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Introduction

Let $f$ : $(\mathbb{C}^{n+1},0)arrow(\mathbb{C}, 0)$ be a non-constant germ of complex analytic function. From the book of
J. Milnor [11] it is known that:

Theorem 0.1 There is $\epsilon_{0}>0_{f}$ such that, for any $\epsilon,$ $0<\epsilon\leq\epsilon_{0}$ , the map $\varphi_{\epsilon}$ : $S_{\epsilon}\backslash \{f=0\}arrow S^{1}$

defined by $\varphi_{\epsilon}(z)=f(z)/|f(z)|$ on the sphere centered at $0$ with radius $\epsilon$ , is a locally trivial $C^{\infty}$

fibration.

In this theorem, J. Milnor does not assume that the function $f$ has isolated singularities.

The following theorem is consequence of [5] (Theorem 1.2.1):

Theorem 0.2 There is $\epsilon_{0}>0$ , such that, for any $\epsilon,$ $0<\epsilon\leq\epsilon_{0}$ , there is $\eta_{0}>0$ , such that,
for any $\eta,$ $0<\eta\leq\eta_{0}$ , the map $\varphi_{\epsilon,\eta}$ : $(B_{\epsilon}\backslash \{f=0\})\cap f^{-1}(D_{\eta}^{*})arrow D_{\eta}^{*}$ induced by $f$ on the
intersection of the open ball centered at $0$ with radius $\epsilon$ with the inverse image of the punctured
open disc $D_{\eta}^{*}$ $:=D_{\eta}\backslash \{0\}$ , is a locally trivial $C^{\infty}$ fibration.

The proof of 0.2 uses that, locally, the special fiber $f^{-1}(0)$ can be stratified with Thom condition.
Namely, for $1\gg\epsilon>0$ , there is a stratification of $B_{\epsilon}$ , such that $f^{-1}(0)\cap B_{\epsilon}$ is a union of strata and
for any sequence $x_{7b}\in B_{\epsilon}\backslash f^{-1}(0)$ which converges to $x\in f^{-1}(0)\cap B_{\epsilon}$ such that the sequence of
$tangspT_{x_{\gamma\iota}}(f^{-1}(f(x_{n})))$ ha.s a limit $T$ , this limit contains the tangent space of the stratum
which contains the point $x$ .

The existence of such a stratification with Thom condition was proved by using Lojasiewicz in-
equality in [5], Theorem 1.2.1.

Theorem 5.11 of [11] proves that, for $1\gg\epsilon\gg|t|>0$ a fiber of $\varphi_{\epsilon}$ and $f^{-1}(t)\cap B_{\epsilon}$ are diffeomorphic,
and $S_{\epsilon}\backslash \{f=0\}$ is diffeomorphic to $(B_{\epsilon}\backslash \{f=0\})\cap f^{-1}(S_{\eta})$ . Having Theorem 0.2, we know that
$\partial\varphi_{\epsilon,\eta}$ : $(B_{\epsilon}\backslash \{f=0\})\cap f^{-1}(S_{\eta})arrow S_{\eta}$ induced by $f$ is a locally trivial $c\infty$ fibration. The fibrations
$\partial\varphi_{\epsilon,\eta}$ and $\varphi_{\epsilon}$ have diffeomorphic total spaces and diffeomorphic fibers, so they must be isomorphic.
We shall call Milnor fiber of $f$ at $0$ a fiber of any of these two fibrations.

1 Basic results

In [7] the following theorem is proved:
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Theorem 1.1 Let $f$ : $(\mathbb{C}^{n+1},0)arrow(\mathbb{C}, 0)$ be a non-constant germ of complex analytic function.
Let $1\gg\epsilon\gg|t|>0$ , and let $H$ be a geneml hyperplane of $\mathbb{C}^{n+1}$ through $0$ , then the manifold
$f^{-1}(t)\cap B_{\epsilon}$ is obtained from a tubular neighbourhood of $f^{-1}(t)\cap B_{\epsilon}\cap H$ in $f^{-1}(t)\cap B_{\epsilon}$ by adding
handles of index $n$ .

The proof of Theorem 1.1 uses Smale $s$ interpretation of Morse theory by adding handles.

