Y),

but in general we have
Ho (X xY) 2 Ho(X) @ H(Y)
and we have just a cross product homomorphism

Xt Hy(X) @ Ho(Y) — Ho (X X Y).
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However, for a field k, the k-coefficient homology functor H.(—;k) = H.(-) ® k :
TOP — AB is a strong monoidal functor, i.e., we do have the isomorphism

H,(X;k)® H.(Y;k) =2 Ho(X X Y3 k),
which is the Kiinneth Theorem.

Lemma 3.4. (1) Let C, and Cy be two categories equipped with coproduct structures
U and let ® : C; — Cq be a functor preserving the coproduct structure strongly,
ie,®(AU B) = ®(A) U ®(B) for any objects A, B in C;. Then the map

0. : K(C1) = K(C), 2.([X]) :=[2(X)]

is well-defined and a group homomorphism. Namely, the Grothendieck group K
is a covariant functor from the category of such categories and functors to the
category of abelian groups.

(2) Let C; and Cy be two bimonoidal categories equipped with coproduct structures
and product structures and let ® : C; — Cy be a strong monoidal functor. Then
the map ®. : K(C;) — K(C2) is a ring homomorphism.

Definition 3.5. Let
c. &l

be two functors among the three categories C,, C; and B. This shall be called a cospan of
categories. The comma category (& | T) (e.g., see [22]) is defined by

e Obj((S | X)) consists of triples (V, X, h) with

V € 0bj(C,), X € Obj(C;), h € Homg(S(V), 3(X))
e Homs;1)((V, X, h),(V', X', h")) consists of the pairs (gs, g:) where
gs: V = V'€ Home,(V,V’), g:: X = X' € Home, (X, X')

such that the following diagram commutes in the base category B:

S(v) 29, g(v)

A

TUX) E(—g:)_) T(X")

Definition 3.6. Let C; = B & C; be a cospan and let (& | ) be the above comma
category associated to the cospan. We define the canonical projection functors as follows:
(1) 7 : (6 | ®) — C; is defined by
e for an object (V, X, h), m((V, X, h)) := X,
o fora morphism (gs, gt) : (‘/a X) h) - (V,, X,a hl)s ﬂ't((QSa gt)) =Gt
(2) ms: (6| %) — C, is defined by
e for an object (V, X, h), 7s((V, X, h)) :=V,
e for a morphism (gs, g¢) : (V, X, h) — V', X', h'), ms((gs, 9t)) := gs-

Namely a cospan of categories C, S, B C: induces a span of categories

s‘ii(Glz)Lct



SHOJT YOKURA(*)

Definition 3.7. (e.g. see [22]) Let § : C — D be a functor of two categories. Then, for an
object B € Obj(D), the fiber category of § over B, denoted by F~1(B), is defined to be
the category consisting of
e ObjF~*(B)) = {X € 0bj(C)|§(X) = B},
o Homg-1p)(X,X') = {f € Home(X, X') | F(f) =idB}.
(In this sense it would be better to denote the fiber category by §~1(B,idg) instead of
$7H(B))
Example 3.8. As above, let us consider a cospan of categories and its associated span of
categories:
c.&B8ic, ¢ @Gl C
(1) For an object X € C;, the fiber category 7; }(X) is nothing but the G-over
category (& | F(X)), whose objects are objects S-over T(X), i.e., the triple
(V, X, h), and for two triples (V, X, h) and (V’, X, k') a morphism from (V, X, h)
to (V', X,h') is g, € Home, (V, V') such that the following triangle commutes:

Sl(gs)

\ /h’

(2) Furthermore, if C; = B and =zd5 is the identity functor, then the above S-over
category (& | X) is the standard over category (B | X), whose objects are
objects over X, i.e., morphisms & : V — X, and for two tmorphisms A : V —
Xandh : V' — X amorphismfromh : V - Xtoh:V — Xisg €
Hompg(V, V') such that the following triangle commutes:

G(V’)

(3) For an object V € C,, the fiber category n;*(V) is nothing but the F-under
category (S(V) | %), whose objects are objects T-under S(V), i.e., the triple
(V, X, h), and for two triples (V, X, k) and (V, X', ') a morphism from (V, X, h)
to(V,X',h')isgs € H omct(X X' ) such that the following triangle commutes:

m/ \

—=3(X').

