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Motivated from real algebraic geometry, Viro, Mikhalkin, Shustin, Iten-
berg, and other mathematicians have developed the “tropical (algebraic)
geometry” [8]. Algebraic curves are tropicalized to piecewise-linear curves.
The method was used to construct topological types of real algebraic curves
in Hilbert’s 16th problem [24].

In this rough sketch, we present several basic topics of tropical geom-
etry, in particular, the notion of hyperfields introduced by Viro recently
[25].

[ Tropical Limits of Operations ]

Let R, denote the set of non-negative real numbers.
We fix h > 0 and consider the bijection
hlog: R4 — RU {—o0}

defined by ‘
u— hlogu, ek —x.



150

On RU {—o0}, two operations
x+py = hlog (eﬁ + e%)
XXpy = Izlog(eﬁ -e%> =x+y

are induced from the summension and the multiplication on R.
Set m = max{x,y}. Then we have

m

hlog (e'f—f) <x+,y<hlog (e% + eﬁ) ,
namely,
m< x4,y <m+hlog2.
Therefore we have that

lhlﬁ)l (x +1y) = max{x,y}.

[ Tropical Semi-Ring ]

Rirop = RU {—oo} with the two operations
“x+y”:=max{x,y}, “x-y":=x+y,

is called the tropical semi-ring (or the max-plus algebra).

Moreover we set “x/y” = x — y if y # —oo. Note that there is no tropical
subtraction. The tropical sum is idempotent :

/lx + xll — x’

—o0 being the tropical zero.

[ Tropical Polynomials ]

For a finite subset A C Z", consider a “tropical” (Laurent) polynomial

F(x) — chxj e max{c}-+j.x |]'E A},
jEA
(cj € R), which is a PL-function on R". Then the tropical hypersurface
Yr C R" is defined by F as the corner locus of F.
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Example 1. (tropical line). We consider
F(x1,x2) ="“axy + bxy + ¢” = max{x; +a, x, + b, c}.

Then Yr consists of three half-lines meeting at one point.

Yo+ b
\:
|

[ Tropical Hyperfields }

We define a multi-valued addition Y on RU {—co} : For a,b € RU {00},

we set
, | max{a,b}, (a #b)
Yb'_{ {yeRU{-oo}|y<a}, (a=b)

The multiplication is defined by the ordinary addition.
Weset Y = (RU {—o0},Y,+) and we call it the fropical hyperfield.

This implies the natural definition of “tropical zero”.

Example 2. For a € R, we define the function x Y 2: Y — Y. Then we have

graph(x Ya)={y=ax<alU{y=xa<x}U{y<ax=a}.
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[ Definition of Hyperfields ]

Suppose there are given, on a set X, a multi-valued binary operation T and
a single-valued binary operation -.

Then (X, T,-) is called a hyperfield if

ratb=bta, atv(bTtc)=(aTh)TC

- 30€X, 0ta=a,foranyac X,

* Vae X,3; —a e X (minus a) such that 0 €2 7 (—a).
*c€aTh < (—c)e(—a)T(-b)

* The operation - is commutative, associative and
0-a=0 holds forany a € X,

* (X\ {0}, - ) is a commutative group, which will be denoted by X*,

- the “distributive law” holds:
a-(btc) =(a-b)Tt(a-c), (btc)-a = (b-a)T(c-a).

Lemma 3. The tropical hyperfield X = (RU {—o0},Y,+) is a hyperfield.
In fact we have

* The zero-element is —co.
* Fora €Y, —aequalsa,since ~oc€aYb<s b=a.

* The commutative group Y* = (R, +), the unit being 0 € R.



[Tropical Hypersurfaces and Newton Polyhedra]

For a tropical Laurent polynomial F(x) = “ YicA cjxj ”, we define
v=-c:A—R
by v(j) := —c;,(j € A). Then we set
L(v) := convex hull {(j,y) ER" xR |j € A,y Zv(j)} C R**!

We set A = Ap = convex hull (4) C R”, and A the union of compact faces
of LI(v). We call A = Ar the Newton polyhedra of F.

Then A projects to A in bijection by 77: A — R", 72(j,y) :=j. An integral
subdivision of A is induced from A. We obtain the convex function7: A —
R having A as its graph.

————

A

e o
A

The tropical hypersurface Yr is an (n — 1)-dimensional regular polyhe-
dral complex. (Regularity condition: the boundary of each i-cell is a union
of (i — 1)-cells.)

Along each (n ~ 1)-cell I, two functions ¢; +j - x, ¢x + k - x have the
same value. From ¢; +j- x = ¢, + k - x, we have the equation

(k= )x+ (ck —cj) =0

of the hyperplane containing I. Then the integer vector k — j is orthogonal
to I. Then there exist the unique positive integer w; and the primitive
integer vector n; such that k — j = wyn;.