The key construction consists in introducing the Polar curve of $f$ relatively to a general linear
function $p$ . Namely, let $\ell$ be a linear function. We have a germ of map:

$\Phi=(l, f):(\mathbb{C}^{n+1},0)arrow(\mathbb{C}^{2},0)$.

The critical locus $C_{\ell}$ of $\Phi$ depends linearly on the linear form $\ell$ . A theorem of Bertini tells us that
the singular points of the general element $C\ell$ of this linear system lie in the fixed points of this
system. Locally near $0$ , the fixed points are precisely the critical points of the function $f$ . For a
general $C_{\ell}$ , the points of $C\ell\backslash \{f=0\}$ are non-singular. Therefore, for a general $\ell$ , either $C\ell\backslash \{f=0\}$

is empty or it is non-singular of dimension 1. We denote by $\Gamma\ell$ the closurc of $C\ell\backslash \{f=0\}$ . We call
$\Gamma_{\ell}$ a relative polar curve of $f$ at $0$ .

We can also define the relative polar curve of $f$ at $0$ in the following way. Let $\gamma_{f}$ be the map from
$B_{\epsilon}\backslash C(f)$ into $\mathbb{P}^{n}$ for $1\gg\epsilon>0$ , such that:

$\gamma_{f}(x_{0}, \ldots, x_{n})=(\partial f/\partial z_{0}(x_{0}, \ldots, x_{n}) :... :\partial f/\partial z_{n}(x_{0}, \ldots,x_{n}))$.

Let $\nu f$ : $B_{\epsilon}arrow B_{\epsilon}$ be the blowing-up in $B_{\epsilon}$ of the Jacobian ideal of $f$ generated by the partial
derivatives of $f$ . The map $\gamma_{f}$ extends as $\tilde{\gamma}_{f}$ : $B_{\epsilon}arrow \mathbb{P}^{n}$ . Let $\ell$ be a general line in $\mathbb{P}^{n}$ , then
$\nu f(\tilde{\gamma}_{f}^{-1}(\ell))=\Gamma_{\ell}$ is a polar curve of $f$ at $0$ .

The rclative polar curvc of $f$ at $0$ can be empty. For instance, it is so, when $f$ is an analytic
product. When the critical locus of $f$ is locally at $0$ a non-singular curve $\Sigma$ , one can show that the
relative polar curve of $f$ at $0$ is empty if and only if the hypersurface $f^{-1}(0)$ has Milnor number
constant along $\Sigma$ .
Noticc that the critical points of the restriction of the function $|l|$ to the difference of spaces

$f^{-1}(t)\cap B_{\epsilon}\backslash f^{-1}(t)\cap B_{\epsilon}\cap H$,

where $H=\{\ell=0\}$ , are the points of the intersection $r_{f}\cap f^{-1}(t)\cap B_{\epsilon}$ .

By taking the cone on a projective hypersurface $\Delta$ in $\mathbb{P}^{n}$ , Theorem 1.1 implies a Theorem of Zariski
stated in [12], which has correct proofs in [2] or in [5]:

Corollary 1.2 The fundamental group of the complement of the projective hypersurface $\Delta$ in $\mathbb{P}^{n}$

is isomorphic to the fundamental group of the complement in a general plane $P$ of the intersection
with $P$ of the projective hypersurface $\triangle$ .

Proof. First, we observe that the Milnor fiber $F$ of the reduced cone A over the hypersurface $\triangle$ ,
defined by a homogeneous polynomial $f$ of degree $d$ , is diffeomorphic to $F=f^{-1}(1)$ , which is an
abelian covering of degree $d$ of the complement $\mathbb{P}^{n}\backslash \triangle$ .

We have an exact sequence:

$1arrow\pi_{1}(F, *)arrow\pi_{1}(\mathbb{P}^{n}\backslash \triangle, *)arrow Z/dZarrow 0$ .
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Theorem 1.1 gives that, if $H$ is a general projective hyperplane, the inclusion $F\cap\tilde{H}$ into F. where
$\tilde{H}$ is the hyperplane above $H$ , induces an isomorphism $\pi k(F\cap\tilde{H}, *)\simeq\pi_{k}(F, *)$ , for $0\leq k\leq n-2$ .
Therefore, if $P$ is a general projective plane, the cone $\tilde{P}$ above $P$ is a 3-dimensional affine space
and $\pi_{1}(F\cap\tilde{P}, *)\simeq\pi_{1}(F\cap\tilde{P}, *)\simeq\pi_{1}(F, *)\simeq\pi_{1}(F, *)$ .