Similarly, we can think of the ‘I-under category (V | %) and the under category
(V1 B).

Proposition 3.9. Let C, S, 52 C: be a cospan of categories. Then a morphism f €

Home, (X1, X2) gives rise to the functor between the corresponding fiber categories.
(s 1 1 (X)) = mpH(Xa),

which is defined by
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(1) For an object (V, X1, h), (f)+((V, X1,h)) := (V, X2,%(f) o h).
(2) For a morphism (g,,idx,) : (V, X1,h) = (V', X1, ') withg, € Home, (V,V’),

(S(f)*((gs’idxl)) = (gs’idxz) : (Va X2vs(f) oh) i (V',Xz,‘f(f) © h’)

S(V) J >-G(V')

UX1)
) [ X(f)on'

T(f)oh

T(Xs) .

Lemma 3.10. Let C,,C;, B be two categories equipped with coproduct structures and let

Cs S B & C: be a cospan of categories. Assume that both functors & and ‘% preserve
the coproduct structures strongly, i.e., S(V UV') = (V) US(V)and T(X U X') =
T(X) UZ(X'). Then for each object X € Obj(C;) the fiber category 1 (X), i.e., the
G-over category (& | %(X)) is a category equipped with the coproduct structure

(V,.X,R) UV, X,K) = (VUV' X, h+ k).

Corollary 3.11. Let the situation be as above. A morphism f € Home,(X1, X3) gives
rise to the canonical group homomorphism

L) = K(my H(X1)) = K(m7 ' (X2)),
and
K(m;7 (=) :C — AB
is a covariant functor from the category C; to the category of abelian groups.

Definition 3.12 (Generalized relative Grothendieck groups with respect to a cospan of
categories).

(1) LetCs S & C; be functors of categories equipped with coproduct structures
and for an object X € C;, the Grothendieck group of the fiber category of the
projection functor m; : (& | %) — C; is denoted by

K(Cs S B/Z(X)) = K(n7 (X))

and called the generalized (S, %)-relative Grothendieck group of X. This is a
covariant functor from C; to AB.

@) IfC, = Band T = idg, then K(Co S B/F(X)) is simply denoted by K (C, >

B/X).
) f & = T = ide, : Cs — C, is the identity functor, then the above idc-relative
Grothendieck group K(C ey, Cs/X) is simply denoted by
K(Cs/X)

and called the relative Grothendieck group of X.
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Remark 3.13. If X is the terminal object pt in the category of C;, then all the above relative
Grothendieck groups is isomophic to the Grothendieck group K (C,) of the category Cj:
K€ S B/T(ot) 2 K(C. S B/pt) 2 K(Co/pt) = K (C,).

Proposition 3.14. Let C,,C;,C:,C{, B, B’ be categories equipped with coproduct struc-
tures and suppose we have the following commutative diagrams of functors among them:

c, -8 . B 2% _

l@a lfbb Jfbt
C. B C;,
& ¥
(1) We have the canonical functor of two comma categories (G | %) and (&' | ¥'):
2: (619 - (@' 1Y),
which is defined naturally as follows:
(a) for an object (V,X,h) € Obj((& | T)),
S((V, X, b)) := (25(V), B:(X), ®5(h)),
(b) for amorphismg;: (V,X,h) — (V', X', h') withg € Home, (V, V')
®(g) := @,(g).
(2) In the following special case

c. —2 . B X ¢

lidcs l@b J,idct

Cs > B« Cs,

the covariant functor ® : (G | %) — (&' | F') gives rise to the canonical
natural transformation from the functor K (C, S, B/%(~-)) : Ct — AB to the

functor K (Cs 25 B//T/(=)) : C; — AB:
o, : K(C, & B/3(-)) - K(C, &5 B/F/(-))

L.e., for amorphism f € Home, (X1, X2) the following diagram commutes in the
category AB:

K(C, S B/Z(X)) 2 K(C, S B/F(X)))
‘I(f)-rl ‘[’S’(f).
K(C. S B/T(X2) —— K(C & B/T (X)),

Here &, : K(C, S5 B/%(X)) — K(Co S5 B /3/(X)) is defined by
®.([(V, X, h)] := [(V, X, @ (h))].
Theorem 3.15 (A “categorification” of an additive function on the objects). Let the situa-

tion be as in Proposition 3.14 and suppose that B’ is the category AB of abelian groups.
Furthermore suppose that there is a function o on Obj(C,) such that

e a(V)eG'(V)
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e aisadditive, i.e.., a(V U V') = a(V) + a(V'), more precisely,
a(VUV’) =6 (w)V)) + & (v )(a(V)),
where vy : V - VUV and vy : V' — V UV’ are the inclusions.
Then the function o can be turned into the following two natural transformations:
() 7o : K(Cs s, B/%(-)) — %'(—) on the category C;,
To([V, X, B]) := ®(h)((V)) € T'(X).