For each (n — 2)-cell C, and (n — 1)-cells Iy, b, ..., I, adjacent to C, if
we fix a co-orientation of C and take primitive orthogonal vectors n o then
we have the balanced condition

wII nll + ZUIZnIZ + T + wImnIm = O
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Thus the tropical hypersurface Y is an (n — 1)-dimensional weighted
rational polyhedral complex satisfying the regularity condition and the
balanced condition.

Tropical hypersurface Yr is invariant under the deformations, called
the fundamental deformations, of the tropical Laurent polynomial F.

(1) Replace cby ¢’ : A — R,¢/(j) = ¢(j) + const..
(2) Replace Aby A=A+ jo,jo€Z"andcbyc: A’ >R, (j+jo) =

c(7)-
(3) Replace c: A — Rby ¢’ : A’ — R such that convex hull A’ = A and
the convex function —c’ = —c.

[ Legendre Transformations ]

Consider the contact manifold M = R?"+1 with coordinates

(x,]/,P) = (xll- XY, P1se - -;pn)

and with the contact form 6 = dy — Y/, p;dx;.
Note that —60 = d(}__, pix; —y) — i1 x;dp;. Then we have the double
Legendrian fibration:

b e
R;1+1 oa R2n+1 2 Rn+1’

m(xy,p) = (xy), mxyp)=@p), §=Lipixi—y.

For a function h: A — R on a convex set A C R", the Legendre transfor-
mation of h is defined as the set of supporting hyperplanes of the epi-graph of
h.
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Lemma 4. The graph of tropical polynomial function

Flx)="Y cx"

jeA

and the graph of the convex function —c : R* — R are the Legendre transforma-
tions to each other.

We consider the topological classification problem of tropical polyno-
mial functions preserving corner loci.

Definition 5. Two tropical polynomials F(x) and G(x) are called topologi-
cally equivalent if there exist homeomorphisms ®:R” - R”and¥:R — R
such that

Proposition 6. There exists a semialgebraic set & C R? of codim > 0 such that,
for any c € RA \ I, the decomposition of A is simplicial.

For each connected component U of R4 \ Z, the family F.(x),c € U of tropical
polynomial functions is topologically trivial.

[ Topological Bifurcations of Singularities ]

The topology of a tropical polynomial with a non-simplicial decomposi-
tion bifurcates into a generic tropical polynomial.

Example 7. Let us consider the tropical polynomial

F="0+0x1 + 0xp +0x1x " = max{0, x1,x2,x1 + X2}
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Then F has the deformation:

Fy =“A+0x1 + 0xz + 0x122 " = max{A, x1, 22, %1 + x2},(A € R,A # 0).

The tropical curve Yr bifurcates into Yr, (A > 0,A < 0). The decompo-
sition of Newton polyhedron Ar bifurcates into Ar, (A > 0,A < 0).

e

0o 0 0 0 0 o
AFAB“ "’A
A0 0 O AN 0
A<O  A=0 AS>0

[ Amoeba and Pachworking ]

For a complex Laurent polynomial

= Zb}-zj S C[z'{",...,sz], bj eC”,
jeA

we have a hypersurface
Zy={z € (C")"| f(z) =0} C (CT)"

in the complex torus (C*)".
For a given function v: A — R, consider the family of polynomials,

=Y pit02, (t>0).
jEA

We call it the patchworking polynomial induced by f and v. Note that f; = f.
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Let us define Log, : C" — (RU {—o0})" by
Log,(z1,...,z,) = (log, |z1],...,10g, |za]).
We set Ay = Log(Zy) C R" and we call it the amoeba of Zj.

Proposition 8. (Viro, Kapranov)

lim Hausdorff-dist(Log,(Z; ), Y =0
Bi\2fi)r LS trop

f—o0
where .
firop(X) :=" ) (=0v(j))x " = max(j - x — v(j))
jeA jeA

(Legendre transformation of v).

Example 9. Amoeba of f(zq,2z3) =21 + 2z + 1.
7
\ / v—

[Puiseux Series and Non-Archimedean Amoeba)

Let us denote by C[R] the group algebra of the additive group R over C.
We consider its formal version:

A Puiseux-Laurent series of real power (Hahn series[4]) is given by

a=a(s) =) asP

pel

where &, € C* and the support I = I, C R of a is a well-ordered subset.
We set

C((R)) :={a(s) | a(s) : Puiseux-Laurent series of real power} U {0}.
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Lemma 10. K = C((R)) is an algebraically closed field.