The space $F\cap\overline{P}$ is an abelian covering of degree $d$ of $P\backslash \Delta$ . We have the exact sequence:

$1arrow\pi_{1}(F\cap\overline{P}, *)arrow\pi_{1}(P\backslash \triangle, *)arrow Z/dZarrow 0$ .

Comparing this last exact sequence with the preceding one by using the inclusion maps, Theorem
1.1 gives a proof of our corollary.

Theorem 1.1 provides another proof of the Theorem of Zariski of Lefschetz type [12], stated in
corollary 1.2. Using our results in [4], we shall extend this Theorem of Zariski to a more general
setting.

2 Stratified Polar curve

Let $f$ : $(X, 0)arrow(\mathbb{C}, 0)$ be a germ of non-constant complex analytic function on a reduced space
$X\subset \mathbb{C}^{N}$ .

A theorem of H. Hironaka in [6] shows that, for $1\gg\epsilon>0$ , one can stratify $X\cap B_{\epsilon}$ \‘and $f^{-1}(0)\cap$ Be
in such a way that, for $1\gg\epsilon\gg\eta>0$ , the map $\phi_{\epsilon,\eta}$ : $X\cap B_{\epsilon}\cap f^{-1}(D_{\eta})arrow D_{\eta}$ induced by $f$ can
be stratified with Thom condition.

As it is done in [8], a fibration theorem analogous to Theorem 0.2 above can be proved:

Theorem 2.1 There is $\epsilon_{0}>0$ , such that, for any $e,$ $0<e\leq e_{0}$ , there is $\eta 0>0$ , such that, for
any $\eta,$ $0<? \int\leq\gamma)0$ , the map $\varphi_{\epsilon,\eta}$ : $B_{\epsilon}\cap X\cap f^{-1}(D_{\eta}^{*})arrow D_{\eta}^{*}$ induced by $f$ on the intersection of
the open ball centered at $0$ with radius $\epsilon$ with the inverse image in $X$ of the punctured open disc

$D_{\eta}^{*}$ $:=D_{\eta}\backslash \{0\}$ , is a locally trivial $C^{0}$ fibration.

One notices that the statement is somehow the same as the one of Theorem 0.2, but now the
fibration is $C^{0}$ , because $X$ might be singular.

Let $\ell$ be a linear form of the ambient space $\mathbb{C}^{N}$ . We have a germ of map $\Phi=(\ell, f)$ : $(X, 0)arrow(\mathbb{C}^{2},0)$ .
First one observes:

Lemma 2.2 There is a Zariski dense open space $\Omega$ of linear forms, such that, for any $\ell\in\Omega$ , there
are an open neighbourhood $U$ of $0$ in $X$ and an open neighbourhood $V$ of $0$ in $\mathbb{C}^{2}$ , such that $\Phi$

induces a stratified map from $U$ onto $V$ which satisfies Thom condition.

Proof. To prove this]$emma$, consider $1\gg\epsilon\gg\eta>0$ , such that Theorem 2.1 holds. Let us stratify
the map:

$\varphi_{\epsilon,\eta}:B_{\epsilon}\cap X\cap f^{-1}(D_{\eta})arrow D_{\eta}$

such that $B_{\epsilon}\cap X\cap f^{-1}(0)$ is a union of strata, the stratification of $B_{\epsilon}\cap X\cap f^{-1}(D_{\eta})$ satisfies
Whitney condition and Thom condition for $f$ . Consider a linear form $l$ of $\mathbb{C}^{N}$ such that $\{\ell=0\}$ is
transverse in $\mathbb{C}^{N}$ to all the strata of $B_{\epsilon}\cap X\cap f^{-1}(D_{\eta})$ except maybe at the point $\{0\}$ .
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We can see that by choosing the linear form in this way, the map $\Phi$ induces a Thom map for some
neighbourhoods $U$ and $V$ . Since there are only a finite number of strata having $0$ in its closure, it
is enough to choose a linear form $\ell$ such that $\{P=0\}$ is transverse except at $0$ to a finite number
of strata. i.e. a linear form lying in the intersection of Zariski dense open sets of linear forms.