(2) 7o : K(Cs S, B/&(—)) — &'(—) on the category C,,
7o ([V, X, h]) := ®p(h)((V)) € &'(X).
Here we consider the following commutative diagram:
¢, - B S ¢,

[

Cs » B Cs,
(G} &
And if there is a natural transformation 7., : K(C, S, B/6(-)) —» &(-)
satisfying the condition that
To([V,V,idv]) = a(V) € §'(X),

then 7. ([V, X, S(h)]) = 1o([V, X,S(h)]) for any morphism h € Home,(V, X).
(3) If & : C; — B is a full functor, then a natural transformation 7 : K(Cs 5,

B/S(~)) — &'(—) on the category C; satisfying the condition that

1o([V, Vyidy]) = a(V) € &'(X)

is unique.
4, A CATEGORIFICATION OF AN ADDITIVE HOMOLOGY CLASS

From now we will treat categories of topological spaces with some extra structures, such
as the category of closed oriented smooth manifolds, the category of complex algebraic
varieties, the category of finite CW-complexes, etc. The category B’ is the category AB
of abelian groups and the functor ¢, : C; — AB, etc, is the homology functor.

Since we use the homological pushforward f. : H.(X) — H.(Y) for a continuous
map f : X — Y, we require the properness of f. So, we modify the previous generalized
relative Grothendieck group with respect to a cospan of categories slightly.

Definition 4.1. (Generalized “proper” relative Grothendieck groups) Let C4,C; and B be
some categories of topological spaces with extra structures which are possibly different
respectively, and let

¢, &8l
be a cospan of functors, which are, for example, forgetful functors or inclusion functors,
etc. For a space X € Obj(C)

Kk**(c, & B/ (X))

is defined to be the subgroup of the the generalized realtive Grothendieck group K'(C, s,

B/%(X)) generated by
[(V, X, h)]
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with b : §(V) — %(X) being a proper map. Similarly we have the “proper” versions:
KPr(C, 8, B/X) and KPTP(C,/X).

Proposition 4.2, (1) Let C™ be the category of smooth manifolds and let f : C*® —
TOP be the forgetful functor. Then KPP (C> Lr OP/X) (also K(C*® f,
TOP/X)) has a cross product structure on the category T OP:

KProP(C® AR TOP/X)® KPTP(C™® 1, TOP/X) = KProP(C™® RR TOP/X xY);

(V,X,h)] x [(WYk)] =V xW,X xY,h x k).

(2) Let o be an additive R-homology-class-valued function (simply called an additive
homology class) on Obj(C*) with R being a commutative ring, i.e., it satisfies
that

e a(V) e H.(V;R) and
o a(VUV') = (w)u(a(V)) + () (V"))
where vy : V - VUV and vy : V — V U V' are the inclusions.
Then there exists a unique natural transformation
To KPTOP(COO L TOP/—) — H*(—;R),
satisfying the condition that for a di]j‘erentiable manifold V € Obj(C™)
Ta([(V V), ids(v))]) = (V).
(3) If furthermore the additive homology class o is multiplicative, i.e.,
a(VxV=a(V) x a(V'),
then 1o, : KPTOP(C*® Lr OP/—) — H.(—; R) commutes with the cross prod-
uct, i.e., the following diagram commutes:

KProp(C iR TOP/X) ® KProp(C™® L4 TOP/Y) =% H.(X;R)® H.(Y;R)

<| E

Keror(ce L Top/X x Y) ——  H.(XxY:R),

Ta

Corollary 4.3. Let C& be the category of complex smooth manifolds and let cf(E) €
H*(X; R) be any muliplicative characteristic class of complex vector bundles, i.e., c{(E®
F) = cl(E) U cl(F) for complex vector bundles E, F over the same space. Then there
exists a unique natural transformation
Tee : KPTP(CE° i TOP/-) — H.(—; R)
such that for a smooth complex manifold V
Tee([(Vif(V), idgvy)]) = c£(TV) N [V].