Define the valuation val : C((R)) — RU {c0} on C((R)) by
val(a) :=minl, € R, (a € C((R))\ {0}), val(0) =00,
Then we have that val(a) = o if and only if 2 = 0, and that
val(ab) = val(a) +val(b), val(a+b) > min{val(a),val(b)}.
We define the non-Archimedes norm on C((R)) by
la]| ;=@ (a€C((R))*), o] =0.
Then we have the tropical triangular inequality
la+ 8]l < max{llall, b} = “|lall + [[B]]
Define Log : C((R))"” — (RU { ~o0})" by

(toglai|l,. .. logllan]|)

Log(al, e ,_an) =
— (—-—Val(lh),. e, —Val(an))-

Given a Laurent polynomial f(z) = Y ;4,2 € K[z,z7], we define
Zp:={z € (K*)"| f(z) =0} C (K*)".

Its Log-image A := Log(Zy) ¢ (RU {—o00})" is called the non-Archimedean
amoeba of Zy.

Define a tropical Laurent polynomial
firop(x) = “ Ljealogliajllx/ ” =" Ljca(—val(a;))x
= maXjea(j- x — val(a;)).
We call firop(x) the tropicalization of f(z).

Proposition 11. (Kapranov) Non-Archimedean amoeba is a tropical hypersur-
face: We have A ¢ = throp.
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[ Triangle hyperfield ]

On R, define the multi-valucd addition
aVb = {ccRy | |a—b|<c<a+b}
= {lz+w| | |z =a,|w|=0b}.

This reminds us the superposition of waves.
Then RY = (R4, V, -) is a hyperfield.

[ Amoeba hyperfield ]

By the bijection log : R — RU {—o0}, we have the hyperfield
log(R%) - (RU {~c0}, ¥ , +),
which is called the amoeba hyperfield:
ayb:={ceRU{-c} | log(|e" —€’|) < ¢ <log(e* +eb)}.

[ Tropical Limits of Amoeba Hyperfield ]

Define, on RU {—o0},
aYnb = h(}y7/)

= {ceRU{~x}|
hlog(|efi — e%)) < ¢ < hlog(ef +e%),}
aYyb = {c€eRU{—o0} | —0<c<a+hlog2}
= [-o0,a] = aYa.

Ifa#b,thena v, b — { max{a,b} }.

lima Yo,b=aYh,
h—0

llir% log(RY);, — Y (: tropical hyperfield) .
17—
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[ Complex Tropical hyperfield ]

We define a multi-valued addition - on C: Let a,b € C. If |a| # |b|, then
weseta-b:=a if [a| > |b|,and a-b:=b if |a| < |b].

Suppose |a| = |b|. If b # —a, then

a-b := [the shortestarc connecting aand b
on the circle {z € C| |z| =1a|} |.

If b = —ag, then set
a-b = {z€C|z| < |al}.

We define the complex tropical hyperfield by
7C := (C, —, the usual multiplication).

On C, we consider the bijection Sy, : C — C defined by
.y
s | e @2
0 (z=0).

and we define
z+ypw = S; 1 (Sp(z) + Sp(w)).

Then we have a family of fields (C,+, x), h > 0.
Theorem 12. (Viro [25]) Let
I'={(z,w,z+pw,h) € C xRy | (z,w,h) €C*>x Ry }.

Then
N (C® x {0}) -= {(a, b, a~—b, 0) | (a,b) € C?}.
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[ Viro’s Diagram 2010]

Thus we have the diagram:

Complex Algebraic Geometry Complex Tropical Geometry
cxc, =9, Co=7C
z 2| l l z— |z
RY >RY, = RY, = Y,
x — logx l l x— logx
log(RY) = log(RY),  —— Y
Amoeba Geometry Tropical Geometry

[ Real Tropical Hyperfield ]

Question: What is the real counterpart of the complex tropical hyperfield
?

We are naturally led to define the multi-valued addition - on R in-
duced from - on C: For a,b € R, we set

a—zb = g if |a] > |b|,
a—xb = b ifla| <|b|,
aA—yra = 4,
a—x(—a) = [—a,a].
— = ) — e
Oba b0 4 O0ah -a 0 Q

Theorem 13. (R, —g, x) is a hyperfield. Moreover let
IR ={(a,b,a+,b,h) cR® xRy | (a,b,h) € R x R }.
Then we have
TR N(R® x {0}) = {(a, b, a—rb, 0) | (a,b) € R?}.
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The real tropical hyperfield is, in some sense, a “double covering” of
the tropical hyperfield via x - » log|x|. Therefore, “real tropical geometry”
can be constructed as a “double covering” of tropical geometry.

[ Several Questions ]

Question: Is the complex tropical hyperfield 7 C is algebraically closed, in
an appropriate sense ?

Question: Are the real tropical hyperfield and the tropical hyperfield Y
real closed ?

Question: What is the real tropical algebraic geometry ?

In Amoeba geometry, it is known the Ronkin function

LY

NS = = g B T 5

is linear on each connected component of R" \ A¢. We have gradNy : R" \
As — ANZ" and grad Ny separates every connected components of R" \

Ay
Question: Can the Ronkin function be described in terms of the amoeba
hyperfield ?
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