Now, we can prove:

Proposition 2.3 Let $1\gg\epsilon\gg\eta>0$ . Let us stmtify $f$ : $B_{\epsilon}\cap X\cap f^{-1}(D_{\eta})arrow D_{\eta}$ with Whitney
stratifications and Thom condition. Let $S_{\alpha},$ $\alpha\in A$ , be the strata in finite number of $B_{\epsilon}\cap X\cap f^{-1}(D_{\eta})$

which contain $0$ in their closure. There is a Zariski open dense set S) in the space of linear forms
of $C^{N}$ , such that, for $\ell\in\Omega$ , the restriction of $(\ell, f)$ to $S_{\alpha}\backslash f^{-1}(0)$ have an empty or non-singular
cnttical locus $C_{\alpha}$ of dimension 1.

Proof. Consider a stratum $S_{\alpha}$ , such that the closure $\overline{S}_{\alpha}$ contains $0$ . Let $\ell$ be a linear form of $\mathbb{C}^{N}$ .
The critical locus $C_{\alpha}(\ell)$ of the restriction of $(\ell, f)$ to the closure $\overline{S}_{\alpha}$ is an analytic subset of $\tilde{S}_{\alpha}$

which depends linearly on $p$ , so, using the same theorem of Bertini as above, for $\ell$ general, i.e. for $\ell$

in a Zariski dense open set $\Omega_{\alpha}$ of the space of linear forms of $\mathbb{C}^{N}$ , the singular points of $C_{\alpha}(\ell)$ lie in
the union of $f^{-1}(0)\cap\overline{S}_{\alpha}$ and the singular point of $S_{\alpha}$ , Therefore, for $\ell$ general, $C_{\alpha}(\ell)\cap(S_{\alpha}\backslash f^{-1}(0))$

is eit,her empty or non-singular of dimension 1.

Since $f$ is stratified, either $S_{\alpha}\subset f^{-1}(0)$ or $S_{\alpha}\cap f^{-1}(0)=\emptyset$ , otherwise $f$ has maximal rank on
all the strata $(S_{\alpha})$ , in which case, for all $\alpha$ except at most one, $\dim S_{\alpha}\geq 2$ and, for a general $\ell$ ,
the critical locus of $(\ell, f)$ restricted to $S_{\alpha}$ is empty, except for the stratum of dimension 1 which
contains $0$ , and in this last case the critical locus of the restriction of $(\ell, f)$ to this l-dimensional
stratum is the whole stratum itself.

We may suppose that, either $S_{\alpha}\subset f^{-1}(0)$ or $S_{\alpha}\cap f^{-1}(0)=\emptyset$ . We have just seen that, for $\ell$ general,
the critical space $C_{\alpha}$ of the restriction of $(\ell, f)$ to $S_{\alpha}\backslash f^{-1}(0)$ is empty or non-singular of dimension
1. The Zariski open dense set $\Omega$ of the proposition is the finite intersection $\bigcap_{\alpha\in A}\Omega_{\alpha}$ .

Definition 2.4 The relative polar curve of $f$ relatively to a general linear form $p$ of $\mathbb{C}^{N}$ is the
finite union of the closures $\bigcup_{\alpha\in}{}_{A}\overline{C}_{\alpha}$ . We shall call $\Gamma_{\alpha}$ $:=\overline{C}_{\alpha}$ a relative polar curve associated to
the stratum $S_{\alpha}$ .

Recall that, as above, $C_{\alpha}$ and also $\Gamma_{\alpha}$ can be empty.

In [8], we have introduced this notion in the particular case $f$ was itself the restriction of a general
linear form of $\mathbb{C}^{N}$ to the germ $(X, 0)$ .

Notice that, since $f$ is stratified, for $t$ small enough, the intersections $\{f=t\}\cap S_{\alpha}$ give a Whitney
stratification of the Milnor fiber $\{f=t\}$ . The points of $\Gamma_{\alpha}\cap\{f=t\}$ are precisely the points of $S_{\alpha}$

where the restriction of $\ell$ to $\{f=t\}\cap S_{\alpha}$ has ordinary quadratic points.