And 1oy is also multiplicative, i.e., for any [(V, X, h)], and [(W, Y, k)] we have

Tee([(V, X, )] x (WY, K)]) = mee(I(V, X, )]) X 7ee (W, Y K)]).

Corollary 4.4. Let V¢ be the category of complex algebraic varieties and let SV¢ be the
category of smooth varieties, which is a full subcategory of Vo and let v : SV — V[ be
the inclusion functor and consider the cospan

. d
SVe - Ve —C Ve
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Let /(E) € H*(X; R) be any multplicative characteristic class of complex vector bun-
dles. Then there exists a unique natural transformation

Tee : KP'P(SVe = Ve/ =) — Hu(— R)
such that for a smooth variety V
Tee([(V, Vidy)]) = L(TV) N [V].
And T is also multiplicative, i.e., for any [(V, X, h)|, and (W, Y, k)] we have
Tee([(V, X, B)] x (W, Y, K)]) = ee([(V, X, B)]) X Tee((W, Y K))).

Definition 4.5. As above, let ¢/ be any multiplicative characteristic class of complex vector
bundles. For a complex algebraic variety X the cf-Mather homology class c£M°(X) is
defined to be

M XY = v, (cl(TX) N [X]).
Here v : X — X is the Nash blow-up and TX ishe tautological Nash tangent bundle over
X.

Corollary 4.6. Let the situation be as above.
(1) There exists a unique natural transformation
Teesa : KPP (Vie/ =) — Hu(— R)

such that for any variety X we have 7 gma([X x, X)) = ctMe(X).
(2) When ct = c the Chern class, then the following diagram commutes:

KPrP(Ve/X) £ > F(X)
CBRWXD).

Here the natural transformation Eu : KP™P(Vc /X)) — F(X) is defined by
Eu([V 2 X]) := by Euy
where Euy is the local Euler obstruction of V.

Remark 4.7. (1) Using resolution of singularities one can show that there are finitely
many subvarieties V’s and integers ay’s such that 1x = ), - x av Euy, thus
cMac(lx) = YyexaveMe(V). Whether X is singular or not, cY/*¢(1x) is
called MacPherson’s Chem class or Chern—Schwarzt—MacPherson class of X (see
[13, 30, 31]), denoted by cM¢¢(X). It follows from the naturality of the transfor-
mation that the degree of the O-dimensional component of c?%¢(X) is equal to
the Euler—Poincaré characteristic:

[ edteex = x(x).
X

(2) On the other hand, the degree of the 0-dimensional component of the Chermn—
Mather class ¢cM2(X) is the global Euler obstruction Eu(X), which was intro-
duced and studied in [32]:

/ ce(X) = Eu(X).
X
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(3) The above “motivic cf-Mather class” transformation 7 ma : KP™P(Mg/~) —
H,.(—; R) could be considered as a very naive theory of charactenstlc classes of
possibly singular complex algebraic varieties.

So far we dealt with the covariance of the functor K (C, 5B /%(—)). Here we discuss

the contravariance. In the above general set-up, it seems that K(C, S, B/3(—)) cannot
become a contravariant functor with a reasonable pullback. So we consider some special
cases.

Lemma 4.8. The functor KP™P(SV = Vp/—) becomes a contravariant functor for
smooth morphisms on the category Vg, where for a smooth morphism f : X — Y the
pullback homomorphism

f* KPP (SVe - Ve /Y) — KPPP(SVe = Ve /X))
is defined by
AV Y m)) =V, X, 1],

where we use the following fiber square

X———f—>V.

Theorem 4.9 (Verdier-type Riemann—Roch Theorem). Let the situation be as in Lemma
4.8. Let cl be any multiplicative characetristic R- cohomology class of complex vector

bundles. Then the natural transformation 7., : KP™°P(SVc = Vc/—) — H.(— : R) on
the category Vi satisfies the following Verdier-type Riemann—Roch formula: For a smooth
morphism f : X — 'Y the following diagram commutes:

KPoP(SVe S Ve/Y) /4~ H.(Y;R)
| Jeezans®
KProP(SVe 5 Vo/X) —— H.(X;R).