3 Singular complement of projective hypersurfaces

Let $X$ be a projective variety embedded in the complex projective space $\mathbb{P}^{N-1}$ and let $Y\subset X$ a
projective $h_{-}ypersurface$ defined in $X$ by one homogeneous equation $f=0$ . To these data correspond
the cones $X,\tilde{Y}$ embedded in $\mathbb{C}^{N}$ .
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On the punctured cone $\overline{X}\backslash \{0\}$ , we have a natural action of the punctured group of non-zero
complex numbers $\mathbb{C}^{*}$ . Consider the fiber $F=f^{-1}(1)\cap\overline{X}$ . Let $\sigma$ be the natural map from $\overline{X}\backslash \{0\}$

onto $X$ . Let $y\in X\backslash Y$ . The inverse image $\sigma^{-1}(y)$ is the punctured line $\overline{y}^{*}$ .

Assume that $f$ is the restriction to $X$ of a homogeneous polynomial of $\mathbb{P}^{N-1}$ of degree $d$ . The
intersection $\sigma^{-1}(y)\cap F$ consists of $d$ points $\{\xi^{k}yo\}_{0\leq k\leq d-1}$ , where $\xi$ is a primitive d-th root of unity
and $y0$ is one point of $\sigma^{-1}(y)\cap$ F.

Suppose that the fiber $F$ of $f$ : $\overline{X}arrow \mathbb{C}$ is connected, it is a topological covering of $X\backslash Y$ of degree
$d$ . Let $H$ be a projective hyperplane of $\mathbb{P}^{N-1}$ . If we want to compare $X\backslash Y$ and $(X\backslash Y)\cap H$ , we
can do it by comparing $F$ and $F\cap\tilde{H}$ , where $\tilde{H}$ is the hyperplane lying above $H$ in $\mathbb{C}^{N}$ .

In this situation $F$ is a singular space.

Let us define the notion of rectified homotopical depth introduced by Grothendieck and understood
as in [4] (Theorem 4.1.2).

Definition 3.1 Let $X$ be a reduced complex analytic space. Let $(S_{\alpha})_{\alpha\in A}$ be an analytic Whitney
stratification of X. For each $\alpha\in A$ , let $\mathcal{L}_{\alpha}$ be a complex link of $S_{\alpha}$ . We say that the rectified
homotopical depth $rhd(X)$ of $X$ $is\geq r$ if, for each $\alpha\in A$ , the complex link $\mathcal{L}_{\alpha}$ is $(r-\dim S_{\alpha}-2)-$

connected.

Remind that the complex link of a stratum $S_{\alpha}$ of a Whitney stratification is obtained in the following
way. Let $x\in S_{\alpha}$ . Assume that (X, x) is locally embedded in $\mathbb{C}^{N}$ . Let $\mathcal{N}_{\alpha}$ be a slice of $S_{\alpha}$ at $x$ ,
i.e. the intersection of $X$ with a complex submanifold of $\mathbb{C}^{N}$ of codimension $\dim S_{\alpha}$ and transverse
in $\mathbb{C}^{N}$ to $S_{\alpha}$ at $x$ . A complex link of $S_{\alpha}$ is the Milnor fiber at $x$ of a general linear form of $\mathbb{C}^{N}$

restricted to $\mathcal{N}_{\alpha}$ .

One can prove that all complex links of a given stratum of a Whitney stratification are homeomor-
phic (see e.g. \S 2.3 Part II Chapter 2),

In [4] we indicate that, if $X$ is equidimensional, the dimension of $X$ bounds the rectified homotopical
depth.

We shall show:

Theorem 3.2 Let assume that the rectified homotopical depth of the projective variety $X$ is $\dim X$

and let $Y\subset X$ a projective subset defined in $X$ by one reduced homogeneous equation $f=0$ . For a
general hyperplane $H$ the inclusion of $(X\backslash Y)\cap H$ in $X\backslash Y$ gives an isomorphism of the fundamental
groups $\pi_{1}((X\backslash Y)\cap H, *)\simeq\pi_{1}(X\backslash Y, *)$ for $\dim X\geq 3$ .

The proof of this theorem proceeds like what we have done for the Theorem 1.2 of Zariski of
Lefschetz type ([12]). We first prove a local theorem:

Theorem 3.3 Let (X, x) a germ of reduced equidimensional germ of complex analytic space em-
bedded in $(\mathbb{C}^{N}, 0)$ . Let

$f:(X, x)arrow(\mathbb{C}, 0)$

be a germ of non-constant complex analytic function on $(X, x)$ . Assume that $X\backslash f^{-1}(0)$ has rectified
homotopical depth $\geq r$ . Let $F$ be a Milnor fiber of $f$ at $0$ . For a geneml hyperplane $H$ containing
$x$ , the relative homotopy $\pi k(F, F\cap H, *)=0$ if $k\leq r-2$ .
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Proof of Theorem 3.3. As we have mentioned above, we are going to use our results in [4].
Let $\ell$ be a general linear form of $\mathbb{C}^{N},$ $H$ $:=\{\ell=0\}$ the general hyperplane that it defines, and
$Y$ $:=H\cap X$ . Call $Z=f^{-1}(0)\cap X$ . Denote by $S_{\epsilon}(x)$ the sphere centered at $x$ with radius $\epsilon$ .
Theorem 2.2 of [5] asserts that $S_{\epsilon}(x)\cap(X\backslash Z)$ is obtained from @$\epsilon$ (x) $\cap(X\backslash Z)\cap V_{\alpha}(Y)$ by adding
cells of dimension $\geq r-1$ , where:

$V_{\alpha}(Y)=\{z\in X||l(z)|\leq\alpha\}$

with $\alpha>0$ small enough.

Since $H$ is a gcneral hyperplane, one c\‘an show that the space $S_{\epsilon}(x)\cap(X\backslash Z)\cap V_{\alpha}(Y)$ retracts on
the space $S_{\epsilon}(x)\cap(X\backslash Z)\cap Y$ and has the same homotopy type.

The local conic theorem (see [1] Lemma 3.2) implies that $S_{\epsilon}(x)\cap(X\backslash Z)\cap Y$ has the same homotopy
type as $B_{\epsilon}(x)\cap(X\backslash Z)\cap Y$ and $S_{\epsilon}(x)\cap(X\backslash Z)$ has the same homotopy type as $B_{\epsilon}(x)\cap(X\backslash Z)$ ,
where $B_{\epsilon}(x)$ is the ball of $\mathbb{C}^{N}$ having $S_{\epsilon}(x)$ as boundary.

Adapted to the stratified situation, the Lemma 5.9 of [11] constructs a vector field which gives a
stratified homeomorphism of $B_{\epsilon}(x)\cap f^{-1}(D_{\eta})\cap(X\backslash Z)$ onto $B_{\epsilon}(x)\cap(X\backslash Z)$ , for $1\gg\epsilon\gg\eta>0$ .
Now, using the fibration theorem 2.1, one can show that $B_{\epsilon}(x)\cap f^{-1}(D_{\eta})\cap(X\backslash Z)\simeq B_{\epsilon}(x)\cap(X\backslash Z)$

and the Milnor fiber $F$ have the same homotopy type for dimensions $\neq 1$ . For dimension 1, one
has:

$1arrow\pi_{1}(F, *)arrow\pi_{1}(B_{\epsilon}(x)\cap(X\backslash Z), *)arrow Zarrow 0$ .

In the hyperplane section by $H$ we have:

$1arrow\pi_{1}(F\cap H, *)arrow\pi_{1}(B_{\epsilon}(x)\cap(X\backslash Z)\cap Y, *)arrow Zarrow 0$ .

Onc finds that this implies, if $r\geq 3$ , the relative homotopy $\pi_{k}(F, F\cap H, *)=0$ , for $k\leq r-2$ .

Proof of Theorem 3.2. We can apply the Theorem 3.3 to obtain Theorem 3.2. We have supposed
that the rectified homotopy depth of $X$ equals $\dim X$ . Let us show that the cone $\overline{X}$ over $X$ has
rectified homotopical depth equal to $\dim X=\dim X+1$ .