Tet
Now we consider a smaller group
Kprop‘sm (SVC/X)

which is a subgroup of KP"°P(SV¢/X), generated by [(V, X, h)] with h : V — X being
a proper and smooth map.

Theorem 4.10 (SGA 6 -type Riemann—-Roch Theorem). On the category SV let us define
Tep : KPTOP™(SVe/X) — H*(X)
by .
Ta([V 2 X]) = PDx ™ (hu(ct(Th) N [V])).

Here PDx : H*(X) — H,(X) is the Poincaré duality isomorphism given by taking the
cup product with the fundamental class. Then the following diagram is commutative for a
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smooth morphism f : X — Y :
KProPsm(S§Ye/X) LN H*(X)
| [
KProrsm(S§VYe/Y) — H*(Y).

ct

Here the Gysin homomorphism f, : H*(X) — H*(Y') is defined by
fi=PDy !0 f.oPDx.

5. EXAMPLES

5.1. The case of fundamental class. The fundamental class [—] is certainly an additive
(and multiplicative) homology class and we have the unique natural transformation on the
category 7 OP of topological spaces:

n o keere L Top/-) - H(-).

The classical Steenrod’s realization problem is asking if the homomorphism 7| | is sur-
jective or not.
The following results are known (see [27]):

e ([35] and [26, Chapter IV, Theorem 7.37])
7 1 krree L Topix) - @ H(X)
0<i<6

is surjective.
o ([21]) Let CPeincar¢ pe the category of Poincaré complexes, i.e. , topological spaces
which satisfies the Poincaré duality. Then the following is surjective:

n 1: KPercr L rop x) - @ Hi(X).
i#£3

e ([33] and [26, Chapter VIII, Example 1.25(a)]) Let CPseudo be the category of
pseudo-manifolds. Then the following is surjective:

n : KPrereree L 7OP/X) — Ho(X).

5.2. The case of Stiefel-Whitney class. Let V be a differentiable manifold. For a poly-
nomial P(w) = P(w1,ws, - ) of Stiefel-Whitney classes w*(TV') € H*(V,Z,), we let
P(w).(V) € H.(V,Z3) be the Poincaré dual P(w) N[V} of P(w). P(w).(V) is an addi-
tive homology class and we have a unique natural transformation on the category 7OP of
topological spaces

P(w), : K> L TOP/-) - H,(-,Z)
such that for a differentiable manifold X we have

P(w).([(X, f(X), idgx))]) = P(w)«(X).

In particular the Stiefel-Whitney class w, is a typical one.
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If we restrict ourselves to the category VR of real algebraic varieties and we let SVR
be its full subcategory of smooth real algebraic varieties, then we have a finer natural
transformation on the category Vg

P(w). : KP"P(SVR = W/~) — Hi(~, Za).

In the case when P{w) = w, we have the following more geometric “realization” on
the category Vg through constructible functions:

KProP(Syp 5 HR /X) conet F(X)

\/

H.(X,Z5) .

Remark 5.1. For a Poincaré space Thom constructed a Whitney class using a relation
with Steenrod squares [36] (see [24]). Let us call this class Thom-Whitney class, denoted
by wIh(X) € H.(X;Zs2). Then we have the natural transformation
rTh . grror(cPorat L TOP /) — H (= Z0)
defined by
T (V, X, R)]) = huw{™(V).

If we consider the above Whitney class natural transformation

Wy ! Kprop(coo _f_, CPoincmé/_) — H*(“;Z)
on the category CPoi"#€ of Poincaré spaces, then for a given Poincaré space X it is a natural
problem to find a class a € K?P(C% L, cPoinearé / ) such that

w,{a) = wl™(X).

5.3. The case of Pontryagin class. Let V be a differentiable manifold and let P(p).(V') €
H,(V,Z) be the Poincaré dual of a Q-coefficient polynomial P(p) = P(p1,ps, ) of
Pontryagin classes p*(T'V) € H*(V,Q). P(p).(V) is an additive homology class with
Q-coefficients: H.(—,Q) and we have a unique natural transformation on the category
TOP

P(p). : KPP(c® L TOP/-) - H.(-,Q)
such that for a differentiable manifold V' we have

P@).([(V,§(V),idsv))]) = P(p)+(V).