Let us stratify $X$ by $(S_{\alpha})_{\alpha\in A}$ , so that $Y$ is a union of strata. First, notice that the punctured cones
$\tilde{S}_{\alpha}\backslash \{0\}$ give a stratification of the punctured cone $\tilde{X}\backslash \{0\}$ . By adding the trivial stratum $\{0\}$ , this
defines a Whitney stratification of the cone $\overline{X}$ .

The complex link of the punctured cone $S_{\alpha}\backslash \{0\}$ in $\tilde{X}$ is the Milnor fiber of the restriction of a
general linear function to a slice of $S_{\alpha}\backslash \{0\}$ in X. lt is clear that complex link of the punctured cone
$\tilde{S}_{\alpha}\backslash \{0\}$ in $\overline{X}$ is homeomorphic to the conlplex link of $S_{\alpha}$ in $X$ . Since it is $(\dim X-\dim S_{\alpha}-2)_{-}-$

connected, it is equivalently $(\dim X+1-(\dim S_{\alpha}+1)-2)$ -connected. So, the difference $\overline{X}\backslash Y$

has rectified homotopical depth $\dim X+1$ .

Let $F$ be the Milnor fiber of the restriction of $f$ to $\overline{X}$ . The Theorem 3.3 implies that, for a general
hypcrplane $\overline{H}$ of $\mathbb{C}^{N}$ :

$\pi_{k}(F\cap\tilde{H}, *)\simeq\pi_{k}(F, *)$

when $k\leq\dim\tilde{X}-3$ . Therefore:
$\pi_{1}(F\cap\overline{H}, *)\simeq\pi_{1}(F, *)$

when $1\leq\dim X-2$ or $\dim X\geq 3$ .
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Since the cone $\tilde{X}$ is homogeneous, the Milnor fiber $F$ is homeomorphic to the fiber $F=f^{-1}(1)$ ,
and $F\cap H$ is homeomorphic to $F\cap H$ . Therefore:

$\pi_{1}(F\cap\tilde{H}, *)\simeq\pi_{1}(F, *)$

when $\dim X\geq 3$ .

Using the covering $Farrow X\backslash Y$ , we obtain:

$\pi_{1}((X\backslash Y)\cap H, *)\simeq\pi_{1}((X\backslash Y), *)$

when $\dim X\geq 3$ and where $H$ is the general hyperplane of $\mathbb{P}^{N-1}$ defined by $\tilde{H}$ .

Following the type of arguments given above, we can prove a stronger theorem than Theorem 3.2
with a general rectified homotopical depth, but dealing with homotopy groups. We leave it to the
rcader.

4 Comments

Notice that, in the proof of Theorem 3.3, we did not use Stratified Morse theory, but Theorem 2.2
of [4] instead.

Using Stratified Morse theory, we may see that we add cells at the points of $F\cap(\bigcup_{\alpha\in A}\Gamma_{\alpha})$ , where
$\Gamma_{\alpha}$ is the part from the stratum $S_{\alpha}$ of a relative polar curve of $f$ : $Xarrow \mathbb{C}$ at $x$ . However we cannot
prove that at these points we are adding cells with the right connectivity. We conjecture that, in
this particular setting where the rectified homotopical depth is maximum, this should be true.

There arc many spaces $X$ for which the rectified homotopical depth is maximum and equal to
$\dim X$ . In [9], we prove th\‘at local complex analytic hypersurfaces have maximum rectified homo-
topical depth. The same proof shows that local complete intersections have also maximum rectified
homotopical depth,

In general, one can prove that a reduced equidimensional complex analytic space has maximum
rectified homotopical depth if and only if it is a Milnor space in the sense of [10].

For instance, let $\mathcal{A}$ be an affine hyperplane arrangement. It is a hypersurface. So it has maximal
depth.

One can consider $\mathcal{A}$ as a the complement of the hyperplane at $\infty$ of a projective hypersurf\‘ace $\overline{\mathcal{A}}$ in
the projective space $\mathbb{P}^{N}$ . Since the hyperplane at $\infty$ is defined by one equation in $\overline{A}$ , we can apply
Theorem 3.2,

We get that the fundamental group of $\mathcal{A}$ equals the fundamental group of the intersection with a
genera13-plane $E$ . We get:

Proposition 4.1 The fundamental group of a plane arrangement in $\mathbb{C}^{3}$ whose planes have at least
3 distinct plane directions, such that none of them is pamllel to the intersection of the two other
plane directions, is trivial.

Proof.1 We assume that the planes are in general position. In this case we give a proof by induction
on the number of planes. If the number of hyperplanes is 1, there is nothing to prove.

lWe are indebted to Mutsuo Oka for this proof.
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Let us suppose that an arrangement $A’$ with $k\geq 1$ planes in $\mathbb{C}^{3}$ has a trivial fundamental group.
The new arrangement $A$ is the union of $\mathcal{A}’$ and of the plane $P$ .

The intersection of $P$ and $\mathcal{A}’$ is connected since it is the union of $k$ lines in general position, where
$k\geq 1$ . We apply Van Kampen theorem. The fundamental group of $\mathcal{A}$ is the amalgamated product
of the fundamental group of $P$ and the fundaniental group of $\mathcal{A}’$ . Both these fundamental groups
are trivial, so the fundamental group of $\mathcal{A}$ is also trivial.

Now, let us assume that the planes in $\mathcal{A}$ are not in general position. Let us order the planes

$P_{1}^{1},$

$\ldots,$
$P_{n_{1}}^{1},$ $P_{1}^{2},$

$\ldots,$
$P_{n_{2}}^{2},$

$\ldots,$
$P_{1}^{k},$

$\ldots,$
$P_{n_{k}}^{k}$ ,

in such a way that, for $1\leq i\leq k$ , all the planes $P_{p}^{i}$ are parallel between themselves, none of $P_{m}^{i}$ is
parallel to $P_{m}^{j}$ for $i\neq j$ .

We make another induction on $k$ . For $k=1$ , the arrangement $\mathcal{A}$ consists of parallel planes. We may
not speak of a fundamental group, but the arrangement is the disjoint union of planes having all
trivial fundamental group. For $k=2$ , the arrangement $\mathcal{A}_{1}$ with the planes $P_{1}^{1},$

$\ldots$ , $P_{n_{1}}^{1},$ $P_{1}^{2}$ retracts
by deforlnation on $P_{1}^{2}$ . However, for $n_{2}\geq 2$ , the arrangement $\mathcal{A}_{2}$ given by $P_{1}^{1},$

$\ldots,$
$P_{n}^{1_{1}},$ $P_{1}^{2},$

$\ldots,$
$P_{n}^{2_{2}}$

h\‘as a non-trivial fundamental group.

Let us suppose that the third plane direction is not parallel to the intersection of the two first
ones. All the generators of the fundamental group of $\mathcal{A}_{2}$ vanish in $P_{1}^{3}$ . The arrangement given by
$\mathcal{A}_{2}$ and the plane $P_{1}^{3}$ has a trivial fundamental group. By adding successively the planes $P_{j}^{3}$ , for
$2\leq j\leq n_{3}$ , using Van Kampen theorem, we prove by induction that the fundamental group of the
arrangement given by $\mathcal{A}_{2}$ and $P_{1}^{3},$

$\ldots,$
$P_{j}^{3}$ is trivial.

Now it it is easy to prove by induction that arrangements with more plane directions have a trivial
fundamental group.

It remains to consider the case the third plane direction is parallel to the intersection of the two
first ones. It is easy to find that the fundamental group is not trivial. It remains like that, if all
the plane directions are parallel to the intersection of the two first ones.

With Theorem 3.2 we obtain:

Corollary 4.2 The fundamental group of a hyperplane arrangement in $\mathbb{C}^{n}$ , for $n\geq 3$ , which has
at least 3 hyperplane directions, such that none of them is pamllel to the intersection of the two
other hyperplane directions, is $tri\mathscr{O}al$ .

Beware not to confuse the fundamental group of the complement of the arrangement $\mathcal{A}$ in $\mathbb{C}^{n}$

and the fundamental group of the arrangement itself. To compute the fundamental group of the
complement of the arrangement $A$ in $\mathbb{C}^{n}$ , one has to use Corollary 1.2.
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