Here of course we can consider a Z-coefficient polynomial.
Furthermore we have a finer natural transformation on the category Vg

P(p), : KP"P(SVR = W/=-) = Hu(-,Q).

If we further restrict ourselves to the categories V¢ and SV, then we have another finer
natural transformation on the category V¢

P(p). : KP"*P(SVe = Ve/—) = Hi(-, Q).

In the case when P(p) = L is Hirzebruch’s L-class, we have the following more
geometric “realization” on the category W through Cappell-Shaneson—Youssin—Balmer’s
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cobordism groups (X )(see [15], [3], [48]):

KPP (SV¢ LN Yo/ X) L > (X)
\ /
H.(X,Q).

Remark 5.2. Asin Remark 5.1, for a Poincaré space Thom constructed a Pontryagin class
using a relation with the signature (see [24]). Let us call this class Thom—Pontryaging class,
denoted by pT*(X) € H,(X). Then we have the natural transformation

7_Th . Kprop(CPoinwré _f_, 7(973/—) SN H*(—;Z)

D«

defined by
T (V. X, h)]) = hupdM(V).

If we consider the above Pontryagin class natural transformation
D Kprop(coo _f_) CPoincaré/_) SN H*(—)

on the category CP°"*® of Poincaré spaces, then for a given Poincaré space X it is a natural
problem to find a class o € KPP (C*® T, cPoincaré /X)) such that

ps(a) = pJ"(X).

5.4. The case of Chern class. Let V' be a complex smooth manifold and let P(c).(V) €
H,(V,Z) be the Poincaré dual of a Z-coefficient polynomial P(c) = P(cy,cz, -+ ) of
Chern classes ¢*(T'V) € H*(V,Z). P(c)«(V) is an additive H-class with H = H.(—,Z)
and we have a unique natural transformation on the category 7OP

P(c). : KPP(C@ L TOP/-) - H.(-,Z)
such that for a smmoth complex manifold X we have
idx
P(c)«([X = X]) = P(c).(X).
Similarly we get
P(c)s : KPTP(SVe = Vo /=) — Hu(—, Z).

In the case when P(c) = c is the Chern class, then we have the following more geo-
metric “realization” on the category V¢ through constructible functions via MacPherson’s

theorem:

KProp(SVg 5 Vo /X ) ——=222t = F(X)
/
\ ;/c?“
Ho(X,Z).

Here const : KP™P(SV¢ = Vo /X) — F(X) is defined by

const([V h, X)) := hu1y.
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5.5. Banagl’s theory of Intersection Spaces. Before finishing the paper we want to men-
tion a possible application of the recent theory of Intersection Spaces, which has been in-
troduced by Markus Banagl [5] (also see [4, 6] and [7, 81). Given a psuedomanifold X he
modifies the space along the singular locus of X without doing anything off the singular
locus of X, which is a kind of “modification” of singularities, depending on the perversity
p. The resulting space is called the intersection space associated to the perversity P and
denoted by 77 X . The reduced ordinary homology H, (IPX) of the intersection space IP X,
which is denoted by HIP X, turns out not to be isomorphic to the intersection homology
IHP(X), but a striking thing about HI? X is that (HI,(X), IH,(X)) forms a mirror pair
in the sense of mirror symmetry in algebraic geometry.

For certain pseudomanfiolds (not in a full generality), such as complex projective alge-
braic varieties, the set {I? X'} of the intersection spaces of X associated to the perversities
D’s satisfy the generalized Poincaré duality, i.e., for the complementary perversities p and
g (which means that  + g = ) there exists a non-degenerate intersection pairing

H(IPX;Q) @ H,—i(IPX;Q) - Q,

where n = dim X. In particular, for the middle perversity 77, the intersection space 1™ X
becomes a (rational) Poincaré space, since 77 is self-complementary, i.e., 7@ + 7 = £.

Since there is a canonical map ¢ : I™X — X, one could consider some distinguished
homology class v™(X) € HIT*(X) (which is supposed to be a reasonable and interesting
invariant in the mirror symmetry) and pushforward it to the original space X

7 (Y"(X)) € H.(X).

We hope or speculate that one could do similar procedures as above and could get a cer-
tain natural transformation of some reasonable classes related to the intersection spaces.
Note that no theory of characteristic classes with values in intersection-homology groups
is available yet.
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